Non-Rapid Eye Movement Sleep Features in Post-Stroke Human Electroencephalogram

Benjamin K. Simpson¹, *, Rohit Rangwani²,³, *, Aamir Abbasi², Jeffrey M. Chung¹, Chrystal M. Reed¹, #, Tanuj Gulati¹,²,³,⁴, #

¹ Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA.
² Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA.
³ Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California - Los Angeles, Los Angeles, CA.
⁴ Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA.

* These authors contributed equally
These authors contributed equally

Correspondence: tanuj.gulati@csmc.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background
Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling nested sleep oscillations post-stroke in the human brain. Recent rodent work showed that resurgence of physiologic spindles coupled (‘nested’) to sleep slow oscillations (SOs) and concomitant decrease in pathological delta (δ) waves is associated with sustained motor performance gains during stroke recovery. This work also showed that post-injury sleep could be pushed toward a physiological state via a pharmacological reduction of tonic γ-aminobutyric acid (GABA). The goal of this project is to evaluate non-rapid eye movement (NREM) sleep oscillations (namely, SOs, spindles and δ waves, and their nesting) in the post-stroke human brain.

Methods
We analyzed NREM-marked electroencephalography (EEG) data in human stroke patients who were hospitalized for stroke and received EEG monitoring as part of their clinical workup. Electrodes were classified as ‘stroke’ (immediate peri-infarct areas) or ‘contralateral’ (unaffected hemisphere). We used linear mixed-effect models to investigate effects of stroke, patients and concurrent pharmacologic drugs they were on during EEG data capture.

Results
We found significant fixed and random effects of stroke, patients, and pharmacologic drugs on different NREM sleep oscillations. Most patients showed increase in δ waves in stroke versus contralateral electrodes. However, for patients on propofol and scheduled dexamethasone, δ wave density was high in both hemispheres. SO density followed the same
trend seen in δ wave density. δ wave-nested spindles, that are considered harmful to recovery related plasticity, were high in groups who received propofol or levetiracetam.

Conclusions
These findings suggest that, acutely post-stroke, pathological δ waves increase in the human brain and that spindle density may be impacted by drugs that modulate excitatory/inhibitory neural transmission. Further, we found that drugs that increase inhibitory transmission or curb excitation promote pathological δ wave-nested spindles. Our results indicate that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation.

Keywords: Stroke, Sleep, EEG
Introduction

Stroke is a leading cause of motor disability world-wide, and despite advances in rehabilitation, there is a lack of widely adopted therapies that target plasticity and functional outcomes remain inconsistent\(^1\)–\(^3\). Sleep is known to play a major role in regulating plasticity\(^4\)–\(^12\) and accordingly, there has been an interest in modulating sleep for stroke motor rehabilitation\(^{13,14}\). To optimize efforts to modulate sleep effectively, there is a need to better understand neural processing during sleep, as well as the effect of practical scenarios including patient co-morbidities and concurrent pharmaceuticals that may impact excitatory/inhibitory neural transmission. While a whole host of studies in animals and humans have shown that sleep can influence motor recovery post-stroke\(^2,^{14}–^{23}\), more work is needed to understand how sleep neurophysiology is affected in stroke, as well as inter-individual variations in human stroke patients. This has become all the more important with advances in our understanding of sleep neurophysiology linking nested non-rapid eye movement (NREM) oscillations to plasticity, motor memory consolidation, and motor recovery\(^4,^{6,14,24}\).

Sleep-dependent neural processing is crucial for memory consolidation – the process of transferring newly learned information to stable long-term memory\(^9,^{25}\). While this process is well-studied for hippocampal-dependent declarative memory systems\(^{26}–^{28}\); seminal advancements have now been made to understand how sleep benefits motor learning\(^5,6,^{24,29,30}\). Specifically, NREM sleep has been linked to reactivation of neural ensembles associated with movement control and performance gains in a motor skill after sleep\(^4\)–\(^6\). Of note, there is increasing consensus that this consolidation occurs during precise temporal coupling of sleep spindles (10–16 Hz) to larger amplitude slow oscillations (SOs, 0.1–1Hz)\(^6,^{25,31}–^{35}\). Recent work in rodents has shown that these SOs nested with spindles decline immediately post-stroke and track motor recovery on a dexterous reach-to-grasp motor task\(^14\). This work also showed that delta waves (\(\delta\)…

\(\delta\)…
waves, 1–4Hz) increased immediately post-stroke and reduced, along with δ waves nested with spindles, during recovery. Our chief goal was to see if NREM oscillations and their nesting were similarly affected post-stroke in human patients within a hospital setting, one within the framework of real-world stroke management including co-morbidities and dissimilar pharmaceuticals that may modulate neural transmission.

Recent work has laid out important principles regarding how NREM sleep features are linked to learning of a novel motor skill in an intact brain, and it has become imperative to profile these sleep features in a stroke brain. Work has shown that the balance between global SOs and the local slow-waves, i.e., δ waves determines whether there is an enhancement (‘strengthening’) or detraction (‘forgetting’) of motor skill. This principle was extended to a rodent stroke model where an investigation of sleep microarchitecture, acutely post-stroke, revealed that δ waves predominated the cortex relative to SOs (thereby impairing sleep-associated ‘strengthening’ of memory or recovery-related reorganization) and that this balance was flipped as spontaneous recovery occurred and sleep neural processing was rescued from the ‘forget’ state. Importantly, this work also showed that pharmacological reduction of tonic γ-aminobutyric acid (GABA) neurotransmission accelerated sleep’s natural neural processing that serves a motor memory ‘strengthening’ purpose. The prevalence of local low-frequency power (< 4Hz) during spontaneous periods has also been reported in previous studies of human stroke patients and in animal stroke models, but the nesting of spindles to SOs versus δ waves is an important recent advance in rodent research without human correlation. We wanted to profile this NREM activity in human stroke patients acutely post-stroke as the nesting of spindles to slow waves may have a role in setting brain states amenable to motor memory strengthening versus forgetting.
Our study showed that, acutely post stroke, there is an increase in SOs and δ waves on stroke electrodes when compared to contralateral hemisphere electrodes, and our linear mixed effect model revealed that there was a significant random effect of concurrent pharmacologic drug (propofol, dexamethasone, levetiracetam). The patient that received propofol and dexamethasone had increased slow-waves in both hemispheres, and the patient that received levetiracetam had a significantly higher number of spindles on stroke electrodes. In all patients (grouped by being on propofol and dexamethasone or levetiracetam or other drugs that do not interact with GABAergic/glutamatergic transmission the brain), we saw that density of δ wave-nested spindles was higher than SO-nested spindle and that this density was highest in the patient who received propofol and dexamethasone, followed by levetiracetam group, and then the “other drug” group. We observed similar trends for SO-nested spindles, but overall, densities were lower compared to δ wave nested spindles. Together, our work suggests that acute stroke care management should incorporate pharmacologic drug interactions and their effect on ‘restorative’ sleep oscillations. This may help inform a personalized approach to sleep modulation for neurorehabilitation.
Methods

Ethics, consent and permissions

This research was conducted in accordance with and approval of the Cedars-Sinai Medical Center Institutional Review Board (IRB). All research participants and/or their surrogates provided informed consent to participate in the study. This study adhered to Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines for cohort studies.

Inclusion/exclusion criteria

Retrospective chart review of the Cedars-Sinai EEG database was done to identify patients with acute, large vessel strokes who also received EEG monitoring as part of their hospital stay. Five patients were chosen for this study, with notably limited availability of EEG studies done within 2-3 days after an MCA (middle cerebral artery) distribution stroke. All patients were seen acutely for stroke at Cedars-Sinai and received EEG monitoring post-stroke. All patients were monitored between 2016 and 2021. Data was collected and analyzed between 2020 and 2023. Relevant clinical data was obtained from the Cedars-Sinai electronic medical record. Of the 5 patients, 3 were female and 2 male, all within the age range of 50–70 years old. Indications for EEG were universally for altered mental status after acute stroke. P2 (Patient 2) was noted to have partial status epilepticus involving the right temporal lobe (also see Table 1 for tabulated clinical information on all patients). No seizures were reported in the any other patients’ recordings. A total of \(~5.9801 \pm 1.2563\) hours (or \(358.8036 \pm 75.4\) mins) of NREM sleep was analyzed in the five patients.

Subjects were excluded if they met any of the following criteria: currently pregnant or with a history of craniotomy. Our dataset is confined to five patients here as it is relatively rare to have stroke patients receive epilepsy monitoring, and due to further eligibility criteria that we had set (such as an MCA stroke; also see the Discussion section on limitations).
EEG analysis and identification of NREM oscillations

Patients with overnight EEG studies 2 to 3 days post-stroke, with appropriate clinic follow up, were included. The data, obtained by a Natus Xltek EEG and Sleep System, was de-identified and made compatible for analysis with MATLAB. Each 30-second epoch was individually and manually marked by an expert scorer (C.M.R. and B.K.S.) for NREM sleep. EEG epochs were analyzed for identifying NREM sleep in a bipolar montage. The following analysis was done with EEG data in a referential montage, referenced to the auricle electrodes. Spindles, SOs, and δ waves were extracted from these NREM epochs using custom code in MATLAB (details below). This allowed for the identification of specific sleep waveforms and how they nested temporally and topographically during NREM sleep. An emphasis was placed on assessing spindles and their nesting to SOs and δ waves. Topographical maps of the average density of these sleep waveforms allowed us to visualize the average densities with respect to electrode location.

EEG Data processing:

NREM-marked EEG data from all channels was referenced with respect to the average of the auricular electrodes (A1 & A2, Fig. 1). Any high amplitude artifact in the differential EEG signal was removed. This data was filtered into the frequency ranges of 0.1-4 Hz for δ/SOs identification and 10-16 Hz for spindle detection. For δ/SOs detection, signal was first passed through a 0.1 Hz high-pass filter and then a 4 Hz low-pass Butterworth filter. All positive-to-negative zero crossings, previous peaks, following troughs, and negative-to-positive zero crossings were identified. A wave was considered a δ wave if its trough was lower than the negative threshold and preceded by a peak that was lower than the positive threshold, within 500 ms (Fig. 2A, B). SOs were classified as waves with troughs lower than a negative threshold
(the bottom 40 percentile of the troughs) and preceding peaks higher than a positive threshold (the top 15 percentile of the peaks), shown in Fig. 2C, D. Duration between peaks and troughs was between 150 ms and 500 ms. For spindle detection, EEG data was filtered using a 10 Hz high-pass Butterworth filter and a 16 Hz low-pass Butterworth filter. A smoothed envelope of this signal was calculated using the magnitude of the Hilbert transforms with convolving by a Gaussian window (200 ms). Epochs with signal amplitude higher than the upper threshold (mean, $\mu + 2.5\sigma$) for at least one sample and amplitude higher than the lower threshold ($\mu + 1.5\sigma$) for at least 500 ms were considered spindles (Fig. 2E, F). The lower threshold was used to define the duration of the spindle. Nested SO-spindles (similar to k-complexes studied in humans) were identified as spindle peaks following SO peaks within 1.5 s duration (Fig. 2G).

The same criterion was used to identify δ wave-nested spindles as shown in Fig. 2H.

Data Analysis:

We generated topographical maps of these different waveforms using plot_topography function in MATLAB44 as shown in Fig. 3. The patients were separated into 3 different groups based on concurrent medications as shown in Table 1. Patient 1 was assigned to Group 1, who was on continuous propofol and dexamethasone injections every four hours. Group 2, patients 2 and 5, was administered levetiracetam (Keppra) twice daily, and Group 3, comprised of patients 3 and 4, was not on any medications known to significantly modulate excitatory/inhibitory neural transmission.

Perilesional electrodes were identified by analyzing post-stroke MRI and CT brain imaging. We marked ‘Stroke electrodes’ as the electrodes covering the perilesional region of the brain as shown in Fig. 1. The mirror opposite electrodes on contralateral side were marked as ‘Contralateral electrodes’ for further analysis.
Statistical Analysis

We performed a linear mixed effect analysis for all patients comparing the Stroke electrodes density vs Contralateral electrodes density for different waveforms using the fitlmematrix function in MATLAB.

The linear mixed effect model was fitted by maximum likelihood using the formula below (1) for all the different waveforms identified during EEG data processing. Medication groups were defined as the 3 groups as mentioned earlier. This model considers fixed effects of stroke vs contralateral electrodes, and the random effect of electrodes and medication groups depending on the patient.

\[
\text{Waveform Density} \sim 1 + \text{Electrode} + (1 + \text{Electrode} + \text{Medication Groups} | \text{Patient}) \quad (1)
\]

We also compared the Stroke electrodes density vs Contralateral electrodes density within each medication group using a two-tailed \(t\)-test. One-way ANOVA was used to compare the stroke electrodes’ NREM oscillations’ density of the 3 different medication groups.

We calculated r-squared, and the Cohen’s \(d\) values from the linear mixed effect model. Cohen’s \(d\) was used to evaluate if the nested data for NREM oscillations in different medication groups had a small, medium or large experimental effect (Cohen’s \(d = 0.20, 0.50\) or \(0.80\), respectively)\(^{45}\).
Results
One of the limitations of retrospectively analyzing EEG data gathered from clinical EEG was the heterogeneity encountered across the subjects studied, a contrast from the controlled setting of related rodent studies. Knowing this, we found that one important similarity across the study population was the indication for EEG: concern for underlying seizure in the setting of altered mental status and recent hemispheric stroke. Accordingly, the patients were all hospitalized, and our analysis benefited from close pharmacologic documentation. We identified concurrent medications to be a major confounding variable, particularly medications that influenced neural transmission. Trends were analyzed with attention to this variable. P1 was noted to be on continuous infusion of propofol and infusions of dexamethasone every 4 hours. P2 and P5 were treated with levetiracetam 500mg twice daily. P3 and P4 were not given propofol, dexamethasone, or levetiracetam.

SO and δ wave density increased in perilesional electrodes
Consistent with previous reports, we found that stroke electrodes had higher < 4 Hz oscillations (δ)46. Our mixed-effects model showed a significant fixed effect of stroke vs contralateral electrodes for a subset of NREM oscillations and a large effect of concurrent pharmaceuticals. Overall, we observed higher δ waves density in the perilesional electrodes (Fig. 4B; linear mixed-effects model: $t_{42} = 3.6979$, $p = 0.0006$, $R^2 = 0.4317$; Cohen’s $d = 0.9517$). P1, the patient on continuous propofol and frequent dexamethasone, showed a trend of higher δ wave density in perilesional and contralateral electrodes. The propofol and dexamethasone group and the non-neuromodulatory drug group both had higher δ wave density on stroke electrodes than the levetiracetam group (Fig. 4B; Group 1: 11.2315 ± 2.5270 counts min-1 (mean ± s.e.m.); Group 2: 9.0653 ± 1.3206 counts min-1; Group 3: 12.2454 ± 1.5866 counts min-1; one-way ANOVA, $F(2,19) = 0.97$; $p = 0.3983$). Only the levetiracetam and non-neuromodulatory group
showed a significantly high density of δ waves in the perilesional electrodes vs contralateral electrodes. We observed similar trends for SOs, and there was a medium effect of the medication grouping along with a significant fixed effect of stroke vs contralateral electrodes ($t_{42} = -3.0559$, $p = 0.0039$, $R^2 = 0.3316$ and Cohen’s $d = 0.7029$). The patients who received propofol and dexamethasone or levetiracetam did not show a significant difference between stroke or contralateral electrode SO density. However, the patients who did not receive neuromodulatory medications showed significantly more SO density on stroke electrodes, as shown in Fig. 4C (two-tailed t-test, $t_{20} = 2.4167$, $p = 0.0253$). Notably, SOs on stroke electrodes were highest in this group when compared to the patients that belonged to groups that received propofol and dexamethasone or levetiracetam (Fig. 4C; Group 1: 2.9134 ± 0.7147 counts min$^{-1}$; Group 2: 2.4204 ± 0.3701 counts min$^{-1}$; Group 3: 3.2858 ± 0.4464 counts min$^{-1}$; one-way ANOVA, $F(2,19) = 0.9; p = 0.4227$).

Our linear mixed-effects model did not show a significant fixed effect of stroke versus contralateral electrodes on spindle density, however, overall, it was a large effect based on the Cohen’s d (Fig. 4D; linear mixed-effects model; $t_{42} = -0.8516$, $p = 0.3993$, $R^2 = 0.3969$ and Cohen’s $d = 0.8649$). Spindle density was the highest on the stroke electrodes in the patient receiving propofol and dexamethasone (8.0037 ± 0.8763 counts min$^{-1}$), followed by the patients receiving levetiracetam (6.8267 ± 0.7872 counts min$^{-1}$), and followed by patients not on neuromodulatory medications (5.6120 ± 0.4366 counts min$^{-1}$) (Fig. 4D, one-way ANOVA, $F(2,19) = 3.1; p = 0.0681$). The levetiracetam group had significantly elevated spindle density on stroke electrodes versus contralateral electrodes (Fig. 4D (middle, group 2); stroke: 6.8267 ± 0.7872 counts min$^{-1}$; contralateral: 4.2715 ± 0.7526 counts min$^{-1}$; two-tailed t-test, $t_{12} = 2.3462$, $p = 0.0370$). Patients who did not receive the neuromodulatory drugs did not show a significant difference between spindle density on electrodes from either hemisphere (Fig. 4D (right, Group 3)).
δ wave-nested and SO-nested spindles.

Along with analyzing isolated NREM oscillations, we also looked at nested spindle densities. Similar to the recent rodent literature, we found that δ wave-nested spindles were increased acutely post-stroke. While our linear mixed effects model on δ wave-nested spindles did not show a significant difference between stroke and contralateral electrodes (linear mixed-effects model: $t_{42} = 0.5686, p = 0.5727, R^2 = 0.5058$ and Cohen’s d value = 1.1728), we did observe a striking elevation of δ wave-nested spindles on stroke electrodes in the patient on propofol and dexamethasone (Fig. 4E (left); 3.4911 ± 0.3032 counts min$^{-1}$). This elevation was followed by the δ wave-nested spindle density of the levetiracetam group (Fig. 4E (middle); 3.2476 ± 0.4770 counts min$^{-1}$), and this group also had significantly elevated δ wave-nested spindle density on stroke electrodes versus contralateral electrodes (Fig. 4E (middle); contralateral: 1.9020 ± 0.3799 counts min$^{-1}$; two-tailed t-test, $t_{12} = 2.2067, p = 0.0476$). Finally, patients in the group not on neuromodulatory drugs (group 3) had a non-significant but lower δ wave-nested spindle density on stroke electrodes. (Fig. 4E, stroke: 2.7031 ± 0.2032 counts min$^{-1}$; one way ANOVA, $F(2,19) = 1.47; p = 0.2546$).

SO-nested spindles, that are postulated to augment reparative motor plasticity, were fewer in all patients acutely post-stroke (linear mixed-effects model: $t_{42} = 0.8245, p = 0.4143, R^2 = 0.43$ and Cohen’s $d = 0.9524$). We did not observe a significant difference between stroke and contralateral electrodes in any of the three groups. SO-nested spindle density was not remarkably different on stroke electrodes between the three groups (Fig. 4F; Group 1: 0.9150 ± 0.1111 counts min$^{-1}$; Group 2: 0.8583 ± 0.1751 counts min$^{-1}$; Group 3: 0.6828 ± 0.0576 counts min$^{-1}$).
min$^{-1}$; one-way ANOVA $F(2,19) = 1.16; p = 0.3352$). Notably, SO-nested spindle density was lower than δ waves-nested spindle density in all three groups' stroke electrodes.

Together, these results show that δ waves-nested spindles, deemed pathological by recent rodent research, were elevated in patients who received propofol, dexamethasone, and levetiracetam.
Discussion

Our results show that, similar to recent rodent findings, human stroke patients have a preponderance of δ wave-nested spindles in NREM sleep acutely after a stroke. Furthermore, we found that this trend was exacerbated by drugs like propofol and levetiracetam. These results extend the recent rodent results on pathological sleep oscillations to human stroke patients. These findings suggest a roadmap for delineating pathological sleep and optimal therapeutic modulation to promote recovery.

Sleep and plasticity post-stroke

Preclinical and clinical studies that have evaluated local-field potentials (LFPs) in animals39,40 and EEG in patients22,36,37 have found increased low-frequency power during awake, spontaneous periods after a stroke. These studies postulate that this increased low-frequency activity could be a marker of cortical injury and loss of subcortical inputs47. Our findings on increased δ waves are indicative of similar phenomena. We also found an increase in δ wave-nested spindles, with growing evidence that temporal coupling of spindles to SOs is a primary driver of sleep-related plasticity and memory consolidation6,32–35,48,49. SO-nested spindles are linked to spike-time dependent plasticity50. These events are also related to reactivation of awake experiences28,32,48. Importantly, disruption of this coupling can impair sleep-related memory consolidation of awake experiences6. This same work showed that SO-nested spindles and δ wave-nested spindles compete to either strengthen or forget a memory. Our results show that δ wave-nested spindles increased acutely after stroke and more so on stroke electrodes than contralateral electrodes. These are related to impaired sleep-processing that such nested oscillations were enhanced further by drugs such as propofol and levetiracetam. Our observations are consistent with other observations where propofol resulted in reduced SO-
nested high frequency oscillations51,52. It may be important to consider avoiding drugs that push sleep towards a pathological state, acutely after a stroke53–55.

\textbf{Propofol and Levetiracetam: effect on sleep}

Propofol is one of the most commonly used anesthetics in neurologic intensive care units after stroke or traumatic brain injury56. It exerts its action by potentiating the activity of chloride currents through GABA receptors while blocking voltage-gated sodium channels57–59. Levetiracetam is a relatively newer anti-seizure drug. The exact mechanism for its anti-seizure mechanism is unclear, but it is believed to exert its effect through synaptic vesicle glycoprotein 2A60. Through this mechanism, levetiracetam is capable of modulate excitatory / inhibitory neurotransmission by inhibiting calcium currents61. Some studies have shown that levetiracetam has minimal effect on sleep parameters like total sleep duration, sleep latency, and sleep efficiency in both healthy humans and partial epilepsy patients62. However, observations have been made that levetiracetam can reduce motor activity and cause drowsiness during the day in patients treated with it62,63. Propofol, by its GABAergic action, causes greater loss of faster frequencies during induction with a shift in alpha frequencies to the frontal regions that reverses post-awakening64–66. In our study, the two groups that received medications that potentiate inhibitory GABA (levetiracetam or propofol) showed an increase pathological δ wave-nested spindles. Our results with limited dataset here suggests that levetiracetam impacted restorative sleep oscillations to a lesser extent than propofol.

\textbf{Sleep processing and stroke rehabilitation}

Recent rodent work profiled SO-nested and δ wave-nested spindles during the course of stroke recovery and found links between these nested structures and motor performance gains during recovery6. This work specifically looked into gains on reach-training, but clinical rehabilitation approaches can be varied67–69. It is likely that the sleep features of nested oscillations and their
putative pathological or physiological roles need to be factored in when considering timing for rehabilitation, irrespective of training type. Previous human and rodent studies have also suggested critical periods in training can offer long-term benefits70–72. Past studies that have found awake low-frequency power in stroke patients might be related to our findings of increased δ waves and δ wave-nested spindles. Future studies where EEG data is captured over the long term may delineate a transition from δ wave predominant sleep (pathological) to SO-nested spindle predominant sleep (physiological), and its relation to critical periods post-stroke for optimal timing of rehabilitation.

\textbf{Modulation of sleep as a therapeutic intervention}

The results we have presented can form the basis of translational studies in the future that target modulation of sleep post-stroke. Animal studies have suggested that modulation of GABAergic transmission (specifically GABA\(_A\)-receptor mediated tonic inhibition) in the perilesional cortex can serve as a therapeutic target to promote recovery, and that blocking of GABA\(_A\)-mediated tonic inhibition promoted motor recovery, this effect maximal in the first 1 to 2 weeks post-stroke73,74. Both short-term (acute) and long-term chronic infusion of GABA\(_A\) inhibiting compounds have been tested, and long-term infusion was shown to be better75. Long-term pharmacologic modulation as shown by Clarkson and colleagues may be essential to achieve observable motor benefits in human patients. Benefits of long-term infusion include the effect of the drug not only with rehabilitation-specific online (awake) training, but also during offline memory consolidation during sleep.

Studies such as ours can also help guide electrical stimulation-based neuromodulation for augmenting recovery. SOs and δ waves can be easily monitored using EEG in stroke patients and modulated. Non-invasive brain stimulation during sleep32,48,75,76 can be optimized to
suppress δ waves or boost SOs. Invasive stimulation approaches such as epidural stimulation77 can also focus on sleep state to optimize sleep neural processing. Similar approaches have shown that direct epidural, motor cortical electric stimulation can enhance awake performance and neural activity78,79 and epidural stimulation of subcortical regions can also modulate low-frequency oscillations in the motor cortex80, however such approaches have not been applied during sleep. A recent study suggested modulating up states during sleep can enhance recovery18. It is plausible that future approaches targeting sleep, when delivered in a closed-loop fashion optimizes both awake task performance and its consequent sleep processing, may lead to greater long-term benefits during rehabilitation. Such treatments will also need to factor in concurrent pharmacologic drugs to target optimal density of SOs versus δ waves for specific time periods of rehabilitation training and sleep.

Limitations

One of the limitations of our study is lack of a link between sleep architecture and motor status. Future work that studies sleep over several days post-stroke and assesses motor functionality longitudinally may find more robust links between sleep processing and related gains in motor performance. It is also possible that, with more effective task performance and associated awake neural dynamics78,79,81, efficacy of sleep may change. Precise disruption of sleep processing, specifically SO-spindle coupling in healthy animals, was sufficient to prevent offline performance gains, even when awake task learning was robust6. This work also showed that precise modulation of the extent of sleep spindle-SO coupling in healthy animals could either enhance or impede sleep processing. While extension of this work in stroke animals has shown SO-spindle nesting resurges with recovery14, future animal studies that modulate sleep microarchitecture can study if artificial manipulation of SO-nested spindles or δ wave-nested spindles after stroke are sufficient to enhance or impair motor recovery.
One more limitation of this study is the limited sample size with varying lesion location and size. While we focused on getting patients with cortical lesions, sleep may have been impacted differently for one patient with a primarily subcortical stroke. For example, a stroke in the white matter that impacts thalamocortical networks may impact spindles, believed to have a thalamocortical origin. Future work with a larger sample size with varying stroke-types and incorporation of motor task rehabilitation training and drug manipulation, may provide stronger links to inform drug manipulation during sleep to benefit motor recovery post-stroke.
Author Contributions

Acknowledgment

We would like to thank the patients that participated in this study. We would like to thank the Cedars-Sinai Neurophysiology team that helped in EEG data acquisition and consent especially Cody Holland, Erica Quan and Ho Duong. The study was supported by American Heart Association (AHA; predoctoral fellowship 23PRE1018175 to R.R., postdoctoral fellowship 897265 to A.A. and career development award 847486 to T.G.), National Institutes of Health (NIH)’s National Institute for Neurological Disorders and Stroke (NINDS) (R00NS097620 and R01NS128469 to T.G.), National Science Foundation (award 2048231 to T.G.) and Cedars-Sinai Medical Center. A.A. also received support through Cedars-Sinai’s Center for Neural Science and Medicine postdoctoral fellowship.

Conflict of Interest

The authors report no conflicts of interest relevant to this study.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.
References

44. Martínez-Cagigal V. Topographic EEG/MEG plot [Internet]. 2023;Available from: https://www.mathworks.com/matlabcentral/fileexchange/72729-topographic-eeg-meg-plot

Figure captions

Figure 1. Stroke versus contralateral electrode assignment. 10-20 system for EEG showing locations of all electrode locations recorded with an illustration of stroke. Grey shaded area shows a representative stroke perilesional region. Blue shaded circles represent mastoid electrodes (A1, A2) that were used for referencing. Red circles indicate identified Stroke electrodes based on proximity to the perilesional area. Green circles indicate identified Contralateral electrodes which are mirror/contralateral to identified Stroke electrodes. T5/P7 and T6/P8 are used interchangeably for this analysis.

Figure 2. NREM sleep oscillations. A, Representative 20 identified δ wave waveforms (gray traces) with their mean shown in black for an example EEG channel in one patient; B, Mean δ wave along with s.e.m. (standard error of mean) bands (blue) for all identified δ waves from an example channel from EEG data recording for one patient. C, D, Same as A, B for SOs. E, F, Same as A, B for spindle waveforms. All waveforms are centered around the detected states. G, Cartoon of SO-spindle nesting. Nesting window was −0.5 to +1.0 s from SO up state as shown. H, Cartoon of δ wave-spindle nesting. Nesting window −0.5 to +1.0 s from δ up state as depicted.

Figure 3. Patient imaging data and topographical density plots for different NREM oscillations. Top to bottom: Imaging data: CT (computed tomography) image for patient P1, T2 sequences of MRI (magnetic resonance imaging) images for patients P2 to P5. Radiologic imaging has been flipped horizontally to align with topographic density maps; i.e., image left, and right are ipsilateral to patient left and right. Left and right are marked in imaging figures (P1-P5) and apply to density topographical maps below them; Topographical map for detected spindle density (count/min) during NREM sleep for all patients; Topographical map for detected SO density (count/min) during NREM sleep for all patients; Topographical map for detected δ waves’ density (count/min) during NREM sleep for all patient; Topographical map for detected nested SO-spindle density (count/min) during NREM sleep for all patients; Topographical map for detected δ waves-nested-spindle density (count/min) during NREM sleep for all patients.
Figure 4. NREM oscillations’ density for different patient groups on stroke verses contralateral electrodes. A, Table showing selected stroke and contralateral electrodes for all patients. B, Comparison of δ wave density (count/min) on stroke versus contralateral electrodes for patients on different medications. Black line shows the mean values within the group. C, Same as B for SO density. D, Same as B for spindle density. E, Same as B for nested δ wave-nested spindle density. F, Same as B for SO-nested spindle density. Patient medication groups: (i) Group 1: propofol (P1); (ii) Group 2: levetiracetam (brand name: Keppra) (P2 & P5); and (iii) Group 3: non-neuromodulatory drugs (P3 & P4). *: statistically significant p values for two-tailed t-test.

Table 1. Patient clinical information. Top to bottom, information for five patients P1 to P5. Stroke location; days from stroke when the EEG data was acquired; associated comorbidities; concurrent medications during EEG recording. R/ L MCA: Right/ left middle cerebral artery; COVID: Coronavirus disease - 2019; ESRD: End-stage renal disease; HFrEF: Heart failure with reduced ejection fraction; HypoT: hypothyroidism; ASA: Acetylsalicylic Acid (Aspirin).
Figure 1. Stroke versus contralateral electrode assignment. 10-20 system for EEG showing locations of all electrode locations recorded with an illustration of stroke. Grey shaded area shows a representative stroke perilesional region. Blue shaded circles represent mastoid electrodes (A1, A2) that were used for referencing. Red circles indicate identified Stroke electrodes based on proximity to the perilesional area. Green circles indicate identified Contralateral electrodes which are mirror/contralateral to identified Stroke electrodes. T5/P7 and T6/P8 are used interchangeably for this analysis.
Figure 2

Figure 2. NREM sleep oscillations. A, Representative 20 identified δ wave waveforms (gray traces) with their mean shown in black for an example EEG channel in one patient; B, Mean δ wave along with s.e.m. (standard error of mean) bands (blue) for all identified δ waves from an example channel from EEG data recording for one patient. C, D, Same as A, B for SOs. E, F, Same as A, B for spindle waveforms. All waveforms are centered around the detected states. G, Cartoon of SO-spindle nesting. Nesting window was −0.5 to +1.0 s from SO up state as shown. H, Cartoon of δ wave-spindle nesting. Nesting window −0.5 to +1.0 s from δ up state as depicted.
Figure 3. Patient imaging data and topographical density plots for different NREM oscillations. Top to bottom: **Imaging data:** CT (computed tomography) image for patient P1, T2 sequences of MRI (magnetic resonance imaging) images for patients P2 to P5. Radiologic imaging has been flipped horizontally to align with topographic density maps; *i.e.*, image left, and right are ipsilateral to patient left and right. Left and right are marked in imaging figures (P1-P5) and apply to density topographical maps below them; **Topographical map** for detected spindle density (count/min) during NREM sleep for all patients; **Topographical map** for detected SO density (count/min) during NREM sleep for all patients; **Topographical map** for detected δ waves’ density (count/min) during NREM sleep for all patient; **Topographical map** for detected nested SO-spindle density (count/min) during NREM sleep for all patients; **Topographical map** for detected δ waves-nested-spindle density (count/min) during NREM sleep for all patients.
Figure 4. NREM oscillations’ density for different patient groups on stroke versus contralateral electrodes.

A, Table showing selected stroke and contralateral electrodes for all patients. B, Comparison of δ wave density (count/min) on stroke versus contralateral electrodes for patients on different medications# . Black line shows the mean values within the group. C, Same as B for SO density. D, Same as B for spindle density. E, Same as B for nested δ wave-nested spindle density. F, Same as B for SO-nested spindle density. #Patient medication groups: (i) Group 1: propofol (P1); (ii) Group 2: levetiracetam (brand name: keppra) (P2 & P5); and (iii) Group 3: non-neuromodulatory drugs (P3 & P4). *: statistically significant p values for two-tailed t-test.