Vaccine effectiveness of BNT162b2 mRNA Covid-19 Vaccine in Children below 5 Years in German Primary Care

Christoph Strumann¹, Otavio Ranzani²,³, Jeanne Moor⁴,⁵, Reinhard Berner⁶, Nicole Töpfner⁶, Cho-Ming Chao⁷,⁸,⁹**, Matthias B. Moor¹⁰,¹¹,¹²**

¹ Institute of Family Medicine, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
² Barcelona Institute for Global Health, ISGlobal, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
³ Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
⁴ Department of General Internal Medicine, Inselspital University Hospital Bern, Bern, Switzerland
⁵ Institute of Primary Health Care (BIHAM), University of Bern, Switzerland
⁶ Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
⁷ University Children’s Hospital, University Medical Center Rostock, University of Rostock, Rostock, Germany
⁸ Department of Pediatrics, Helios University Medical Center, Witten/Herdecke University, Heusnerstr. 40, 42283, Wuppertal, Germany.
⁹ Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany.
¹⁰ Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
¹¹ Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
¹² Department of Nephrology and Hypertension, Inselspital University Hospital Bern, Bern, Switzerland

**Co-senior authors.

Running head: Vaccine Effectiveness of BNT162b2 in Children below 5 Years

Correspondence to:
PD Dr. med. Cho-Ming Chao, PhD MBA
Zentrum für Kinder- und Jugendmedizin
HELIOS Universitätsklinikum Wuppertal
Universität Witten/Herdecke

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Heusnerstraße 40 – 42283 Wuppertal

Tel: +49 (0)202 896 3840
Fax: +49 (0)202 896 3834
Email: cho-ming.chao@helios-gesundheit.de

Keywords: BNT162b2, children, vaccine effectiveness, SARS-CoV-2, mRNA vaccine
Abstract

Background

Despite the approval of BNT162b2 mRNA vaccine for children aged 6 months to 4 years by the European Medicines Agency (EMA) and the Federal Drug Administration (FDA) in 2022, no data on vaccine effectiveness (VE) of BNT162b2 are available in this age group. We here report on the VE of BNT162b2 during an Omicron BA.1-2 dominant period.

Methods

An authentication-based retrospective survey was performed between April 14th 2022 and May 9th 2022 in individuals that had registered children for off-label SARS-CoV-2 vaccination in Germany. We used Cox regression to estimate relative VE of two BNT162b2 doses, with the period between first and second vaccine dose as reference period (24.8+0.6 days) and >=7 days after Dose 2 to before Dose 3 as post-vaccination period (59.5+-23.6 days).

Results

The present analysis included 4615 children aged 2.8+-1.2 years (mean+-standard deviation) who had received their first dose of BNT162b2 on January 1st 2022 or thereafter. VE was substantial for protection from any SARS-CoV-2 infection (VE: 53.1% [95% confidence interval (CI): 36.3-69.6%], p<0.001), symptomatic SARS-CoV-2 infections (VE: 57.5% [95% CI: 40.8-74.2%], p<0.001), and SARS-CoV-2 infections leading to medication use (VE: 66.2% [95% CI: 43.7-88.7%], p<0.001). Differences in dosage of BNT162b2 yielded no change in VE.

Conclusion

This study offers a first industry-independent insight in the potential VE of two doses of the BNT162b2 vaccine in children aged below 5 years, as currently only immunogenicity data by the manufacturer Pfizer/BioNTech are available. Limitations include the retrospective study design, and that the reported VE does not necessarily correspond to currently circulating SARS-CoV-2 variants.
Despite the approval of BNT162b2 mRNA vaccine (Pfizer/BioNTech vaccine Comirnaty®) for children aged 6 months to 4 years by the European Medicines Agency (EMA) and the Federal Drug Administration (FDA) in 2022, no data on vaccine effectiveness (VE) of BNT162b2 are available in this age group. We have retrospectively described the safety of BNT162b2 (Pfizer/BioNTech vaccine Comirnaty®) administered off-label in children younger than 5 in years Germany (1). Using data from this authentication-based retrospective survey data obtained between April 14th 2022 and May 9th 2022 (1), we here report VE of BNT162b2 during an Omicron BA.1-2 dominant period.

We analyzed 4615 children aged 2.8±1.2 years (mean ±standard deviation) who received their first dose of BNT162b2 on January 1st 2022 or thereafter (Table S1). We used Cox regression to estimate relative VE of two BNT162b2 doses as indicated in the Supplementary Appendix, with the period between first and second vaccine dose as reference period (24.8±0.6 days) and ≥7 days after Dose 2 to before Dose 3 as Post-vaccination period (59.5±23.6 days).

Table 1 shows that VE was substantial for SARS-CoV-2 infections, symptomatic SARS-CoV-2 infections, and SARS-CoV-2 infections leading to medication use. Differences in dosage of BNT162b2 yielded no change in VE. A sensitivity analysis assessed the geographic differences in VE (Table S2).

The present analysis showed that in comparison to one dose of BNT162b2 alone, children receiving a second dose of BNT162b2 had a substantially lower risk for being diagnosed with a SARS-CoV-2 infection or experiencing a SARS-CoV-2 infection leading to symptoms or medication use. The current data contain some limitations. First, children are rarely tested for SARS-CoV-2 and often do not seek medical attention for SARS-CoV-2 symptoms. However, this study coincided with a time when mandatory school/institution testing for SARS-CoV-2 was common in Germany. Next, the assessed vaccination strategy of BNT162b2 was not the
one approved by EMA and FDA, with two instead of three BNT162b2 but higher dosages than 3µg in most participants. Furthermore, the reported VE does not necessarily correspond to the currently circulating SARS-CoV-2 variants. Finally, the present data are retrospective and await confirmation by prospective and randomized studies. In conclusion, this study offers a first industry-independent insight in the potential VE of the BNT162b2 vaccine in children aged below 5 years at a time when only immunogenicity data by the manufacturer Pfizer/BioNTech are available (2).

References

<table>
<thead>
<tr>
<th>Post-vaccination period</th>
<th>All SARS-CoV-2 infections</th>
<th>Symptomatic SARS-CoV-2 infections</th>
<th>SARS-CoV-2 infections leading to medication use</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥7 Days after Dose 2 to before Dose 3</td>
<td>53.1 (≤0.001) [36.3;69.9]</td>
<td>57.5 (≤0.001) [40.8;74.2]</td>
<td>66.2 (≤0.001) [43.7;88.7]</td>
</tr>
<tr>
<td>(p-value) [95%-CI]</td>
<td>47.1 (≤0.001) [20.7;73.6]</td>
<td>61.4 (≤0.001) [40.0;82.7]</td>
<td>70.2 (≤0.001) [44.6;95.7]</td>
</tr>
<tr>
<td>3 µg</td>
<td>54.5</td>
<td>56.8</td>
<td>66.9</td>
</tr>
<tr>
<td></td>
<td>54.3 (≤0.001) [36.9;73.6]</td>
<td>56.9 (≤0.001) [36.7;77.1]</td>
<td>62.9</td>
</tr>
<tr>
<td>5 µg</td>
<td>54.3 (≤0.001) [36.9;73.6]</td>
<td>56.9 (≤0.001) [36.7;77.1]</td>
<td>62.9</td>
</tr>
<tr>
<td>10 µg</td>
<td>54.3 (≤0.001) [36.9;73.6]</td>
<td>56.9 (≤0.001) [36.7;77.1]</td>
<td>62.9</td>
</tr>
</tbody>
</table>

Infections, n (%) 779 (16.9) 621 (13.3) 261 (5.7)

Children, n 4615 4615 4615

The vaccine effectiveness in % is estimated by $VE = 100 \times (1 - \exp(\hat{\beta}_{PV}))$, where $\hat{\beta}_{PV}$ is the estimated coefficient for the Post-vaccination period of a Cox model stratified by region specific (north, west, east, south, and abroad) calendar day.

As control variables, medication use, prior chronic diseases, age, sex, weight, and dosage information of the first vaccination are included.