KRAS mutations in combination with primary tumor size are not associated with a worse prognosis in early Non-Small Cell Lung Cancer.

Ella A. Eklund¹,²,³, Ali Mourad¹,², Clotilde Wiel¹,², Henrik Fagman⁴,⁵, Andreas Hallqvist³,⁷, Volkan I. Sayin¹,²

¹Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; ²Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; ³Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden; ⁴Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; ⁵Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden; ⁶Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; ⁷Department of Oncology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden

Correspondence to: V.I.S volkan.sayin@wlab.gu.se

Keywords: lung cancer, KRAS, tumor size

¹ Abbreviations

List of abbreviations: ECOG: Eastern Cooperative Oncology Group; NSCLC: Non-Small Cell Lung Cancer; NGS: Next Generation Sequencing; PS: Performance Status; OS: Overall Survival; CT: Computed Tomography

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Simple Summary

In this retrospective study including 310 patients with early (Stage I-II) non-small cell lung cancer (NSCLC), we investigated whether KRAS mutational status in combination with primary tumor size at diagnosis had any impact on clinical outcome. First, we analysed overall survival of patients grouped based on absence (KRASWT) or presence (KRASMUT) of mutations in KRAS. Next, we assessed risk of death when combining KRAS mutational status and tumor size. We found that KRASMUT in combination with tumor size did not increase the risk of death.

Abstract

Purpose: The aim of this study is to investigate the combined impact of KRAS mutational status and tumor size on overall survival and risk of death in stage I and II NSCLC.

Methods: All consecutive patients molecularly assessed and diagnosed between 2016-2018 with stage I-II NSCLC in the region of West Sweden were included in this multi-center retrospective study. Primary study outcome was overall survival (OS) and risk of death (HR).

Results: Out of 310 Stage I-II NSCLC patients, 37% harbored an activating mutation in the KRAS gene (KRASMUT). Our study confirmed staging and tumor size as prognostic factors. KRAS mutational status was not found to impact overall survival and no difference in risk of death was observed when combining KRAS mutational status and primary tumor size.

Conclusions: KRAS mutations in combination with primary tumor size are not associated with a worse prognosis in stage I and II NSCLC.

Background

Non-small cell lung cancer (NSCLC) is the second most common cancer worldwide (after breast cancer/prostate), with 2.1 million new cases and the highest mortality rate, causing 1.8 million deaths annually [1]. Staging is a crucial aspect of NSCLC management, as it is one of
the most important predictors of survival. The TNM staging system is used, which describes key tumor characteristics such as size, location and whether the disease has spread to lymph nodes and/or distant organs [2-5]. There are four main stages in NSCLC (stage I-IV), with stage IV having the worst prognosis. Early (stage I-IIIA) and advanced (stage IIIB-IV) are usually grouped together as early stages can be treated by management of the primary tumor. Pathological stage is considered the most important prognostic factor for resected patients, with 5-year survival rates of 83% for stage pIA, 71% for pIB, 57% for pIIA, 49% for pIIIB, 36% for pIIIA and 23% for pIIIB [4]. The grouping early stage (I-II), advanced (III) and metastasized (IV) can be disputed to be more accurate due to that stage I-II is primary based on tumor size whereas a spread to the lymph nodes, a negative prognostic factor, is more common in stage III [3, 6].

Primary tumor size is an established factor in prognosis, with larger tumors associated with poorer survival [6-10]. The reason for this association is not yet fully understood but it is believed that larger tumors are more resistant to therapy due to having poorer blood supply, a different metabolism and potentially a higher likelihood of micrometastatic disease compared to smaller tumors. [11-14]. Further research is needed to elucidate this mechanism.

During the last decade, NSCLC treatment has increasingly depended on molecular profiling given the introduction of small molecule kinase inhibitors (SMKIs) targeting activating mutations in EGFR, ALK, BRAF, RET, MET, NTRK and ROS1 oncogenes and with additional molecular targets pending approval [15]. While only around a third of patients harbour these mutations, the most frequent oncogenic driver in NSCLC is the Kirsten rat sarcoma viral oncogene (KRAS) present in up to 40% of all cases, with the most common mutations being G12C, G12V and G12D [16]. KRAS mutations have been associated with a worse outcome, both when treated with chemotherapy and radiotherapy, with shorter OS in stage III and IV patients [17-24]. Earlier studies have also showed KRAS mutations to negatively influence the
prognosis of NSCLC in early stages [25-27]. Although the evidence are accumulating, there are still some debate about the prognostic value of KRAS mutation status. This could be explained with heterogenicity within the sub-mutations [6, 28]. General attempts to target mutant KRAS was for long unsuccessful [26, 29]. However, lately several inhibitors specifically binding mutant KRAS-G12C have been investigated in clinical trials, with Sotorasib being the first treatment to gain approval for adults with stage IV NSCLC harbouring a KRAS-G12C mutation as second-line therapy [29-33]. Approximately 40% of all KRAS mutations are G12C mutations. Nonetheless, as with other SMKIs, a heterogenous pattern of resistance to KRAS-G12C inhibition has already been observed [34-37].

Both primary tumor size and KRAS mutation status are considered independent prognostic factors. In the era of precision medicine, mutational status needs to be investigated together with other prognostic variables. To our knowledge, no one has investigated the combined impact of primary tumor size and KRAS mutational status on overall survival and the risk of death in stage I-II NSCLC. Thus, we ask whether KRAS mutational status in combination with tumor size may refine prognostic stratification of stage I and II NSCLC.

In Sweden, reflex testing for targetable alterations in NSCLC, including KRAS mutational status, has been widely implemented since 2015. By including all consecutive patients diagnosed with Stage I-II NSCLC and molecularly assessed between 2016-2018 in west Sweden, the current retrospective cohort study provides a unique real-world dataset for assessing the impact of KRAS mutations and primary tumor size.
Materials and Methods

Patient population

We conducted a multi-center retrospective study including all consecutive NSCLC patients diagnosed with Stage I-II NSCLC and having molecular assessment performed between 2016-2018 in the Region Västra Götaland (region of West Sweden), Sweden (n = 310). Further inclusion criteria was that tumor size from CT scan or pathology report had to be available, as well as available follow-up data. Patients who were diagnosed before 2016, had no digitally accessible patient chart, had no tumor measurements noted in the patient chart or had a recurrent disease were excluded.

During this period, patients diagnosed with squamous cell carcinoma were molecularly assessed to a lesser extent. Patient demographics (including age, gender, Eastern Cooperative Oncology Group (ECOG) performance status and smoking history), cancer stage, pathological details (histology, mutation status including KRAS mutational status and subtype), first-line treatment and outcome data were retrospectively collected from patient charts and the Swedish Lung Cancer Registry. Approval from the Swedish Ethical Review Authority (Dnr 2019-04771 and 2021-04987) was obtained prior to study commencement.

Mutational status

Patients were assessed with NGS for mutational status on DNA from FFPE blocks or cytological smears using the Ion AmpliSeq™ Colon and Lung Cancer Panel v2 from Thermo Fisher Scientific as a part of the diagnostic workup process at the Department of Clinical Pathology at Sahlgrenska University Hospital, assessing hotspot mutations in EGFR, BRAF, KRAS and NRAS. Until June 2017, ALK-fusions were assessed with immunohistochemistry (IHC), and with fluorescence in situ hybridization (FISH) if positive or inconclusive IHC; ROS1 was analysed upon request with FISH. Thereafter, ALK, ROS1 and RET fusions were
assessed on RNA using the Oncomine Solid Tumor Fusion Panel from Thermo Fisher Scientific.

Tumour size

To have the most recent, accurate and untreated primary tumor size, measurements were collected from the radiology report of the CT scan performed before a final diagnosis of NSCLC was established. In patient who underwent surgical resection, the actual primary tumor size was also collected from the pathology report. The largest tumor diameter in millimeter (mm) was collected.

Study objectives

The primary outcome of this study was OS and risk of death, defined as the interval between the date of first treatment and the date of death from any cause. Patients alive or lost to follow-up at data cut of were censored at last contact. Median follow up time was estimated using the reverse Kaplan-Meier method. We compared OS and risk of death stratified on $KRAS^{WT}$ and $KRAS^{MUT}$.

Statistical analysis

Clinical characteristics were summarized using descriptive statistics and evaluated with univariate analysis in table form. Survival was estimated using the Kaplan-Meier method. Log-rank test was used to assess significant differences in OS between groups. To evaluate if there was a significant difference in primary tumor size between $KRAS$ mutated and $KRAS$ wildtype patients, Mann Whitney U-test was used. Cox proportional hazard regression was conducted to measure the influence of tumor size on risk of death (hazard ratio) stratified on $KRAS$ mutational status. We defined an interaction term between tumor size and $KRAS$ mutational status to assess the combined impact on risk of death (hazard ratio). Statistical significance was set at $p<0.05$ and no adjustments were made for multiple comparisons. Data
analysis was conducted using IBM SPSS Statistics version 27 and GraphPad Prism version 9.

Results

Patients and tumor characteristics

A total of 310 consecutive patients were diagnosed with stage I and II NSCLC during 2016-2018 in West Sweden and for whom genetic data were available were all included in this retrospective cohort study (Figure 1). Of these patients, over a third (115, 37%) had a KRAS mutation (Table 1A). The majority were female (187, 60.3%), with a median age of 70 years, 86% were current or former smokers. A large majority of patients (285, 92%) had a good Performance Status (PS) with low ECOG 0-1 at diagnosis (Table 1A). The proportion of N1 was low (18, 5.8%). Most of the NSCLCs were adenocarcinoma of the lung (281, 90.6%) while squamous cell carcinoma cases were relatively low (11, 3.5%), which was expected due to the selection of histological type for NGS assessment (Table 1A). When comparing the baseline characteristics of KRASWT with KRASMUT patients, the KRAS mutated population had more females, no squamous cell carcinoma, and a higher proportion of current and former smokers (Table 1A).

The majority underwent surgical resection (273, 88%). Three patients did not receive any treatment and was excluded in further survival analyses (Table 1B). Median follow up time was 63 months (CI 95% [59.7-68.3]) and date of cut of 31-10-22.

No significant difference in survival for patients stratified on KRAS mutations

When comparing OS for all stage I-II patients stratified on KRAS mutational status no significant difference were detected with mean (median not reached) OS 74 months for KRASWT vs 63 months for KRASMUT (p = 0.847) (Supplemental Figure 1A). When analyzing resected patients, no significant difference was observed with a mean (median not reached) OS 78 months for KRASWT vs 65 months for KRASMUT (p = 0.856) (Supplemental Figure 1B).
We further stratified on stage showing a mean (median not reached) OS 73 months for
stage I vs OS 50 months for stage II (Figure. 2A). We then conducted the analysis
separately, showing a mean (median not reached) OS 78 months for stage I vs OS 46
months for stage II for KRASWT (Figure. 2B) and a mean (median not reached) OS 65
months for stage I vs OS 53 months for stage II KRASMUT (Figure. 2C).

When stratifying for KRAS mutational status separately on stage I and stage II patients, no
significant difference was observed for stage I with a mean (median not reached) OS 78
months for KRASWT vs 65 months for KRASMUT (p = 0.756) (Supplemental Figure. 2A) or
stage II median OS 47 months for KRASWT vs 53 months for KRASMUT (p = 0.654)
((Supplemental Figure. 2B).

T stages and mutational status

We further analyzed the impact of T stage on survival and found that it correlated as
expected with mean OS 82 months for T1, 55 months for T2 and 46 months for T3 (p<0.001)
(Figure. 3A). The same trend was observed when separately analyzing KRASWT with mean
(median not reached) OS 83 months for T1, 53 months for T2 and 45 months for T2
(p<0.001) (Figure. 3B) and KRASMUT with mean OS 65 months for T1, 58 months for T2 and
48 months for T3 (p<0.023) (Figure. 3C).

KRAS mutations are associated with smaller tumor size at diagnosis

To evaluate the difference between primary tumor size on CT-scan at diagnosis stratified on
KRAS mutation status we used the Mann Whitney U-Test. The test revealed that KRASMUT
primary tumors were significantly smaller at diagnosis, with a median size of 20 mm (n =
115) vs KRASWT median size of 25 mm (n = 190) (p = 0.043) (Figure. 4A).
However, we did not observe any difference in median tumor size when looking at tumor
size as assessed in resected specimens, KRASWT median=22mm (n=171) vs KRASMUT
median = 21 mm (n=102) (p=0.16) (Figure. 4B).
Tumor size from CT-scan is associated with higher risk of death

We found that primary tumor size from CT-scans correlated significantly with an increased risk of death (HR 1.018, 95% CI [1.008-1.028], p < 0.001). When KRASWT and KRASMUT groups were analyzed separately, the KRASWT group showed a significantly increased risk of death (HR = 1.015, 95% CI [1.003-1.028], p = 0.018). The same was observed in the KRASMUT group (HR = 1.023, 95% CI [1.006, 1.040], p = 0.007).

Tumor size in resection specimens is associated with higher risk of death

When testing the correlation between primary tumor size as assessed in resection specimens and risk of death, we found a significantly increased risk of death (HR = 1.029, 95% CI [1.018-1.040], p < 0.001). We then continued to test the risk separately for the KRASWT and KRASMUT groups. The KRASWT group showed a significantly increased risk of death (HR = 1.030, 95% CI [1.017, 1.044], p < 0.001). The same was observed when testing the KRASMUT group (HR = 1.028, 95% CI [1.009-1.047], p = 0.004).

The combination of KRAS mutation and tumor size dose not impact the risk of death

To test if the combination of tumor size and KRAS mutational status impacts the risk of death we defined an interaction term including both variables. For primary tumor size from CT scan and KRAS mutational status no significant difference in risk of death was detected group (HR = 1.008, 95% CI [0.988-1.030], p = 0.428). The same trend was observed for primary size as assessed in resection specimens (HR = 0.9977, 95% CI [0.975-1.020], p = 0.807).
Discussion

In the era of precision medicine, we need to explore new multimodal variables for prognosis assessments. As the mutational status nowadays is an important predictive and prognostic factor in NSCLC and KRAS mutations are associated with a worse prognosis, this study aimed to investigate the impact of primary tumor size combined with KRAS mutational status on overall survival and the risk of death in patients with Stage I-II NSCLC.

This study included all consecutive patients diagnosed with Stage I-II NSCLC and molecularly assessed between 2016-2018 in West Sweden. We choose to only investigate stage I and II patients with the attempt to get a more specified population mainly dependent on tumor size. Only 5.8% of the patients had a N1 disease that could affect the prognosis. The majority of patients had the tumor resected and more than 90% of tumors was adenocarcinoma. Thus, this data can be argued to apply for stage I-II resected adenocarcinoma.

No significant difference was observed when comparing OS for all stage I-II patients stratified on KRAS mutational status. However, the mean overall survival was 11 months shorter for KRASMUT patients. The same trend was observed when looking at resected patients with a 13 months shorter mean survival for KRASMUT. Our result could differ to former studies due to them not being corrected for tumor size [25, 26].

We confirmed the impact of staging for prognosis showing a large difference in survival between stage I and II patients. When analyzing the impact of T stage on survival, we found that T stage correlated as expected with mean OS, with T1 having a better OS than T2 and T3, confirming the impact of primary tumor size on OS. This correlation was also observed when separately analyzing KRASWT and KRASMUT patients although the separation was not as clear in KRASMUT patients compared to KRASWT.
As expected, primary tumor size from CT scans and resection specimens was significantly associated with an increased risk of death, and this correlation was observed in both $KRAS^{\text{MUT}}$ and $KRAS^{\text{WT}}$ patients. However, when combining tumor size and $KRAS$ mutational status there was no increased risk of death.

The current study confirmed staging and tumor size as prognostic factors. $KRAS$ mutational status was not found to impact overall survival and no difference in risk of death was observed when combining $KRAS$ mutational status and tumor size. However, this study has not assessed recurrence rate or progression free survival.

In summary, the study showed that $KRAS$ mutational status did not significantly impact OS and risk of death in stage I and II NSCLC patients. The current study provides a unique real-world dataset for assessing the impact of $KRAS$ mutations and tumor size. It is important information to be used in future pooled analysis for prognosis assessments.

Conclusion

Here we confirm the importance of primary tumor size as a prognostic factor for survival in stage I and II NSCLC. $KRAS$ mutations were not found to impact overall survival and no difference in risk of death was observed when combining $KRAS$ mutations and primary tumor size at diagnosis.

Acknowledgements

We thank Sayin lab members for critical reading of the manuscript. In addition, we thank members of the of the Swedish Lung Cancer Registry, and the continuous reporting by Swedish healthcare employees.
Funding

This work was supported by the Swedish Research Council (2018-02318 and 2022-00971 to VIS, 2021-03138 to CW), the Swedish Cancer Society (20-1278 to VIS, 22-0612FE to CW), the Gothenburg Society of Medicine (2019; 19/889991 to EAE), Assar Gabrielsson Research Foundation (to EAE, CW and VIS), the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (to HF), Department of Oncology, Sahlgrenska University Hospital (to EAE and AH), the Swedish Society for Medical Research (2018; S18-034 to VIS) and the Knut and Alice Wallenberg Foundation and the Wallenberg Centre for Molecular and Translational Medicine (to VIS).

Declaration of potential conflict of interest

The authors have declared no conflicts of interest.

Institutional Review Board Statement

Approval from the Swedish Ethical Review Authority (Dnr 2019-04771 and 2021-04987) was obtained prior to the commencement of the study.

Informed Consent Statement:

Patient statement was not required due to the retrospective nature of this study.

Data Availability Statement

Data from this study is available upon reasonable request.
References

35. Ho, C.S.L., et al., **HER2 mediates clinical resistance to the KRAS(G12C) inhibitor sotorasib, which is overcome by co-targeting SHP2.** Eur J Cancer, 2021. 159: p. 16-23.

Figure legends

Table 1A Characteristics of the total cohort as well as stratified on KRAS^{WT} and KRAS^{MUT}. Data are presented as n (%).

Table 1B Summery of first line treatment of the total cohort as well as stratified on KRAS^{WT} and KRAS^{MUT}. Data are presented as n (%).

Figure 1. Patient selection

Flow chart showing the patient selection for the study.

Figure 2. Staging impacts overall survival

A. Kaplan-Meier estimates comparing overall survival for the full cohort stratified on stage I and stage II.

B. Kaplan-Meier estimates comparing overall survival for KRAS^{WT} patients stratified on stage I and stage II.

B. Kaplan-Meier estimates comparing overall survival for KRAS^{MUT} patients stratified on stage I and stage II.

Figure 3. Primary tumor size impacts overall survival

A. Kaplan-Meier estimates comparing overall survival for the full cohort stratified on T1, T2 and T3.

B. Kaplan-Meier estimates comparing overall survival for KRAS^{WT} patients stratified on T1, T2 and T3.
C. Kaplan-Meier estimates comparing overall survival for KRASMUT patients stratified on T1, T2 and T3.

Figure 4. KRAS mutation is associated with smaller tumor size at diagnosis

A. Primary tumor size from CT-scan in mm.
B. Primary tumor size from resection specimens in mm.

Supplemental Figure 1

A. Kaplan-Meier estimates comparing overall survival for the full cohort stratified KRAS mutational status.
B. Kaplan-Meier estimates comparing overall survival for the resected patients stratified KRAS mutational status.

Supplemental Figure 2

A. Kaplan-Meier estimates comparing overall survival for stage I patients stratified by KRAS mutational status.
B. Kaplan-Meier estimates comparing overall survival for stage II patients stratified by KRAS mutational status.
Stage I-II NSCLC patients molecularly assessed
West Sweden 2016-2018
\(n = 354 \)

- Excluded
 - 17 Diagnoses before 2016
 - 4 No access to charts
 - 6 No measurement found
 - 3 Recurrent disease
 \(n = 30 \)

- Included
 \(n = 310 \)

Stage I
\(n = 270 \)

Stage II
\(n = 84 \)

Stage I
\(n = 240 \)

Stage II
\(n = 70 \)

Excluded
- 6 Diagnoses before 2016
- 4 No access to charts
- 4 No measurement found
\(n = 14 \)
Table 1A

<table>
<thead>
<tr>
<th>Characteristics all patients stage I-II NSCLC</th>
<th>Total</th>
<th>KRAS WT</th>
<th>KRAS MUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>310 (100)</td>
<td>195 (63.0)</td>
<td>115 (37.0)</td>
</tr>
<tr>
<td>Age in years, median (range)</td>
<td>70 (35-85)</td>
<td>70 (35-85)</td>
<td>70 (48-84)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>123 (39.7)</td>
<td>88 (45.1)</td>
<td>35 (30.4)</td>
</tr>
<tr>
<td>Female</td>
<td>187 (60.3)</td>
<td>107 (54.9)</td>
<td>80 (69.6)</td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>99 (31.9)</td>
<td>51 (26.2)</td>
<td>48 (41.7)</td>
</tr>
<tr>
<td>Former smoker</td>
<td>168 (54.2)</td>
<td>106 (54.4)</td>
<td>62 (53.9)</td>
</tr>
<tr>
<td>Never smoker</td>
<td>43 (13.9)</td>
<td>38 (19.5)</td>
<td>5 (4.3)</td>
</tr>
<tr>
<td>Performance status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECOG 0</td>
<td>144 (46.5)</td>
<td>82 (42.1)</td>
<td>62 (53.9)</td>
</tr>
<tr>
<td>ECOG 1</td>
<td>141 (45.5)</td>
<td>96 (49.2)</td>
<td>45 (39.1)</td>
</tr>
<tr>
<td>ECOG 2</td>
<td>24 (7.7)</td>
<td>16 (8.2)</td>
<td>8 (7.0)</td>
</tr>
<tr>
<td>ECOG 3</td>
<td>1 (0.3)</td>
<td>1 (0.5)</td>
<td>0</td>
</tr>
<tr>
<td>ECOG 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>281 (90.6)</td>
<td>168 (86.2)</td>
<td>113 (98.3)</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>11 (3.5)</td>
<td>11 (5.6)</td>
<td>0</td>
</tr>
<tr>
<td>NSCLC NOS</td>
<td>18 (5.9)</td>
<td>16 (8.2)</td>
<td>2 (1.7)</td>
</tr>
<tr>
<td>Mutation status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None known</td>
<td>124 (40.2)</td>
<td>124 (63.6)</td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td>115 (37.0)</td>
<td>54 (47.0)</td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td>54 (17.4)</td>
<td>54 (27.7)</td>
<td>0</td>
</tr>
<tr>
<td>BRAF</td>
<td>6 (1.9)</td>
<td>6 (3.1)</td>
<td>0</td>
</tr>
<tr>
<td>ALK</td>
<td>4 (1.3)</td>
<td>4 (2.1)</td>
<td>0</td>
</tr>
<tr>
<td>ROS1</td>
<td>3 (1.0)</td>
<td>3 (1.5)</td>
<td>0</td>
</tr>
<tr>
<td>RET</td>
<td>1 (0.3)</td>
<td>1 (0.5)</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>3 (1.0)</td>
<td>3 (1.5)</td>
<td>0</td>
</tr>
<tr>
<td>KRAS submutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G12A</td>
<td>9 (7.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G12C</td>
<td>54 (47.0)</td>
<td>9 (7.8)</td>
<td></td>
</tr>
<tr>
<td>G12D</td>
<td>15 (13.0)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G12S</td>
<td>1 (0.9)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>G12V</td>
<td>26 (22.6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G13C</td>
<td>2 (1.7)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G13D</td>
<td>1 (0.9)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q61H</td>
<td>4 (3.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q61L</td>
<td>3 (2.6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TNM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1a</td>
<td>99 (31.9)</td>
<td>55 (28.2)</td>
<td>44 (38.3)</td>
</tr>
<tr>
<td>T1b</td>
<td>76 (24.5)</td>
<td>54 (27.7)</td>
<td>22 (19.1)</td>
</tr>
<tr>
<td>T1c</td>
<td>12 (3.9)</td>
<td>7 (3.6)</td>
<td>5 (4.3)</td>
</tr>
<tr>
<td>T2a</td>
<td>67 (21.6)</td>
<td>46 (23.6)</td>
<td>21 (18.3)</td>
</tr>
<tr>
<td>T2b</td>
<td>28 (9.0)</td>
<td>15 (7.8)</td>
<td>13 (11.3)</td>
</tr>
<tr>
<td>T3</td>
<td>28 (9.0)</td>
<td>18 (9.2)</td>
<td>10 (8.7)</td>
</tr>
<tr>
<td>N0</td>
<td>292 (94.2)</td>
<td>185 (94.9)</td>
<td>107 (93.0)</td>
</tr>
<tr>
<td>N1</td>
<td>18 (5.8)</td>
<td>10 (5.1)</td>
<td>8 (7.0)</td>
</tr>
<tr>
<td>Measurement modality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT-scan (mm)</td>
<td>305 (98.4)</td>
<td>190 (97.4)</td>
<td>115 (100)</td>
</tr>
<tr>
<td>PAD</td>
<td>273 (88.0)</td>
<td>171 (88.7)</td>
<td>102 (88.7)</td>
</tr>
<tr>
<td>At last follow up 31/10-2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alive</td>
<td>206 (66.5)</td>
<td>128 (65.6)</td>
<td>78 (67.8)</td>
</tr>
<tr>
<td>Deceased</td>
<td>104 (33.5)</td>
<td>67 (34.4)</td>
<td>37 (32.2)</td>
</tr>
<tr>
<td>Survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean survival (months)</td>
<td>63</td>
<td>62</td>
<td>64</td>
</tr>
</tbody>
</table>
Table 1B

<table>
<thead>
<tr>
<th>Treatment table all patients stage I-II NSCLC</th>
<th>Total</th>
<th>KRAS WT</th>
<th>KRAS MUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Total</td>
<td>310 (100)</td>
<td>195 (63.0)</td>
<td>115 (37.0)</td>
</tr>
<tr>
<td>Surgery</td>
<td>273 (88.0)</td>
<td>171 (87.7)</td>
<td>102 (88.7)</td>
</tr>
<tr>
<td>Curative chemoradiotherapy</td>
<td>7 (2.3)</td>
<td>6 (3.1)</td>
<td>1 (0.9)</td>
</tr>
<tr>
<td>Medical treatment</td>
<td>2 (0.6)</td>
<td>1 (0.5)</td>
<td>1 (0.9)</td>
</tr>
<tr>
<td>Stereotactic radiotherapy</td>
<td>11 (3.5)</td>
<td>11 (5.6)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>14 (4.5)</td>
<td>3 (1.5)</td>
<td>11 (9.6)</td>
</tr>
<tr>
<td>No treatment</td>
<td>3 (1.0)</td>
<td>3 (1.5)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>
Eklund et al. Figure 2

A. All (KRAS^{WT} and KRAS^{MUT}) stages I and II

![Graph showing cumulative survival for stages I and II with different marker types and colors.]

- **Mean survival**: 79 months (Stage I) vs. 50 months (Stage II)
- **p-value**: <0.001
- **n**: 307

B. KRAS^{WT} stages I and II

![Graph showing cumulative survival for KRAS^{WT} stages I and II with different marker types and colors.]

- **Mean survival**: 78 months (Stage I) vs. 46 months (Stage II)
- **p-value**: <0.001
- **n**: 192

C. KRAS^{MUT} stages I and II

![Graph showing cumulative survival for KRAS^{MUT} stages I and II with different marker types and colors.]

- **Mean survival**: 65 months (Stage I) vs. 53 months (Stage II)
- **p-value**: 0.010
- **n**: 115

[Note: The Kaplan-Meier survival curves illustrate the cumulative survival rates for stages I and II for each subgroup (KRAS^{WT} and KRAS^{MUT}). The graphs indicate a statistically significant difference in survival between stages I and II for both KRAS^{WT} and KRAS^{MUT} subgroups.]

All (KRAS^{WT} and KRAS^{MUT}) stages I and II

- **Stage I**
 - 240
 - 227
 - 210
 - 191
 - 143
 - 52
 - No at risk: 59

- **Stage II**
 - 67
 - 59
 - 46
 - 39
 - 30
 - 10
 - No at risk: 33

Cumulative Survival

- **0 months**: 1.0
- **12 months**: 0.8
- **24 months**: 0.6
- **36 months**: 0.4
- **48 months**: 0.2
- **60 months**: 0.0

Mean survival

- **Stage I**: 79 months
- **Stage II**: 50 months

p-value: <0.001

n: 307

KRAS^{WT} stages I and II

- **Stage I**
 - 153
 - 146
 - 137
 - 123
 - 91
 - 32
 - No at risk: 33

- **Stage II**
 - 39
 - 33
 - 24
 - 20
 - 15
 - 5
 - No at risk: 22

Cumulative Survival

- **0 months**: 1.0
- **12 months**: 0.8
- **24 months**: 0.6
- **36 months**: 0.4
- **48 months**: 0.2
- **60 months**: 0.0

Mean survival

- **Stage I**: 78 months
- **Stage II**: 46 months

p-value: <0.001

n: 192

KRAS^{MUT} stages I and II

- **Stage I**
 - 87
 - 81
 - 73
 - 68
 - 52
 - 20
 - No at risk: 28

- **Stage II**
 - 28
 - 26
 - 22
 - 19
 - 15
 - 5
 - No at risk: 22

Cumulative Survival

- **0 months**: 1.0
- **12 months**: 0.8
- **24 months**: 0.6
- **36 months**: 0.4
- **48 months**: 0.2
- **60 months**: 0.0

Mean survival

- **Stage I**: 65 months
- **Stage II**: 53 months

p-value: 0.010

n: 115
A

All (KRASWT and KRASMUT) T stages

- **Mean survival**
 - T1: 82 months
 - T2: 55 months
 - T3: 46 months

- **Cumulative Survival**
- No at risk: T1 185, T2 95, T3 27
- Months: 0, 12, 24, 36, 48, 60
- \(p < 0.001 \)

B

KRASWT T stage

- **Mean survival**
 - T1: 83 months
 - T2: 53 months
 - T3: 45 months

- **Cumulative Survival**
- No at risk: T1 114, T2 61, T3 17
- Months: 0, 12, 24, 36, 48, 60
- \(p < 0.001 \)

C

KRASMUT T stages

- **Mean survival**
 - T1: 65 months
 - T2: 58 months
 - T3: 48 months

- **Cumulative Survival**
- No at risk: T1 71, T2 34, T3 10
- Months: 0, 12, 24, 36, 48, 60
- \(p = 0.023 \)
Eklund et al. Figure 4

A

Tumor size CT (mm)

$\text{p} = 0.046$

$\text{n} = 190$ Median: 25 mm
KRAS^{WT} $\text{n} = 115$ Median: 20 mm

B

Tumor size PAD (mm)

$\text{p} = 0.161$

$\text{n} = 171$ Median: 22 mm
KRAS^{WT} $\text{n} = 102$ Median: 21 mm
A

All (\(\text{KRAS}^{\text{WT}}\) and \(\text{KRAS}^{\text{MUT}}\))

- \(\text{KRAS}^{\text{WT}}\) mean survival: 74 months
- \(\text{KRAS}^{\text{MUT}}\) mean survival: 63 months

\(n = 307\)

\(p = 0.847\)

<table>
<thead>
<tr>
<th>No at risk</th>
<th>(\text{KRAS}^{\text{WT}})</th>
<th>(\text{KRAS}^{\text{MUT}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{KRAS}^{\text{WT}})</td>
<td>192 179 161 143 106 37</td>
<td></td>
</tr>
<tr>
<td>(\text{KRAS}^{\text{MUT}})</td>
<td>115 107 95 88 67 25</td>
<td></td>
</tr>
</tbody>
</table>

B

Resected patients

- \(\text{KRAS}^{\text{WT}}\) mean survival: 78 months
- \(\text{KRAS}^{\text{MUT}}\) mean survival: 65 months

\(n = 273\)

\(p = 0.856\)

<table>
<thead>
<tr>
<th>No at risk</th>
<th>(\text{KRAS}^{\text{WT}})</th>
<th>(\text{KRAS}^{\text{MUT}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{KRAS}^{\text{WT}})</td>
<td>171 163 149 136 102 36</td>
<td></td>
</tr>
<tr>
<td>(\text{KRAS}^{\text{MUT}})</td>
<td>102 95 88 82 63 24</td>
<td></td>
</tr>
</tbody>
</table>
Eklund et al. Supplemental Figure 2

A

Stage I

Cumulative Survival

<table>
<thead>
<tr>
<th>Months</th>
<th>KRASWT</th>
<th>KRASMUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>153</td>
<td>87</td>
</tr>
<tr>
<td>12</td>
<td>146</td>
<td>81</td>
</tr>
<tr>
<td>24</td>
<td>137</td>
<td>73</td>
</tr>
<tr>
<td>36</td>
<td>123</td>
<td>68</td>
</tr>
<tr>
<td>48</td>
<td>91</td>
<td>52</td>
</tr>
<tr>
<td>60</td>
<td>32</td>
<td>20</td>
</tr>
</tbody>
</table>

No at risk: 153 146 137 123 91 32

Cumulative Survival

<table>
<thead>
<tr>
<th>Months</th>
<th>KRASWT</th>
<th>KRASMUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>146</td>
<td>81</td>
</tr>
<tr>
<td>12</td>
<td>137</td>
<td>73</td>
</tr>
<tr>
<td>24</td>
<td>123</td>
<td>68</td>
</tr>
<tr>
<td>36</td>
<td>91</td>
<td>52</td>
</tr>
<tr>
<td>48</td>
<td>32</td>
<td>20</td>
</tr>
</tbody>
</table>

No at risk: 146 137 123 91 32

mean survival

KRASWT 78 months
KRASMUT 65 months

n = 240
p = 0.756

B

Stage II

Cumulative Survival

<table>
<thead>
<tr>
<th>Months</th>
<th>KRASWT</th>
<th>KRASMUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>39</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>33</td>
<td>26</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>36</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>48</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>60</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

No at risk: 39 33 24 20 15 5

Cumulative Survival

<table>
<thead>
<tr>
<th>Months</th>
<th>KRASWT</th>
<th>KRASMUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>36</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>48</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

No at risk: 26 22 20 15 5

median survival

KRASWT 47 months
KRASMUT 53 months

n = 67
p = 0.654