Precision Prognostics for Cardiovascular Disease in Type 2 Diabetes: A Systematic Review and Meta-analysis

Authors

Abrar Ahmad*, Lee-Ling Lim²,³,⁴, Mario Luca Morieri⁵,⁶*, Claudia Ha-ting Tam³,⁷,⁸*, Feifei Cheng⁹, Tinashe Chikowore¹⁰,¹¹, Monika Dudenhöffer-Pfeifer¹, Hugo Fitipaldi¹, Chuiguo Huang³,⁷,⁸, Sarah Kanbour¹², Sudipa Sarkar¹³, Robert Wilhelm Koivula¹⁴, Ayesha A. Motala¹⁵, Sok Cin Tye¹⁶,¹⁷, Gechang Yu³,⁷,⁸, Yingchai Zhang³,⁷,⁸, Michele Provenzano¹⁸, Diana Sherifali¹⁹, Russel de Souza²⁰, Deirdre Kay Tobias²¹, Maria F. Gomez¹,²²**, Ronald C.W. Ma³,⁷,⁸**, Nestoras Mathioudakis¹³**

*co-first authors (contributed equally to this work), **senior authors (supervised all aspects of this work)

¹ Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
² Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
³ Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
⁴ Asia Diabetes Foundation, Hong Kong SAR
⁵ Metabolic Disease Unit, University Hospital of Padova, Padova, Italy
⁶ Department of Medicine, University of Padova, Padova, Italy
⁷ Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong
⁸ Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong
⁹ Health Management Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
¹⁰ MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
¹¹ Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
¹² AMAN Hospital, Doha, Qatar
¹³ Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
¹⁴ Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, United Kingdom

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
15 Department of Diabetes and Endocrinology, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
16 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, the Netherlands
17 Sections on Genetics and Epidemiology, Joslin Diabetes Center, Harvard Medical School
18 Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Italy
19 Heather M. Arthur Population Health Research Institute, McMaster University, Ontario, Canada 20 Faculty of Health Sciences, McMaster University, Ontario, Canada
21 Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
22 Faculty of Health, Aarhus University, Denmark

Corresponding authors:
Maria F. Gomez, PhD
Professor
Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
maria.gomez@med.lu.se

Ronald C. W. Ma, FRCP
Professor
Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
rcwma@cuhk.edu.hk

Nestoras Mathioudakis, MD MHS
Associate Professor of Medicine
Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
nmathio1@jh.edu

Word Count: 6,204
Tables/Figures: 2 Tables; 8 Figures
Abstract

Background
Precision medicine has the potential to improve cardiovascular disease (CVD) risk prediction in individuals with type 2 diabetes (T2D).

Methods
We conducted a systematic review and meta-analysis of longitudinal studies to identify potentially novel prognostic factors that could improve CVD risk prediction in T2D. Out of 9380 studies identified, 416 studies met inclusion criteria. Outcomes were reported for 321 biomarker studies, 48 genetic marker studies, and 47 risk score/model studies.

Out of all evaluated biomarkers, only 13 showed improvement in prediction performance. Results of pooled meta-analyses, non-pooled analyses, and assessments of improvement in prediction performance and risk of bias, yielded the highest predictive utility for N-terminal pro b-type natriuretic peptide (NT-proBNP) (high-evidence), troponin-T (TnT) (moderate-evidence), triglyceride-glucose (TyG) index (moderate-evidence), Genetic Risk Score for Coronary Heart Disease (GRS-CHD) (moderate-evidence); moderate predictive utility for coronary computed tomography angiography (low-evidence), single-photon emission computed tomography (low-evidence), pulse wave velocity (moderate-evidence); and low predictive utility for C-reactive protein (moderate-evidence), coronary artery calcium score (low-evidence), galectin-3 (low-evidence), troponin-I (low-evidence), carotid plaque (low-evidence), and growth differentiation factor-15 (low-evidence). Risk scores showed modest discrimination on internal validation, with lower performance on external validation.

Conclusions
Despite high interest in this topic, very few studies conducted rigorous analyses to demonstrate incremental predictive utility beyond established CVD risk factors for T2D. The most promising markers identified were NT-proBNP, TnT, TyG and GRS-CHD, with the highest strength of evidence for NT-proBNP. Further research is needed to determine their clinical utility in risk stratification and management of CVD in T2D.
Plain Language Summary

Patients with T2D are at high risk for CVD but predicting who will experience a cardiac event is challenging. Current risk tools and prognostic factors, such as laboratory tests, may not accurately predict risk in different patient populations. There is a need for personalized risk prediction tools to identify patients more accurately so that CVD prevention can be targeted to those who need it most. This study examined novel biomarkers, genetic markers, and risk scores on the prediction of CVD in individuals with T2D. We found that four laboratory markers and a genetic risk score for CHD had high predictive utility beyond traditional CVD risk factors and that risk scores had modest predictive utility when tested in diverse populations, but more studies are needed to determine their usefulness in clinical practice. The highest strength of evidence was observed for NT-proBNP, a laboratory test currently used to monitor patients with heart failure but not currently used in clinical practice for the purpose of CVD prediction in T2D.
Introduction

Individuals with type 2 diabetes (T2D) have a 2-5-fold higher risk of developing cardiovascular disease (CVD) compared to those without T2D, making T2D a "coronary heart disease" risk equivalent.¹ This risk is particularly concerning given the high prevalence of diabetes worldwide and the aging population. Currently, more than 500 million individuals worldwide are affected by this chronic disease, resulting in significant human and economic costs.²³ Accurate individual risk assessment is, therefore, crucial to identify those who may benefit the most from treatment interventions aimed at lowering CVD risk.

However, predicting CVD risk in those with T2D remains a challenge, and existing risk algorithms, such as the UK Prospective Diabetes Study (UKPDS) Risk Engine and Framingham Risk Score (FRS), have shown only modest predictive value in external validation studies.⁴⁻⁶ Thus, it is essential to develop readily available and cost-effective measures that can accurately identify individuals with a higher absolute risk of developing CVD beyond the risk estimated from established risk factors. Precision medicine provides a promising approach to optimize risk prediction by integrating multidimensional data (i.e., genetic, clinical, sociodemographic), accounting for individual differences.⁷

Recognizing the potential value of precision medicine in improving diabetes prevention and care, the Precision Medicine in Diabetes Initiative (PMDI) was established in 2018 by the American Diabetes Association (ADA) in partnership with the European Association for the Study of Diabetes (EASD) and is led by global leaders in precision diabetes medicine.⁸ This Systematic Review is written on behalf of the ADA/EASD PMDI as part of a comprehensive evidence evaluation in support of the 2⁰nd International Consensus Report on Precision Diabetes Medicine.⁹ As part of this broader initiative, we conducted a systematic review and meta-analysis addressing precision prognosis for CVD outcomes. Although precision prognosis is of value for any diabetes complication, we selected CVD as the outcome of interest in this review given that it is associated with the greatest morbidity and mortality.¹⁰,¹¹
Although previous systematic reviews have been conducted on the prediction of cardiovascular disease risk using traditional and non-traditional risk factors, including risk scores and genetic markers, in the general population, our review focused on patients with T2D, a population at higher risk for CVD events. Our review sought to answer two essential questions: (1) Which novel markers predict CVD in people with T2D? (2) Is there any evidence that these markers enhance risk prediction beyond current practice? Addressing these questions may inform the development of more effective strategies for detecting and predicting CVD in individuals with T2D, ultimately leading to improved management and prevention of this complication.

In summary, using a stringent study selection process to identify the most promising prognostic factors, this systematic review and meta-analysis found four prognostic factors with high predictive utility (with strength of evidence ranging from moderate to high), three prognostic factors with moderate predictive utility (with strength of evidence ranging from low to moderate) and six prognostic factors with low predictive utility (with strength of evidence ranging from low to moderate). Risk scores showed modest discrimination on internal validation, with lower performance on external validation particularly when tested in cohorts that differed from the derivation population.

Methods

We adhered to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guideline in conducting this study (Figure 1). Before conducting the search, the proposed systematic review and meta-analysis was registered on PROSPERO (Registration number: CRD42021262843).

Inclusion and Exclusion Criteria

This review included longitudinal studies (prospective or retrospective cohorts, including secondary analyses of cohorts from randomized controlled trials) of subjects with T2D (youth-onset and adult-onset). Inclusion criteria included observational studies published from 1990 onwards that reported on the association between a prognostic factor or risk score and one or more CVD outcomes among subjects with T2D. Exclusion criteria included cross-sectional
studies, studies utilizing surrogate endpoints for cardiovascular (CVD) outcomes such as carotid intima-media thickness, endothelial dysfunction, and arterial stiffness, and studies including only subjects with pre-diabetes or only subjects with type 1 diabetes. Studies with mixed populations of diabetes were included only if results were reported separately for subjects with T2D. Supplemental Table 1 summarizes the Participant Intervention Comparison Outcomes and Studies (PICOS) framework.

Outcomes
Only studies reporting outcomes on fatal or non-fatal coronary heart disease (CHD) and/or cardiovascular mortality (either alone or as individual component of composite outcomes) were included. We used a broad definition of CHD including any outcomes defined by terms such as myocardial infarction, ischemic heart events, cardiac events, coronary artery disease, and major cardiovascular events.

Search Strategy
We conducted a comprehensive search on Medline and Embase of studies published from January 1990 to March 2021 using relevant keywords and MeSH (Medical Subject Headings) terms pertaining to T2D and CVD (see Supplemental Text). In addition, we searched the reference lists of eligible studies and systematic reviews to identify any further relevant studies. The search strategy was designed by a multi-professional team of researchers with expertise in precision medicine, clinical diabetes, cardiovascular disease, biomarker development and evaluation, genetic markers, and predictive analytics, supported by two librarians with expertise in conducting systematic reviews and meta-analyses. References identified by database searchers were exported to EndNote (Clarivate Analytics) and imported to Covidence, where studies were assessed for eligibility. After the removal of duplicates, 14 authors participated in screening each title/abstract, and full-text articles were obtained if abstracts were considered eligible by at least one author. Each full-text article was assessed independently by two authors (among 12 total authors) for inclusion in this systematic review and meta-analysis, and disagreements were resolved by consensus.
Data extraction

All data were extracted and coded by one author and reviewed by a second author to ensure data accuracy. Eight authors participated in the data extraction process (AA, CT, LL, MG, MM, NM, RM, SK). The following data were extracted from each article using a standardized data form in Covidence and Excel data tables: *study characteristics* (country or countries of the study population, study start and end year, study design, inclusion/exclusion criteria, study setting, data sources), *participant characteristics* (years of follow-up, follow-up duration, total number of participants, race/ethnicity/ancestry, and baseline characteristics), *prognostic factor(s) characteristics* (name, prognostic factor type, units of measurement, units and cut-offs in regression analyses, transformation methods, effect measures [hazard ratio, odds ratio, c-statistic, net reclassification index (NRI), integrated discrimination index (IDI), etc.] and 95% confidence intervals, adjusted covariates), and *outcomes* (CVD outcome definition, number of events and non-events), and validation methods. For genetic markers, we collected risk variants, risk alleles, and closest gene (locus). For continuous variables, we collected mean and standard deviation or median and interquartile range, as reported in the study. Furthermore, data were collected to evaluate the *risk of biases* in each study as summarized in Supplemental Table 2 and described in the quality assessment paragraph.

During data extraction, studies were classified into three categories based on the primary type of prognostic factors reported, namely biomarkers, genetic markers, and risk scores. Candidate biomarkers were broadly defined as non-genetic laboratory tests, clinical conditions, socio-demographics, vital signs, diagnostic procedures, and imaging tests. Candidate genetic markers included specific DNA sequences or variations, such as single nucleotide polymorphisms (SNPs), restriction fragment length polymorphisms (RFLP), or short tandem repeats (STR). Risk scores were defined as prediction models, algorithms, risk engines, or calculated risk tools that estimated the overall probability of CVD event or category of CVD risk based on a set of risk factors. When multiple genetic variants were combined to predict risk (using SNPs), the study was classified as a genetic marker (i.e., genetic risk score) rather than a risk score.

The objective of this study was to identify prognostic factors that may refine CVD risk prediction beyond already known risk factors. Therefore, we excluded from the analysis those
studies that evaluated biomarkers already established as CVD risk factors (Supplemental Table 3), such as smoking, hypertension, microalbuminuria, BMI, and dyslipidemia, as defined in the 2021 European Society of Cardiology (ESC) guidelines on cardiovascular disease prevention in clinical practice.27,28 However, we considered including biomarkers that evaluated a novel variation of an established CVD risk factor, such as HbA1c variability compared to a single time-point measurement.

The strength and quality of evidence in observational prognostic studies depend on how well the confounding variables between the prognostic factor and the outcome are accounted for. To be considered a novel risk marker, a biomarker must improve risk prediction beyond traditional markers.27 Thus, we began by excluding all studies that did not adjust for any CVD risk factors. The quality of the statistical models for adjusting confounding factors was assessed in the next section.

Quality Assessment

We used a modified Newcastle-Ottawa Scale to assess quality and risk of biases. The scale assesses studies based on six domains, including representativeness of the exposed and non-exposed cohorts, ascertainment of exposure and outcome, and adequacy of study follow-up for primary and secondary CVD events, as well as adequacy of cohort follow-up.29 Two authors assessed study quality independently, and any disagreements were resolved by a third author. For biomarker studies, we evaluated statistical model appropriateness based on the number of covariates and established CVD risk factors. Each study was given a score for each domain and an overall quality evaluation was determined by adding up these scores. The range of scores for non-genetic biomarkers was 2 to 28, and for genetic biomarkers and risk scores, it was 2 to 18. We reported the overall risk of bias based on the distribution of scores in each prognostic factor category. Studies in the top tertile were considered to have low risk of bias, those in the second tertile were considered to have medium risk of bias, and those in the lowest tertile were considered to have high risk of bias. The score of each domain was also classified as low, medium, or high risk of bias for graphical purposes, as clarified in Supplemental Table 2.
Statistical Analysis

We collected fully adjusted effect measures (HR, RR, OR c-statistic) and their corresponding 95% CIs reported in the original articles. When studies reported multiple multivariate-adjusted effect measures, we used the estimate from the most fully adjusted model. For studies reporting event rates without an effect measure, we calculated the odds ratio using two-by-two contingency tables and chi-square tests. In the meta-analysis, we used a random-effects model to pool the effect estimates, only if the heterogeneity test was statistically significant. We calculated summary HRs or ORs with 95% CIs for each biomarker or genetic marker and assessed heterogeneity between studies using the Cochran’s Q statistic ($p < 0.1$) and/or the I^2 index $>75\%$. Due to the limited number of studies per prognostic factor, subgroup analyses by population characteristics or outcomes were not possible. We performed sensitivity analyses by excluding studies with high risk of bias. As the number of studies per prognostic factor was always less than 10, we were unable to assess publication bias using funnel plots. We used R, version 4.2.3 (R Project for Statistical Computing), with the “meta”, “metafor”, and “forestplot” packages for all analyses.30 Two-sided statistical tests were used with a significance threshold of <0.05.

Strength of the Evidence

We considered aspects of the GRADE approach 31 and the JBI critical appraisal tools 32 in grading the strength of evidence for individual biomarkers and genetic markers/risk scores in this review. We applied relevant GRADE criteria, including indirectness, inconsistency, and imprecision, throughout the study. Since we only included studies that involved patients with T2D and a "hard" clinical CVD outcome, the evidence is considered direct by definition. We analyzed the results from T2D patients with and without baseline CVD and specified all relevant CVD outcomes to assess the applicability of individual biomarkers in specific populations and outcomes. To ensure robustness and validity of our findings, we established strict eligibility criteria, including the exclusion of studies that did not adjust for established CVD risk factors. Furthermore, we scored studies based on the adequacy of adjustment for covariates, including
the total number of covariates and established CVD risk factors, in accordance with the JBI criterion for statistical adjustment of confounders.

We used the American Heart Association scientific consensus report for stepwise evaluation of novel markers for CVD risk33 to identify promising biomarkers and genetic markers based on their strength of evidence progressing from measures of association, discrimination, improvement in discrimination, net reclassification index (NRI) or integrated discrimination index (IDI). For biomarkers and genetic markers, we progressed from those with significant adjusted association in at least one study to those with net positive number of studies showing significant association in a consistent direction. We identified biomarkers that improved prediction performance when added to established models, based on improvement in at least one of c-statistic, NRI, or IDI, and further narrowed down the list to those with improvement in all three indicators.

Accordingly, for each of the prognostic factors that passed our evidence-based screening criteria, predictive utility was classified as high (3 points), moderate (2 points), or low (<2 points) based on three criteria: number of studies with all three performance indicators satisfied (1 point if >0 studies, 0 points if 0 studies), number of pooled meta-analyses showing significant association (1 point if >0, 0 points if 0 studies), non-pooled analysis showing ≥75% of studies had a significant association (1 point if yes, 0 points if no). Strength of Evidence was classified as high (4 points), moderate (2 or 3 points), or low (<2 points) based on four criteria: at least one meta-analysis was conducted regardless of outcome (1 point if yes, 0 points if no), exclusion of high risk of bias studies did not alter inferences from meta-analyses (1 point if unaltered, 0 points if altered), exclusion of high risk of bias studies did not alter inferences from non-pooled analyses (1 point if unaltered, 0 points if altered), and consistencies in the definition of the prognostic marker used in analyses (1 point if yes, 0 points if no).

For the risk scores, we provide a complete assessment of risk of bias and pooled c-statistics; however, we decided not to conduct a corresponding stepwise approach to evidence grading as explained above for biomarkers/genetic markers due to the complexity in verifying specifications.
of each model over time and across comparisons. Inferences from the risk score results are here meant to guide future work that would permit analysis to handle this complexity.

Results

Study selection and characteristics

Out of 9380 studies identified from the search for abstract screening, 615 articles were selected for full-text review, and finally, 416 articles were considered appropriate for inclusion in the analysis. Outcomes were reported for 321 biomarker studies, 48 genetic marker studies, and 47 risk score/model studies, as shown in Supplemental Tables 4, 5, and 6. Figures 1 and 2 provide an overview of the screening and selection process.

Predominant ancestry in the studied populations were European (57.1%), East Asian (19.7%), South Asian (5.5%) and Hispanic or Latin American (4.2%). Geographically, the United States, United Kingdom, China, Japan, and Italy were the top five dominating countries with regards to origin of study participants and author affiliation in the included studies. Figure 3 and online interactive figures (https://hugofitipaldi.shinyapps.io/T2D_prognostic/) [login username: login: groupaccess; password: QUO9Q8c2ULdg8n-E^XZE; access information to be removed after acceptance] offer a detailed breakdown of ethnic and geographic distributions.

CVD Outcomes

There was significant heterogeneity in the CVD outcomes evaluated across the analyzed studies (see Supplemental Figure 1). The most frequently reported outcomes were coronary heart disease, cardiovascular mortality, and stroke, either individually or combined. We classified primary prevention as the prediction of CVD in individuals without a history of the disease, secondary prevention as the prediction of recurrent CVD events or CVD progression in those already diagnosed with the disease, and mixed populations as a combination of both primary and secondary prevention.

Biomarkers

Among 416 included studies, 321 (77.2%), 48 (11.5%), and 47 (11.2%) were studies of non-genetic biomarkers, genetic biomarkers, and non-genetic risk scores, respectively. Among the
321 studies of non-genetic biomarkers, 70 (21.8%) evaluated established CVD risk factors and were excluded, while 30 studies (9.3%) were included because they used a novel approach (e.g., variability, setting) for an established risk factor (Figure 2). Further, three studies did not adjust for any CVD risk factors and were excluded, leaving 218 studies consisting of 195 unique biomarkers in the analysis.

Among these 195 analyzed biomarkers, 134 (69%) had a significant adjusted association for predicting CVD, based on a net positive number of studies (Figure 4A and Supplemental Table 7). Out of these, 12 (9%) showed improvement in c-statistic, NRI, or IDI in more than one study: N-terminal pro b-type natriuretic peptide (NT-proBNP), C-reactive protein (CRP), troponin T (TnT), coronary artery calcium score (CACS), coronary computed tomography angiography (CCTA), single-photon emission computed tomography (SPECT) scintigraphy, pulse wave velocity (PWV), galectin-3 (Gal-3), troponin I (TnI), carotid plaque, growth differentiation factor-15 (GDF-15), and triglyceride-glucose (TyG) index. The following biomarkers showed prediction performance but in only one study: SPECT, TnI, TyG, 25-hydroxyvitamin D, poly(ADP-ribose) polymerase (PARP), and interleukin-6 (IL-6).

Biomarkers with all three prediction performance indicators satisfied in more than one study were NT-proBNP, TnT, and CCTA, with results summarized in Table 1. For NT-proBNP, 5 studies reported improvement in c-statistics ranging from 0.01 to 0.07, significant increase in NRI ranging from 0.04 to 0.50, and significant IDI ranging from 0.012 to 0.48 (in four studies). For TnT, 3 studies reported improvement in c-statistics ranging from 0.02 to 0.10, significant NRI ranging from 0.150 to 0.44, and IDI ranging from 0.03 to 0.05. For CCTA, 3 studies reported improvement in c-statistics ranging from 0.08 to 0.35, with one study reporting statistically significant improvements in NRI of 0.55 and IDI of 0.046. Of these three biomarkers, NT-proBNP showed the strongest incremental predictive value based on the magnitude of these indicators.

Forest plots in Figure 5A show the HRs for 11 studies evaluating NT-proBNP, conducted in heterogeneous populations (2 primary, 5 mixed, 4 secondary), outcomes, units in regression analyses (i.e., SD, SD of log), and laboratory units (ng/L, pg/mL). Nonetheless, all studies
except one showed a significant association for CVD outcome. Remarkably, 8 out of 11 (73%) studies had low risk of bias. Figure 6A and Supplemental Figures 2A and 2B show the meta-analysis of NT-proBNP as a continuous variable per logarithmic and per 1 SD unit increase, confirming the highly significant association with CVD (pooled HR 1.53, 95% CI 1.26-1.85 per log increase; pooled HR 1.59, 95% CI 1.27-1.99 per SD increase) after accounting for heterogeneity with the random effects models (I² 90.0% and I² 83%, respectively).

Forest plots in Figure 5B show the HRs for 8 studies evaluating TnT, conducted primarily for mixed or secondary populations with variable CVD outcomes. Studies differed with respect to cut-offs and categories for TnT, units of measurement (ng/ml, ng/L) and analysis (per log, per 1 SD log). Among these studies, all but one showed a positive association. Notably, the study by Lepojarvi 2016 was an outlier in its magnitude of effect and confidence intervals. Overall, for TnT, study quality was good with 6 out of 8 (75%) being low risk of bias. A significant association for TnT was observed in studies where the biomarker was evaluated as a continuous variable per 1 log increase with pooled HR 1.64 (95% CI 1.23, 2.18) and I² 59% (Figure 6B and Supplemental Figure 2C); similarly, when treated as a binary or categorical variable, the pooled HR was 2.64 (95% CI 1.03, 6.72) with I²=95.9% (Figure 6B and Supplemental Figure 2D). However, when treated as a continuous variable per 1 SD, there was no association observed in a random effects model (Figure 6B and Supplemental Figure 2E).

Forest plots in Figure 5C show the HRs for 5 studies evaluating CCTA conducted primarily for primary CVD prevention with variable CVD outcomes. Studies differed significantly with respect to CCTA definition of subclinical or clinical CHD. All 5 studies showed a significant association; however, 2 of the 5 studies (40%) had a high risk of bias.

Apart from these three biomarkers, SPECT, TnI, TyG, 25-hydroxyvitamin D, poly(ADP-ribose) polymerase (PARP), and interleukin-6 (IL-6) showed prediction performance in all three performance indicators but in only one study. Forest plots for the remaining 9 biomarkers that showed improvement in at least one performance indicator in more than one study (CACS, carotid plaque, CRP, gal-3, GDF-15, PWV, SPECT scintigraphy, TnI, and TyG are shown in Supplemental Figure 3. Again, there was substantial heterogeneity with respect to study
populations, outcomes, and units of analysis for these biomarkers. Biomarkers showing positive association in at least 75% of studies included CACS, carotid plaque, gal-3, PWV, SPECT scintigraphy, TnI, and TyG. While CRP did not meet the threshold of 75% of studies showing an association, when meta-analyzed as a binary or categorical variable, it showed a significant pooled association; PWV and TyG also demonstrated significant association in pooled analysis (Supplemental Figure 4).

Genetic markers

Among the 48 genetic studies analyzed (Supplemental Table 5), 79 genetic biomarkers were examined for their association with incident CVD events (Supplemental Table 8), mainly in populations of European (65%) or Asian (26%) ancestries, with a scarce representation of populations of other ancestries (e.g. African 12% or Hispanic 3%), with 12% of associations being tested in mixed populations. Most of the studies (70 out of 79) used single variants as distinct genetic biomarkers (exposure), while 9 studies used a combination of different SNPs into genetic risk scores (GRS) as the exposure. Remarkably, most of these exposures were tested only in one study, and external validation was performed in only 4 out of 48 studies, with only one study using a longitudinal cohort as a validation set, i.e. GRS for CHD. Overall, among the 79 genetic biomarkers, 33 (41.8%) had at least one study showing significant association, out of which 29 had a net positive number of studies showing significant association. Out of these 29 genetic biomarkers, two were tested in more than one study (rs10911021 on GLUL, GRS for CHD [GRS-CHD]), one had improvement in any performance indicator in a single study (ε4 in APOE), and one had improvement in all three performance indicators in a single study (GRS-CHD) (Figure 4B).

Notably, the rs10911021 variant in GLUL was the only single variant that showed an association with CVD in several studies. This variant was initially identified in T2D patients using a genome-wide approach and subsequently confirmed for its association with CVD in selected populations from two additional studies. For GRS-CHD, four separate studies investigated the combination of up to 204 CHD variants from 160 distinct loci derived from the general population. These studies had distinct but overlapping and increasing numbers of loci and variants tested in more recent investigations. The most recently performed GRSs were externally 15
validated and demonstrated significant improvements in CVD risk reclassification (cNRI) as well as notable enhancements of 8% in relative IDI (rIDI). However, these findings were identified in subjects of European ancestry and ancestry-specific analyses showed consistency in Asian subjects but not in other ancestral backgrounds. Forest plots for variants located on the GRS-CHD and GLUL are shown in Figure 7, while their meta-analyses can be found in Supplemental Figure 5.

Risk scores/models

Forty-seven studies reported results of CVD risk scores (Supplemental Tables 6 and 9). Among these, 16 and 19 unique risk scores were reported in internal and external validation analyses, respectively. Figure 8A shows a meta-analysis from 14 internal validation studies (18 analyses), with a pooled c-statistic of 0.70 (95% CI 0.68-0.72) and high heterogeneity (I²= 97.6%). Most risk scores were developed in the United States, Europe, and East Asia and 61.1% of the internal validation studies had a high risk of bias. Figure 8B shows a meta-analysis of 50 external validation analyses from 19 unique risk scores, with pooled c-statistic of 0.68 (95% CI 0.67-0.69) and high heterogeneity (I²=97.18%). Notably, 28% of the external validation analyses had a high risk of bias. Model performance tended to decline when validated in countries that differed from the development cohort (Supplemental Figure 7). For example, the FDS study achieved high c-statistics (>0.80) when validated in an Australian cohort, but lower ones (0.58-0.69) when tested in European countries. In line with previous studies ⁵,⁶,³⁸⁹, discrimination for the UKPDS and FRS was generally poor on external validation. Most prediction models focused on baseline characteristics and did not account for time-varying factors that may modify CVD risk (e.g., statin, SGLT-2i, GLP-1 RA). An exception was the BRAVO risk engine, published in 2020 and validated in trials of SGLT-2i patients, showing that this risk engine effectively predicted CV health benefits through improvements in common clinical measures (e.g., A1C, SBP, and BMI). ³⁴⁵

Supplemental Figure 8A and 8B provide a histogram of the total number of adjusted covariates and number of adjusted CVD risk factors in each of the studies, respectively. Supplemental
Figure 9 is a network figure representing the connections of the adjusted covariates in the 416 included studies.

Sensitivity Analyses

The results of sensitivity analyses excluding studies with high risk of bias from meta-analyses of biomarkers, genetic risk score, risk scores (internal validation), and risk scores (external validation), respectively, are shown in Supplemental Figures 10, 11, 12, and 13.

Synthesis

Table 2 provides a summary of findings of the most promising biomarkers and genetic markers/scores for precision prognosis of CVD in T2D, along with our conclusions regarding their predictive utility and strength of evidence. The highest predictive utility was observed for NT-proBNP (high-evidence), TnT (moderate-evidence), TyG (high-evidence), and GRS-CHD (moderate-evidence). Prognostic factors with moderate predictive utility were CCTA (low-evidence), SPECT scintigraphy (low-evidence), and PWV (moderate-evidence). Prognostic factors with low predictive utility included CRP (moderate-evidence), CACS (low-evidence), Gal-3 (low-evidence), TnI (low-evidence), carotid plaque (low-evidence), and GDF-15 (low-evidence). Supplemental Figures 6A, 6B, and 6C provide the quality assessment for the included biomarker, genetic marker, and risk score studies, respectively.

Discussion

Our systematic review of prognostic markers for cardiovascular endpoints in individuals with T2D has revealed several novel findings. First, among the numerous studies that investigated the prognostic significance of risk markers for subsequent cardiovascular events, only a few of them have been consistently demonstrated to be significantly associated with cardiovascular risk. Namely, NT-proBNP, TnT, TyG, and GRS-CHD demonstrated the highest predictive utility, with NT-proBNP demonstrating the strongest evidence. However, most of the remaining markers have not been adequately tested and/or compared against established risk factors for cardiovascular disease. Lastly, although some markers have demonstrated the ability to predict cardiovascular events beyond what current risk factor-based models can offer, their
implementation in clinical practice remains limited, as there is inadequate evidence of their clinical usefulness.

During the search process, a considerable number of studies were found to be ineligible for inclusion in our systematic review. The available studies were primarily cross-sectional in design, and only a limited number of them focused specifically on individuals with T2D and examined the early utility of risk factors and biomarkers in predicting future cardiovascular events. Ultimately, among the 615 studies that underwent full-text review, many were excluded due to study design or outcomes that did not meet our criteria. These findings emphasize the need for better-designed studies in this area to improve our understanding of the prognostic value of markers for cardiovascular disease in individuals with T2D.

It is important to note that most studies included in the final analysis were conducted on people of European, East or South Asian ancestry, with the top-5 countries of recruitment being the United States, UK, China, Japan and Italy. African ancestry and countries were underrepresented. A skewed geographical distribution was also evident regarding countries of author affiliation, with the same top-5 countries dominating the volume of publications. Although the geographical and ancestral imbalance reported here for biomarker studies is less pronounced than what was recently reported for GWAS studies. It highlights the pressing need to enhance data collection and availability in underrepresented populations to promote precision medicine while avoiding exacerbation of existing healthcare disparities.

In our analysis of prognostic markers, we observed that many studies focused on "novel" or "non-traditional" biomarkers. This finding is not surprising considering the significant increase in the number of biomarkers discovered in recent years, and the growing academic interest in exploring their potential for predicting cardiovascular outcomes. In general, the novel biomarker emerging as the best predictor (e.g. NT-proBNP) is consistent with findings in the general population, where it has also been found to be useful as a prognostic marker. Another biomarker that is often evaluated for CVD prediction is high-sensitivity CRP, which has been found in the general population to improve primary CVD risk prediction among asymptomatic middle-aged adults. In our review, however, CRP was found to have low predictive utility.
with moderate strength of evidence. This may be related in part to variability in cut-offs used for this marker, the relatively small numbers of studies, or differential effects in diabetes.

While many genetic studies have been conducted to investigate association between polymorphisms and genetic variants with cardiovascular outcomes in diabetes, we found few genetic markers which have been consistently investigated in longitudinal studies, and few which have been consistently replicated to be associated with cardiovascular outcomes. Furthermore, we could only identify one study that utilized a genome-wide association study approach, and identified the rs10911021 variant near GLUL to be associated with CV outcome in diabetes, at genome-wide significance. The variant at GLUL has subsequently been confirmed in two independent studies, confirming its role as a prognostic marker. Polygenic genetic risk scores also appear to be emerging as a promising approach, and GRS constructed from variants associated with CHD in the general population were found to be helpful for cardiovascular risk stratification in diabetes.

There is a need for a larger number of adequately powered genetic association studies to identify genetic markers associated with cardiovascular disease in diabetes. On the contrary, while dedicated studies among people with T2D were limited, we found several examples of studies that evaluated the utility of applying polygenic risk scores, or genome-wide polygenic risk scores, derived from the general population, in risk stratification of cardiovascular risk among people in T2D. In general, these have fair performance and offered a similar ability to stratify as in patients without diabetes. Given the much larger sample sizes in current published meta-analyses of GWAS for CHD in the general population, this approach will probably be more fruitful in terms of incorporating genetic markers into risk stratification of cardiovascular complications. In the limited studies that have evaluated the added benefit of polygenic risk scores above clinical markers, there is in general a modest, but significant improvement in prediction. Whether polygenic risk scores will become viable options for future risk stratification would partly depend on the availability of these tools, and the cost-effectiveness of adding these measures into clinical practice.
Beyond individual prognostic markers, our review identified several studies that evaluated clinical risk prediction models or cardiovascular risk stratification. While the UKPDS risk engine (developed among subjects with newly diagnosed T2D in the UK) and the Framingham risk equation (developed from the general population in the US) were the most widely studied, they do not perform well in contemporary studies of people with T2D. This suggests difficulties in applying certain risk models to current healthcare settings. Nevertheless, our literature review shows that clinical risk models are perhaps the “readiest” for implementation in clinical practice to improve risk stratification in diabetes. On external validation, newer risk scores generally achieved higher discrimination compared to UKPDS and FRS, with Fremantle Diabetes Study 2 (FDS-2) having the highest c-statistic of 0.81 (developed and validated in different populations in Australia). We found that risk models performed better when validated in cohorts that were like the derivation cohort, with c-statistics of 0.699 ± 0.015 and 0.668 ± 0.006 (95% CI) (P=0.018) for concordant and discordant studies, respectively.

In an era when electronic medical record (EMR)-based prediction models are being increasingly used, our results suggest that researchers should focus on the development of population-specific risk models that are intended to be deployed in the same population from which they were developed since the goal should be to achieve the highest predictive accuracy rather than to find a generic model that performs modestly well in all settings. Despite their potential utility and low implementation costs, we found a paucity of evidence showing these risk engines being integrated into clinical practice as calculators. We are aware of several notable exceptions. For example, the Joint Asia Diabetes Evaluation (JADE) program has incorporated several risk prediction algorithms derived from Asian patients with diabetes into a web-based e-health portal, together with a graphical interface and decision support, and has been evaluated in different clinical settings, including in randomized clinical trials. Many EMR systems offer quick calculations of CVD risk using the American College of Cardiology/American Heart Association (ACC/AHA) Pooled Cohort Equations based on inputs available in the patient’s record, and we recommend that future risk scores found to have high predictive accuracy be made easily accessible to clinicians in their workflow within the EMR.
In this extensive review, we identified a substantial number of studies that had major limitations in their design, as they did not adequately account for established cardiovascular risk factors in their covariate adjustment. Furthermore, among the biomarker studies that considered adjustments for established cardiovascular risk factors, only a minority (6%) evaluated the clinical utility of incorporating the biomarker in risk prediction compared to using clinical risk factors alone. Similar findings were observed in the genetic markers, where only ~4% were tested in multiple studies and incorporating information about improvement in risk prediction.

Given the limitations and gaps that emerged from this review, we recommend that future studies follow several guidelines to improve the quality and impact of studies on precision prognostics in diabetes. First, studies attempting to identify a risk marker should be conducted in prospective or longitudinal cohorts or trials, to provide more robust and reliable data. Second, studies should have sufficient sample size and duration of follow-up (at least 3 years for primary CVD events and at least 1 year for secondary CVD events) to ensure adequate statistical power. Third, studies must adjust for a minimal set of established clinical cardiovascular risk factors, to ensure that any observed associations are not confounded by known risk factors. Finally, studies should attempt to explore the added utility of biomarkers by comparing against prediction using risk models based on established risk factors or available risk engines for cardiovascular events. This would include evaluation of the change in c-statistics after adding risk markers/biomarkers of interest but also consider including additional metrics such as NRI and IDI. We believe that if journals make these requirements mandatory when evaluating such studies, it will help ensure that future studies are best suited for informing future advances in this area. As in any other research field, harmonization of protocols, methods, and analysis pipelines should be encouraged to allow comparisons across studies.

There are several unique strengths of this work. To our knowledge, this represents one of the most comprehensive overviews of the current status of knowledge with regard to risk stratification of cardiovascular outcomes in T2D. We included studies from 1990 onwards, to capture some of the older studies, as well as more contemporary studies. Our inclusion of a broad range of “biomarkers” in the broadest term, including clinical risk factors, novel biomarkers, imaging modalities, genetic polymorphisms, polygenic risk scores, risk prediction models etc.,
allow us to provide an objective overview of the different approaches currently being explored for better risk stratification. In focusing on studies that utilized longitudinal cohorts, we placed the emphasis on studies that would inform prognostication. We focused on “hard” cardiovascular endpoints, rather than also including surrogate endpoints such as carotid intima-medial thickness, to focus on endpoints that would be of greatest clinical relevance.

There are several notable limitations of our study. This includes having to exclude large numbers of cross-sectional studies, given the scale of the systematic review, and the need to focus on longitudinal studies which can best inform clinical practice. We also excluded studies which utilized surrogate markers of cardiovascular events, such as carotid IMT, unless those surrogate endpoints are being investigated as the exposure for predicting “hard” cardiovascular events. We limited our search to articles published in English. Another limitation is that our search terms are perhaps more sensitive for the detection of studies of clinical risk factors and biomarkers compared to genetic factors, and this led to fewer genetic studies being identified as expected. Despite this limitation, we were able to supplement this by adding back some missing articles based on the literature identified and the expertise of the investigators.

In conclusion, our systematic review on prognostic markers for cardiovascular endpoints in T2D identified several novel findings and some important knowledge gaps. We found that NT-proBNP, TnT, TyG, and GRS-CHD had high predictive utility beyond traditional CVD risk factors, with the highest strength of evidence for NT-proBNP. Among genetic markers, there was only sufficient evidence for the polygenic risk score for CHD, and among risk scores, predictive utility was modest on external validation. Given the relatively low number of studies analyzing these novel prognostic factors using rigorous approach, these findings support the need for future studies testing these markers with convincing demonstration of incremental predictive utility. NT-proBNP appears to be the only biomarker ready to be tested prospectively to evaluate its utility in modifying clinical practice for prediction of CVD risk.
Acknowledgements

A.A., M.D-P., H.F., M.F.G. acknowledge support from the Swedish Heart-Lung Foundation (20190470), Swedish Research Council (EXODIAB, 2009-1039; 2018-02837), Swedish Foundation for Strategic Research (LUDC-IRC, 15-0067), EU H2020-JTI-IMI2-2015-05 (Grant agreement number 115974 - BEAt-DKD) to M.F.G. L-L.L. acknowledge UK Medical Research Council Population and Systems Medicine Board (IF048-2022). M.L.K. is supported by Italian Ministry of Health Grant “Ricerca Finalizzata 2019” - GR-2019-12369702. C.H.T.T., C.H, and R.C.W.M. acknowledge support from the Research Grants Council of the Hong Kong Special Administrative Region (CU R4012-18), the Croucher Foundation Senior Medical Research Fellowship, University Grants Committee Research Grants Matching Scheme and Research Committee Postdoctoral Fellowship Scheme of the Chinese University of Hong Kong. F.F.C. acknowledge the Second Affiliated Hospital of Chongqing Medical University (No. 2022ccfkyqdj). T.C. is an international training fellow supported by the Wellcome Trust grant (214205/Z/18/Z). R.W.K. was funded by a Novo Nordisk Foundation (NNF18OC0031650) postdoctoral fellowship. G.Y. and R.C.W.M. acknowledges support from the Provost’s Scheme for PhD scholarship from the Chinese University of Hong Kong. Y.Z. acknowledges a Postgraduate Studentship and Vice-Chancellor's PhD scholarship from the Chinese University of Hong Kong. The authors wish to acknowledge the support of librarians from Lund University, Maria Björklund and Krister Aronsson for their expert support with the literature search. N.M. is supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK125780, R01DK134955).

Contributions of authors

Drs. Gomez, Ma, and Mathioudakis had full access to all the data in the study and take full responsibility for the integrity of the data and the accuracy of the data analysis.

Statistical analysis: C.H.T, M.L.M, N.M
A.A, L-L.L, M.L.M, C.H.T contributed equally to this work and are considered co-first authors. M.F.G, R.C.W.M, and N.M supervised all aspects of this work and are considered co-senior authors.

Competing interests
L-L.L. has served as an advisory committee member for Bayer, Boehringer Ingelheim, Novo Nordisk, Procter & Gamble Health, and Viatris; and as a speaker for Abbott, AstraZeneca, Boehringer Ingelheim, Merck Sharp & Dohme, Novo Nordisk, Roche, Sanofi, Servier, and Zuellig Pharma Therapeutics. She has also received research grants from Abbott, AstraZeneca, and Boehringer Ingelheim. M.L.M. received lecture fees, consultancy, or advisory board fees from Amarin, Amgen, Eli Lilly, Merck Sharp & Dohme, Mylan, Novo Nordisk, Servier, and SlaPharma, all not directly related to this manuscript. R.W.K. has received consulting fees from Novo Nordisk. M.F.G. has received financial and non-financial (in kind) support from Boehringer Ingelheim Pharma GmbH, JDRF International, Eli Lilly, AbbVie, Sanofi-Aventis, Astellas, Novo Nordisk A/S, Bayer AG within EU grant H2020-JTI-IMI2-2015-05 (Grant agreement number 115974 - BEAt-DKD). She has also received financial and in-kind support from Novo Nordisk, Pfizer, Follicum, Coegin Pharma, Abcentra, Probi, Johnson & Johnson within a project funded by the Swedish Foundation for Strategic Research on precision medicine in diabetes (LUDC-IRC #15-0067). Dr. Gomez has received personal consultancy fees from Lilly and Tribune Therapeutics AB. R.C.W.M. has received research grants from AstraZeneca, Bayer, Novo Nordisk, Pfizer, Roche Diagnostics (HK) Ltd, Tricida Inc, and consultancy/speaker honorarium from AstraZeneca, Boehringer Ingelheim, Bayer, Merck. All proceeds have been donated to the Chinese University of Hong Kong to support diabetes research. R.C.W.M. is a co-founder of GemVCare, a technology start-up initiated with support from the Hong Kong Government Innovation and Technology Commission and its Technology Start-up Support Scheme for Universities (TSSSU).
Figures

Figure 1. PRISMA flow diagram detailing the process that led to final study inclusion for review.
Figure 2. Selection of studies to be included for evaluating the associations of biomarkers, genetic markers and non-genetic risk scores with cardiovascular outcomes
Figure 3. A. Top 20 countries of origin and ancestry of the study populations in the included studies. B. Top 20 countries of affiliation and gender distribution of authors for biomarker (BM), genetics (GN) and risk score studies. The data used for this visualization was obtained from PubMed and PubMed Central through manual curation and by applying text mining functions developed using R software version 4.1.2. The final proportions of ancestries were calculated for each unique study and then aggregated as described in detail here: 450
B.

Top-20 Countries of Affiliation

Gender

70% Male
30% Female

72% Male
65% Female
30% Male
Figure 4. Funneling of non-genetic biomarker studies (A) and genetic biomarkers (B)

A.

B.

All rights reserved. No reuse allowed without permission.
Figure 5. Forest plots for three biomarkers (A. NT-proBNP, B. TnT and C. CCTA) with the most evidence for prediction of CVD outcomes. HR, hazard ratio; CI, confidence interval; DM pop N, sample size for diabetes population; Event N, number of individuals developed CVD outcomes; 3p MACE, 3-point major adverse cardiovascular events; HF, heart failure; CHD, coronary heart disease; CVM, cardiovascular mortality; PAD, peripheral artery disease; ACM, all-cause mortality

A.
B.

Troponin T (TnT)

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Study population</th>
<th>DM pop N</th>
<th>Event N</th>
<th>Outcome</th>
<th>No. of covariates</th>
<th>Risk of bias</th>
<th>Per unit increase</th>
<th>Hazard ratio [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>McMurray</td>
<td>2011</td>
<td>Mixed</td>
<td>4038</td>
<td>1010</td>
<td>3p MACE, HF</td>
<td>20</td>
<td>Low</td>
<td>>0.028 ng/mL vs ≤0.029 ng/mL</td>
<td>1.50 (1.06, 2.13)</td>
</tr>
<tr>
<td>Keeler</td>
<td>2015</td>
<td>Mixed</td>
<td>1034</td>
<td>377</td>
<td>3p MACE</td>
<td>17</td>
<td>Med.</td>
<td>G4 (≥90 ng/L) vs G1 (≤55 ng/L)</td>
<td>2.10 (1.49, 2.95)</td>
</tr>
<tr>
<td>Reid</td>
<td>2016</td>
<td>Mixed</td>
<td>746</td>
<td>171</td>
<td>CHD, Stroke, HF, PAO, ACM</td>
<td>10</td>
<td>Low</td>
<td>per 1 logarithm (ng/L)</td>
<td>1.43 (1.13, 1.81)</td>
</tr>
<tr>
<td>Sorice</td>
<td>2019</td>
<td>Mixed</td>
<td>12310</td>
<td>NR</td>
<td>3p MACE, HF</td>
<td>13</td>
<td>Low</td>
<td>per 1 SD of the logarithms (pg/mL)</td>
<td>1.41 (1.32, 1.51)</td>
</tr>
<tr>
<td>Everton</td>
<td>2015</td>
<td>Secondary</td>
<td>1884</td>
<td>198</td>
<td>3p MACE, ACM</td>
<td>18</td>
<td>High</td>
<td>≥14 ng/L vs <14 ng/L</td>
<td>1.56 (1.22, 1.99)</td>
</tr>
<tr>
<td>Lopapa et al.</td>
<td>2015</td>
<td>Secondary</td>
<td>1053</td>
<td>37</td>
<td>CHD, CVM, HF</td>
<td>11</td>
<td>Low</td>
<td>≥14 ng/L vs ≤14 ng/L</td>
<td>15.50 (5.12, 48.90)</td>
</tr>
<tr>
<td>Rath</td>
<td>2019</td>
<td>Secondary</td>
<td>799</td>
<td>NR</td>
<td>CHD, CVM, HF, ACM</td>
<td>10</td>
<td>Low</td>
<td>per 1 logarithm (ng/mL)</td>
<td>1.91 (1.45, 2.51)</td>
</tr>
<tr>
<td>Lorenzo-Almenno</td>
<td>2020</td>
<td>Secondary</td>
<td>232</td>
<td>NR</td>
<td>CHD, Stroke</td>
<td>15</td>
<td>Low</td>
<td>per 1 SD (pg/mL)</td>
<td>1.02 (0.84, 1.23)</td>
</tr>
</tbody>
</table>

Note: All studies included in the table are from peer-reviewed journals. The table provides a summary of the associations between troponin T levels and various outcomes, with hazard ratios and confidence intervals. The per unit increase column indicates the reference for the hazard ratio calculation.
Coronary computed tomography angiography (CCTA) / Angiography

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Study population</th>
<th>DM pop N</th>
<th>Event N</th>
<th>Outcome</th>
<th>No. of covariates</th>
<th>Risk of bias</th>
<th>Per unit increase</th>
<th>Hazard ratio [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cossone</td>
<td>2011</td>
<td>Primary</td>
<td>608</td>
<td>58</td>
<td>3p MACE, Revasc, HF, PAD</td>
<td>5</td>
<td>High</td>
<td></td>
<td>2.10 [1.09, 4.16]</td>
</tr>
<tr>
<td>Lee</td>
<td>2017</td>
<td>Primary</td>
<td>633</td>
<td>94</td>
<td>CHD, Revasc, ACMI</td>
<td>7</td>
<td>Medium</td>
<td></td>
<td>3.85 [2.45, 5.98]</td>
</tr>
<tr>
<td>Halkin</td>
<td>2019</td>
<td>Primary</td>
<td>630</td>
<td>24</td>
<td>CHD</td>
<td>4</td>
<td>Low</td>
<td></td>
<td>2.60 [1.13, 5.97]</td>
</tr>
<tr>
<td>Halkin</td>
<td>2019</td>
<td>Primary</td>
<td>630</td>
<td>24</td>
<td>CHD, CVM, Angina</td>
<td>3</td>
<td>High</td>
<td></td>
<td>2.50 [1.67, 3.74]</td>
</tr>
<tr>
<td>Tsai</td>
<td>2019</td>
<td>Mixed</td>
<td>164</td>
<td>20</td>
<td>CHD, CVM, Revasc, Angina</td>
<td>9</td>
<td>Medium</td>
<td></td>
<td>7.79 [1.75, 34.70]</td>
</tr>
</tbody>
</table>

C.
Figure 6. Meta-analysis of A. NT-proBNP and B. TnT for predicting cardiovascular outcomes.

Note: P_0 is the p-value obtained from the Cochran’s Q test. HR, hazard ratio; CI, confidence interval; DM pop N, sample size for diabetes population; Event N, number of individuals developed CVD outcomes.

A.

![NT-proBNP Meta-analysis](image1)

B.

![TnT Meta-analysis](image2)
Figure 7. Forest plots of genetic markers for predicting cardiovascular outcomes (A. genetic risk scores, B. *GLUL* variant rs10911021. HR, hazard ratio; CI, confidence interval; DM pop N, sample size for diabetes population; Event N, number of individuals developed CVD outcomes; 3p MACE, 3-point major adverse cardiovascular events

A.
Table: rs10911021 at GLUL

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Study population</th>
<th>Population ancestry</th>
<th>DM pop N</th>
<th>Event N</th>
<th>Outcome</th>
<th>No. of covariates</th>
<th>Risk of bias</th>
<th>Comparison group vs. reference group</th>
<th>HR / OR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qi</td>
<td>2013</td>
<td>Primary</td>
<td>White (females)</td>
<td>1026</td>
<td>350</td>
<td>CRD</td>
<td>2</td>
<td>Low</td>
<td>C allele vs. T allele</td>
<td>1.34 [1.10, 1.65]</td>
</tr>
<tr>
<td>Qi</td>
<td>2013</td>
<td>Primary</td>
<td>White (males)</td>
<td>984</td>
<td>319</td>
<td>CRD</td>
<td>2</td>
<td>Low</td>
<td>C allele vs. T allele</td>
<td>1.49 [1.20, 1.88]</td>
</tr>
<tr>
<td>Barnes</td>
<td>2016</td>
<td>Primary</td>
<td>White European</td>
<td>1537</td>
<td>160</td>
<td>CRD</td>
<td>1</td>
<td>Medium</td>
<td>C allele vs. T allele</td>
<td>1.25 [1.04, 1.57]</td>
</tr>
<tr>
<td>Higgins</td>
<td>2016</td>
<td>Primary</td>
<td>Multi-ethnic</td>
<td>3285</td>
<td>NR</td>
<td>30 MACE, Angina</td>
<td>5</td>
<td>Medium</td>
<td>C allele vs. T allele</td>
<td>1.17 [1.01, 1.36]</td>
</tr>
</tbody>
</table>

† odd ratio (OR) with 95% confident interval (CI) was reported.
Figure 8. Meta-analysis of C-statistics of risk scores for predicting cardiovascular outcomes.

Internal validation results are shown in Figure 8A and external validation results in Figure 8B.

CI, confidence interval.

A.
Meta-analysis for the e-statistics of risk scores (external validation cohorts)

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Risk score</th>
<th>Year original cohort published</th>
<th>Deviation country(ies)</th>
<th>Validation cohort</th>
<th>Country of validation cohort</th>
<th>Risk of bias</th>
<th>Weight (%)</th>
<th>C-ma eius (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buys</td>
<td>2017</td>
<td>ADAMIA FG</td>
<td>2013</td>
<td>United States</td>
<td>LOOK-AHEAD</td>
<td>United States</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konge</td>
<td>2011</td>
<td>ADVANCE</td>
<td>2011</td>
<td>European Countries</td>
<td>EMMANUEL</td>
<td>Netherlands</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>ADVANCE</td>
<td>2011</td>
<td>European Countries</td>
<td>EPIC-NL</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>ADVANCE</td>
<td>2011</td>
<td>European Countries</td>
<td>EPIC-PrediCARE</td>
<td>Germany</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>ADVANCE</td>
<td>2011</td>
<td>European Countries</td>
<td>SWARF</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van</td>
<td>2018</td>
<td>ADVANCE</td>
<td>2011</td>
<td>European Countries</td>
<td>Hong Kong Hospital Authority</td>
<td>China</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van</td>
<td>2018</td>
<td>ADVANCE</td>
<td>2011</td>
<td>European Countries</td>
<td>Hong Kong Hospital Authority</td>
<td>China</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nield</td>
<td>2018</td>
<td>ADVANCE</td>
<td>2011</td>
<td>European Countries</td>
<td>National Swedish Diabetes Register</td>
<td>Scotland</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yu</td>
<td>2018</td>
<td>Cardiology</td>
<td>2018</td>
<td>United Kingdoms</td>
<td>ROT 1 of Peer Support in Type 2 Diabetes Trial</td>
<td>United Kingdoms</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>CHS</td>
<td>2013</td>
<td>United States</td>
<td>EPIC-NL</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>CHS</td>
<td>2013</td>
<td>United States</td>
<td>EPIC-PrediCARE</td>
<td>Germany</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>CHS</td>
<td>2013</td>
<td>United States</td>
<td>SWARF</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lapane</td>
<td>2016</td>
<td>CHS-DCC</td>
<td>2015</td>
<td>United States</td>
<td>Chronic Artery Medical Center</td>
<td>United Kingdoms</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lapane</td>
<td>2016</td>
<td>CHS-DCC</td>
<td>2015</td>
<td>United States</td>
<td>Chronic Artery Medical Center</td>
<td>United Kingdoms</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>CHS-ECOC</td>
<td>2013</td>
<td>United States</td>
<td>EPIC-NL</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>CHS-ECOC</td>
<td>2013</td>
<td>United States</td>
<td>EPIC-PrediCARE</td>
<td>Germany</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>CHS-ECOC</td>
<td>2013</td>
<td>United States</td>
<td>SWARF</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nield</td>
<td>2018</td>
<td>CHS-ECOC</td>
<td>2013</td>
<td>United States</td>
<td>National Swedish Diabetes Register</td>
<td>Scotland</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davis</td>
<td>2020</td>
<td>FGJ</td>
<td>2020</td>
<td>Australia</td>
<td>ESSO (European Society of Surgery)</td>
<td>Australia</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>FiG</td>
<td>1997</td>
<td>United States</td>
<td>Henan Studies</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finnia</td>
<td>2014</td>
<td>FiNG-BG</td>
<td>2014</td>
<td>Spain</td>
<td>BASOCE</td>
<td>Spain</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quan</td>
<td>2019</td>
<td>JACC</td>
<td>2006</td>
<td>Asia-Pacific</td>
<td>Hong Kong Dataset</td>
<td>China</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>NERI</td>
<td>2008</td>
<td>Sweden</td>
<td>EPIC-NL</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>NERI</td>
<td>2008</td>
<td>Sweden</td>
<td>EPIC-PrediCARE</td>
<td>Germany</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>NERI</td>
<td>2008</td>
<td>Sweden</td>
<td>SWARF</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van</td>
<td>2016</td>
<td>NERI</td>
<td>2008</td>
<td>Sweden</td>
<td>Hong Kong Hospital Authority</td>
<td>China</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van</td>
<td>2016</td>
<td>NERI</td>
<td>2008</td>
<td>Sweden</td>
<td>Hong Kong Hospital Authority</td>
<td>China</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nield</td>
<td>2016</td>
<td>NERI</td>
<td>2008</td>
<td>Sweden</td>
<td>National Swedish Diabetes Register</td>
<td>Scotland</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nield</td>
<td>2016</td>
<td>NERI</td>
<td>2008</td>
<td>Sweden</td>
<td>National Swedish Diabetes Register</td>
<td>Scotland</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalla</td>
<td>2016</td>
<td>NERI</td>
<td>2016</td>
<td>New Zealand</td>
<td>New Zealand (Maori)</td>
<td>New Zealand</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>NZDCS</td>
<td>2016</td>
<td>New Zealand</td>
<td>EPIC-NL</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2014</td>
<td>NZDCS</td>
<td>2016</td>
<td>New Zealand</td>
<td>EPIC-PrediCARE</td>
<td>Germany</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>NZDCS</td>
<td>2016</td>
<td>New Zealand</td>
<td>SWARF</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quan</td>
<td>2018</td>
<td>NZDCS</td>
<td>2016</td>
<td>New Zealand</td>
<td>Hong Kong Hospital Authority</td>
<td>China</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quan</td>
<td>2018</td>
<td>NZDCS</td>
<td>2016</td>
<td>New Zealand</td>
<td>Hong Kong Hospital Authority</td>
<td>China</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nield</td>
<td>2018</td>
<td>NZDCS</td>
<td>2016</td>
<td>New Zealand</td>
<td>National Swedish Diabetes Register</td>
<td>Scotland</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boas</td>
<td>2017</td>
<td>RECODE</td>
<td>2017</td>
<td>United States</td>
<td>LOOK-AHEAD</td>
<td>United States</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>SCORE</td>
<td>2002</td>
<td>Europe</td>
<td>Henan Studies</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van den Bogaert</td>
<td>2020</td>
<td>SPRIMT</td>
<td>2017</td>
<td>United States</td>
<td>ACCORD</td>
<td>United States</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>SPRIMT</td>
<td>2017</td>
<td>United States</td>
<td>EPIC-NL</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>SPRIMT</td>
<td>2017</td>
<td>United States</td>
<td>EPIC-PrediCARE</td>
<td>Germany</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>SPRIMT</td>
<td>2017</td>
<td>United States</td>
<td>SWARF</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2018</td>
<td>SPRIMT</td>
<td>2018</td>
<td>United States</td>
<td>Hong Kong Hospital Authority</td>
<td>China</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2018</td>
<td>SPRIMT</td>
<td>2018</td>
<td>United States</td>
<td>Hong Kong Hospital Authority</td>
<td>China</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van</td>
<td>2018</td>
<td>SPRIMT</td>
<td>2018</td>
<td>United States</td>
<td>National Swedish Diabetes Register</td>
<td>Scotland</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boas</td>
<td>2017</td>
<td>VEPQ</td>
<td>2017</td>
<td>United States</td>
<td>LOOK-AHEAD</td>
<td>United States</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>VEPQ</td>
<td>2017</td>
<td>United States</td>
<td>EPIC-NL</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>VEPQ</td>
<td>2017</td>
<td>United States</td>
<td>EPIC-PrediCARE</td>
<td>Germany</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van de Liem</td>
<td>2015</td>
<td>VEPQ</td>
<td>2017</td>
<td>United States</td>
<td>SWARF</td>
<td>Netherlands</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preiss</td>
<td>2017</td>
<td>VEPQ</td>
<td>2017</td>
<td>United States</td>
<td>KECCQ-OCT</td>
<td>Japan</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boas</td>
<td>2017</td>
<td>VEPQ</td>
<td>2017</td>
<td>United States</td>
<td>BASOCE</td>
<td>Spain</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quan</td>
<td>2019</td>
<td>VEPQ</td>
<td>2018</td>
<td>United States</td>
<td>LOOK-AHEAD</td>
<td>United States</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quan</td>
<td>2019</td>
<td>VEPQ</td>
<td>2018</td>
<td>United States</td>
<td>Hong Kong Hospital Authority</td>
<td>China</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van den Bogaert</td>
<td>2020</td>
<td>VEPQ</td>
<td>2018</td>
<td>United States</td>
<td>Henan Studies</td>
<td>Netherlands</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yu</td>
<td>2019</td>
<td>Zhongshan University</td>
<td>2019</td>
<td>China</td>
<td>Zhongshan University</td>
<td>China</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of studies: 30

Random effects: $R^2 = 0.05$, $I^2 = 0.06$, $Q_{p} = 3.3$, $Q_{E} = 3.3$, $I^2 = 0.06$

Fixed effects: $R^2 = 0.05$, $I^2 = 0.06$, $Q_{p} = 3.3$, $Q_{E} = 3.3$, $I^2 = 0.06$

Overall: 100% $[0.00\% - 0.00\%]$

37
Tables.

Table 1. Performance of the prediction of 3 biomarkers with the most evidence. Notes: Data on improvement in C-statistics was collected from the study as reported or derived from a comparison of C-statistics from reference-model with C-statistics from reference-model + novel biomarker. NR: Not Reported

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Study</th>
<th>Improvement in C-statistics</th>
<th>NRI</th>
<th>IDI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes/No</td>
<td>Estimate (95% CI and p-value)</td>
<td>NRI (95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>0.050 (CI and p value NR)</td>
<td>0.3854 (0.3037, 0.4721)</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>Sharma 2020</td>
<td>Yes</td>
<td>0.01 (CI NR), P<0.05</td>
<td>0.106 (5.7–16.6)</td>
</tr>
<tr>
<td></td>
<td>Wolsk 2017</td>
<td>Yes</td>
<td>0.03 (CI NR), P=0.001</td>
<td>0.345 (0.238–0.451)</td>
</tr>
<tr>
<td></td>
<td>Wong 2019</td>
<td>Yes</td>
<td>0.07 (CI NR), P<0.001</td>
<td>0.0379 (0.0321–0.0438)</td>
</tr>
<tr>
<td></td>
<td>Scirica 2016</td>
<td>Yes</td>
<td>0.101 (CI and p value NR), P<0.01</td>
<td>0.231 (0.067–0.394)</td>
</tr>
<tr>
<td></td>
<td>Van der Leeuw 2016</td>
<td>Yes (SMART)</td>
<td>0.02 (0.00-0.04), P value NR</td>
<td>0.50 (0.26–0.73)</td>
</tr>
<tr>
<td></td>
<td>Rørth 2019</td>
<td>Yes</td>
<td>0.018 (CI NR), P=0.02</td>
<td>0.150 (0.051-0.261)</td>
</tr>
<tr>
<td></td>
<td>CCTA Lee 2017</td>
<td>Yes</td>
<td>0.072 (CI NR), P= 0.0349</td>
<td>0.55 (0.343–0.757)</td>
</tr>
<tr>
<td></td>
<td>Halon 2016</td>
<td>Yes</td>
<td>0.35 (CI NR), P= 0.021</td>
<td>0.632</td>
</tr>
<tr>
<td></td>
<td>Cosson 2011</td>
<td>Yes</td>
<td>0.083 (CI NR), P <0.0001</td>
<td>0.632</td>
</tr>
</tbody>
</table>
Table 2. Conclusion and strength of the evidence

<table>
<thead>
<tr>
<th>Prognostic Biomarker</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT-proBNP</td>
<td>3</td>
<td>2/2</td>
<td>2/2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>CRP</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>TnT</td>
<td>4</td>
<td>2/3</td>
<td>1/3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>CACS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>CCTA</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>SPECT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>PWV</td>
<td>0</td>
<td>1/1</td>
<td>1/1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Gal-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>TAI</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Carotid plaque</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>GDF-15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>TyG</td>
<td>1</td>
<td>1/1</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>GRS-CHD</td>
<td>1</td>
<td>1/1</td>
<td>1/1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>High</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Table includes genetic and non-genetic biomarkers showing improvement in prediction performance (i.e. at least one of c-statistic, NRI, IDI) and in more than 1 study (corresponding to all markers in green boxes in Figures 4A and Figures 4B). Notes: Predictive utility was classified as high (3 point) moderate (2 points) or low (<2 points) based on the criteria defined in columns A, B and D (Column A: >0 =1 point; Column B: >0 =1 point, Column D: “Yes” = 1 point). Strength of Evidence was classified as High (4 points), moderate (2 or 3 points) and low (< 2 points) based on criteria defined in columns B, C, E and F (Column B: at least one meta-analysis conducted regardless of outcome] = 1 point; Column C: exclusion of high risk of bias studies did not alter inferences from meta-analyses [same number as in column B] = 1 point; Column E: exclusion of high risk of bias studies did not alter inferences from non-pooled analyses [YES] = 1 point; Column F: “yes” = 1 point).
References

Burgess, D. C. et al. Incidence and predictors of silent myocardial infarction in type 2 diabetes and the effect of fenofibrate: an analysis from the Fenofibrate Intervention and

Gazzaruso, C. et al. Erectile dysfunction as a predictor of cardiovascular events and death in diabetic patients with angiographically proven asymptomatic coronary artery disease: a

Lim, S. et al. Association of adiponectin and resistin with cardiovascular events in Korean patients with type 2 diabetes: the Korean atherosclerosis study (KAS): a 42-

<table>
<thead>
<tr>
<th></th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>361</td>
<td>Sone, H. et al.</td>
<td>Leisure-time physical activity is a significant predictor of stroke and total mortality in Japanese patients with type 2 diabetes: analysis from the Japan Diabetes Complications Study (JDCS).</td>
<td>Diabetologia</td>
<td>56</td>
<td></td>
<td>1021-1030</td>
<td>doi:10.1007/s00125-012-2810-z (2013)</td>
</tr>
</tbody>
</table>

Thomas, M. C. et al. Relationship Between Plasma 8-OH-Deoxyguanosine and Cardiovascular Disease and Survival in Type 2 Diabetes Mellitus: Results From the ADVANCE Trial. J Am Heart Assoc 7, doi:10.1161/jaha.117.008226 (2018).

