Mpx: Seroepidemiology and risk factors amidst increasing cases in Ghana

Running title: Mpx seroprevalence and risk factors in Ghana

Irene Owusu Donkor1*, Christopher Dorcuo1, Grace Opoku Gyamfi1, Jeffrey Gabriel Sumboh3, Ama Akyampomaa Owusu Asare5, Sally-ann Ohene5, Joseph H. K. Bonney2, Vincent Munster4, Robert Fischer4,
1Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
2Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
3Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
4Virus Ecology Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, USA
5Emergency Preparedness and Response Unit, World Health Organization Country Office, Ghana

Corresponding author: iowusu@noguchi.ug.edu.gh

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Monkeypox virus (MPXV), an orthopox virus endemic to West and western Central Africa, is the etiological agent of Monkeypox (Mpx) disease. While the recent global outbreak has been fuelled primarily through human-to-human contact, initial transmission in endemic areas is most likely through contact with reservoir host species with secondary transmission to caregivers and close relatives. Prior to the year 2022, Ghana had not reported any human cases of Mpx, however, the 2003 Mpx outbreak in the US was initiated by rodents that were exported from Ghana. This preliminary study was done to determine the seroprevalence of Mpx after about 40 years of global eradication and discontinuation of smallpox vaccination in Ghana. ELISA was conducted on a total of 1507 archived sera collected prior to 2022 from the 16 regions of Ghana and 281 samples collected from clinical patients and their contacts to detect the presence of anti-monkeypox IgG antibodies. The overall seroprevalence of the mpx virus estimated by the study was 29% (526/1788). People living in rural communities were also found to be 0.62 times [95% CI:0.47 – 0.81, p=0.001] more likely to be exposed to the virus. Participants younger than 35 years accounted for 66% (1185/1788) of the samples tested and were considered unvaccinated with the smallpox vaccine. The odds of monkeypox exposure in participants aged 20-29 years and 30-39 years were higher compared to other age groups (aOR 1.89: 95% CI 1.23 – 2.91, p=0.004), (aOR 2.04: 95% CI 1.30 – 3.21, p=0.002) and (aOR 1.89: 95% CI 1.19 – 3.01, p=0.007) respectively. The study results indicate a fairly high seroprevalence suggesting existing MPXV circulation, especially among unvaccinated people living in the rural part of Ghana.

Keywords: Mpx, MPXV, seroprevalence, Ghana
Introduction

Monkeypox (Mpox) is a viral zoonosis caused by an enveloped double-stranded DNA virus from the Orthopoxvirus genus[1]. The disease was first described in 1958 in a group of cynomolgus macaques from Singapore [2]. Human MPXV was first detected in 1970 in Basankusu district, Equateur Region, Zaire[3]. The first reported human cases outside Africa were in the United States of America, in which all 71 persons infected were confirmed. All infected persons had contact with prairie dogs or areas where they were housed, there were no confirmed cases of human-to-human transmission.

There are two clades of MPXV which are separated geographically, Clade I circulates in West Central Africa whiles Clade II circulates in West Africa [4]. Clade 1 has a case fatality rate (CFR) consistently below 5% whiles Clade II is 0% for most outbreaks with as high as 2.8% during the 2017–2018 Nigerian outbreak [5]. While the detection of Mpox and reporting have been inconsistent throughout the endemic regions it is clear that cases have been rising since 1970. In the DRC alone the number of reported cases rose over 5 times between 2001 and 2015 [6]. This may be attributable to local populations expanding into previously uninhabited areas.

Monkeypox can be extremely difficult to diagnose with symptoms similar to chickenpox and other dermal rashes[7,8]. Between 1970 and 2018 at least 265 cases of Mpox were reported in West Africa [7]. In spite of the fact that the 2003 US outbreak originated from exported rodents from Ghana, Benin and Nigeria have reported Mpox outbreaks while no cases were reported in Ghana prior to 2022. Prior to 2022 Cote d’Ivoire had only a single probable case of Mpox reported in 1971 which occurred in a village approximately 20 km from the Ghana border. In 2017 a serosurvey was conducted along the western border of Cote d’Ivoire in which 50% of the sampled population was seropositive against orthopoxvirus (OPV) including 19% seroprevalence in people who had never received the smallpox vaccine [9]. This indicated the possible circulation of OPV in Cote d’Ivoire [9,10]. This led us to screen a
cohort of archived serum samples, randomly collected as part of a SARS-CoV-2 surveillance in Ghana, for OPV antibodies. In May 2022 the WHO was alerted to laboratory-confirmed cases of Mpox in Great Britain, these were the first cases of what would become a global epidemic affecting 103 countries not endemic for MPXV. As of 2nd February 2023, there have been 85,536 cases reported worldwide with 84,243 cases in non-endemic countries [11]. Ghana reported the first human cases of Mpox in Ghana on 8 June 2022. Five cases from 3 regions were confirmed in weeks; 24 May and 8 June [12]. As at 10 January 2023 Ghana has reported 116 confirmed cases with 4 deaths [13]. In an attempt to have baseline data and to track the prevalence as well as understand the current state of Mpox in Ghana, we performed serological assays and quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) on swab samples from a cohort of patients presenting with signs and symptoms consistent with Mpox. Inadequate surveillance and reporting have contributed to an incomplete and probably inaccurate understanding of the true burden of the disease, the risk population, and the source of infection. This directly impinges on the evolutionary trends seen in the epidemiology of human Mpox and has contributed partly to the ineffective management of the disease [14]. The findings presented here demonstrate that although no Mpox cases were reported in Ghana until May 2022 there has been historical exposure to OPV. Additionally, while there has been a dramatic increase in reported Mpox cases since June 2022 and even though the two data collected before and after the outbreak are not directly comparable. The number of contemporary positive cases is not significantly different from that of the historical cases. We will use these preliminary findings to inform our future research efforts with the goal of formulating a more complete picture of the disease ecology of MPXV and epidemiology of Mpox leading to reduced risk factors and disease burden of Mpox in Ghana.
Materials and Methods

Study design

A subset of serum samples collected as part of a SARS-CoV-2 surveillance activity conducted as part of the national efforts to contain the COVID-19 pandemic in 2020 from all regions was tested for the presence of antibodies against OPV. These samples were collected between February and December 2020 and authors had access deidentified from all study participants.

Archived swab samples from a cohort of patients who presented with febrile and respiratory illness were tested using qRT-PCR to determine the presence of infection within the population.

Ethical approval

Institutional Review Board (IRB) approval was obtained for all serum samples used to determine the presence of antibodies against OPV (NMIMR-IRB CPN 075/19-20). Consent was obtained at the health facilities from all the eligible patients and blood samples were collected together with their demographic and clinical information.

Study population and sample size

Representation of clinical specimens from all regions in Ghana were included in the screening and analysis. Based on the regional stratification of samples that had been received by the Ghana Health Service, the samples were selected according to the number of confirmed and suspected Mpox cases reported in each region. Ashanti and Greater region had the highest number of samples for the study. A total of 1507 archived serum samples from individuals 5 years and above were randomly selected for inclusion. Swabs as well as plasma and serum were obtained from 281 persons presenting with monkeypox-like symptoms at health facilities across Ghana.
Sampling procedure, collection and processing

A total of 5mL of venous blood was taken from each participant using the WHO guidelines on venipuncture and separated into sera. The blood samples were spun down for 15 minutes, aliquoted into cryovials, and labelled with non-identifying IDs. Swabs were collected from all Mpox suspected cases. Some swabs were transported in VTM whiles others came as dry swabs. Samples were given unique IDs. All samples were transported to the laboratory at NMIMR for processing and laboratory analysis.

Serological assay

Detection of IgG antibodies against Mpox virus

All sera were tested for anti-OPX antibodies using an Enzyme-Linked Immunosorbent Assay (ELISA). The assay was based on a Monkey Anti-Monkeypox Virus Envelope H3L Protein IgG ELISA kit (Alpha Diagnostics, Texas, USA). The kit protocol was followed with the following modifications to evaluate human serum and reduce high background. The anti-Monkey IgG-HRP conjugate was replaced with Goat Anti-Human IgG+IgA+IgM (H+L) HRP (Alpha Diagnostic International). Sera from vaccinated and unvaccinated individuals were used as positive and negative controls respectively. All samples were run in duplicates. Dilutions of 1:100 of the samples were made using the sample diluent provided in the kit. A conservative positive threshold was established using a low known positive serum to determine the cut-off value. The serostatus of individual samples were determined by comparing the average absorbance of individual samples to the cut-off.

Detection of Mpox infection

Viral nucleic acid was extracted and purified from the samples using the RADI Prep Swab and Stool DNA/RNA Kit (RADI, Seoul, Korea) according to manufacturer’s instructions.

qRt-PCR assay

was conducted on all swab samples collected using RADI Monkeypox PCR Kit
Results

Serum samples from 14 of 16 regions of Ghana were tested and analyzed (Table S1). The greatest number of samples tested were from Ashanti (n=501) and Greater Accra (n=479) regions (Figures 1 and 2). The study concentrated on samples from the more urban areas as summarized in (Table S2) due to the number/intensity of Mpox cases reported from the regions in question and was not checked for smallpox vaccine status. In order to account for seroprevalence in participants vaccinated during the smallpox eradication campaign we adopted the method of Leendertz et al [4] (Table 3). Briefly, the attack phase of the eradication program ended around 1970 at which point a maintenance phase was initiated that targeted newborns and any locally occurring outbreaks. Smallpox was declared eradicated in 1980 and the maintenance continued until around that time based on the local availability of vaccines. So 5 years pre and 5 years post-eradication, individual vaccine status is considered unknown. Therefore, participants older than 45 were considered to have been vaccinated, participants between 35 and 45 were considered unknown and participants younger than 35 were considered unvaccinated. Sera from participants aged 1 month to 35 years accounted for 66% (1185/1788) of samples tested while 21% (373/1788) of the samples were from participants >45 years old as described in (Table 1). Seropositivity in the tested populations was 29% (347/1186) and 27% (102/376) respectively. Female sera also recorded the highest accounting for 53% (946/1788) with rural unvaccinated females recording 43% seroprevalence (Table 2). The overall seroprevalence of randomly selected SARS-CoV-2 samples was 30% (458/1507) with unvaccinated participants from the Upper east region having a 71% (12/17) seroprevalence while the clinical samples recorded 24% (69/281) with unvaccinated individuals from Volta Region recording 50% (2/4) seroprevalence (Table 4).
Figure 1: Map of Ghana indicating the seroprevalence in the various regions with pie charts. The diameter differences show the corresponding total numbers sampled.
Figure 2: Comparison of positive cases between regions and the number of samples analysed to appreciate the regional frequency and prevalence rate of exposure.
Table 1: Comparison of seropositive between age groups, urban and rural areas

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Overall</th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n(N)</td>
<td>n(P)</td>
<td>n(N)</td>
</tr>
<tr>
<td>5 - 15</td>
<td>348</td>
<td>124</td>
<td>217</td>
</tr>
<tr>
<td>16 - 25</td>
<td>289</td>
<td>128</td>
<td>180</td>
</tr>
<tr>
<td>26 - 35</td>
<td>190</td>
<td>90</td>
<td>128</td>
</tr>
<tr>
<td>36 - 45</td>
<td>145</td>
<td>77</td>
<td>101</td>
</tr>
<tr>
<td>46 - 55</td>
<td>107</td>
<td>38</td>
<td>69</td>
</tr>
<tr>
<td>56 - 65</td>
<td>89</td>
<td>31</td>
<td>69</td>
</tr>
<tr>
<td>66+</td>
<td>75</td>
<td>33</td>
<td>54</td>
</tr>
</tbody>
</table>

n(N): Number of samples that tested negative for Mpox.
n(P): Number of samples that tested positive for Mpox.

Note: The table above excludes clinical samples since data on where or not the samples are from urban or rural communities was absent.

Table 2: Seroprevalence of gender between rural and urban communities

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prevalence %</td>
<td>n</td>
</tr>
<tr>
<td>Overall</td>
<td>26</td>
<td>1109</td>
</tr>
<tr>
<td>Vaccinated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>23</td>
<td>145</td>
</tr>
<tr>
<td>Males</td>
<td>23</td>
<td>105</td>
</tr>
<tr>
<td>Unvaccinated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>28</td>
<td>379</td>
</tr>
<tr>
<td>Males</td>
<td>24</td>
<td>332</td>
</tr>
</tbody>
</table>

We used ages between 5 and 35 to represent unvaccinated participants and 45 – 95 to be vaccinated this is the table used in Leendertz et al. Viruses 2017, 9, 278; n is the total number of samples.

Note: The table above excludes clinical samples since data on whether or not the samples are from urban or rural communities was absent.
Table 3: Regional seroprevalence of the types of samples in comparison to their vaccination status

<table>
<thead>
<tr>
<th>Region</th>
<th>Field Samples</th>
<th></th>
<th>Clinical Samples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vaccinated (%)</td>
<td>Unvaccinated (%)</td>
<td>Sero-prevalence (%)</td>
<td>Vaccinated (%)</td>
</tr>
<tr>
<td>Ashanti</td>
<td>22</td>
<td>25</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Brong Ahafo</td>
<td>76</td>
<td>55</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Central</td>
<td>23</td>
<td>20</td>
<td>22</td>
<td>50</td>
</tr>
<tr>
<td>Eastern</td>
<td>50</td>
<td>71</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>Greater Accra</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>Northern</td>
<td>39</td>
<td>47</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Upper East</td>
<td>50</td>
<td>63</td>
<td>60</td>
<td>11</td>
</tr>
<tr>
<td>Upper West</td>
<td>100</td>
<td>33</td>
<td>71</td>
<td>50</td>
</tr>
<tr>
<td>Volta</td>
<td>33</td>
<td>55</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Western</td>
<td>11</td>
<td>40</td>
<td>33</td>
<td>0</td>
</tr>
</tbody>
</table>
Discussion

The presence of antibodies of a specific pathogen is influenced by the rate of exposure and vaccination against the pathogen in question. There is no record of Mpox-specific vaccination in Ghana, therefore, the seropositivity observed in this study is likely due to exposure to the virus and the broad cross-immunity between Mpox and variola viruses [15]. Mpox-confirmed cases in Ghana were PCR-based, and little or no serological investigations have been conducted to ascertain the seroprevalence of Mpox in Ghana.

This paper describes the seroprevalence of randomly selected SARS-CoV-2 field samples collected before the recent outbreak of Mpox in order for us to establish the extent of its circulation prior to the outbreak. Additionally, we also compared the results obtained to the results of the clinical samples collected in the course of the outbreak.

Statistically, data from this study showed a strong correlation between seroprevalence and regions as well as seroprevalence between participants from urban and rural communities with a p-value <0.001. The randomly selected field samples recorded seroprevalence of 30% (458/1507) which indicates existing exposure of Mpox in the population prior to confirmation of human Mpox in Ghana. These findings support the CDC findings regarding the origin of the human Mpox outbreak in America [7,16]. The data shows that a reduced, but basal level of virus transmission is likely to continue within the Ghanaian population including asymptomatic infections [17]. This may reflect the waning of protective immunity against poxviruses after smallpox vaccination ceased [17].

To elucidate the epidemiology of the disease, seroprevalence obtained for the different regions within the country was compared. The Upper East region recorded the highest seroprevalence of 71% (12/17) which could be attributed to the farming and the hunting for food activities in most parts of the country, especially in the savanna agroecological zones where the Upper East and West regions are located. However, Ashanti and Greater Accra
regions recorded the highest number of positives during and at the peak of the 2022 outbreak. This may be due to the high population density due to the urban nature of both places thus its resultant higher exposure levels to infected individuals.

We also assessed the risk factors driving the transmission by comparing the seroprevalence by age and gender against corresponding vaccination/smallpox exposure status from either a rural or urban community. As has been described in a previous study [16], we noticed that unvaccinated participants (<35 yrs) had the highest seroprevalence and were mostly from rural communities. Overall unvaccinated participants in rural areas had the highest seroprevalence which is in agreement with findings from the CDC February 2023 report [18]. Persons above 45 years demonstrated a decreasing seropositive trend in agreement with the theory that the widespread discontinuation of smallpox vaccination has led to a continuous rise in Mpox incidence in many jurisdictions [16] including Ghana. This finding is consistent with the age categories of confirmed cases reported in Ghana which suggests that individuals born after the smallpox eradication may be at higher risk of getting infected with Mpox compared to vaccinated individuals. The results obtained confirmed reports from the CDC that most of the Mpox cases confirmed globally during the outbreak were prevalent amongst persons under the age of 40 which reflects the lack of cross-protective immunity [19].

The study also established a trend of increasing seroprevalence among participants from rural communities whose ecological structure comprised of more or less rainforest. This agrees with Aysegul Nalca et al whose findings suggest that continuous dependence on hunting for food played a major role in the current spread of Mpox infection by exposing individuals to Mpox reservoir host [16].
Conclusion

According to the results of this study, there is evidence of human Mpox exposure and antibodies in Ghana at least two years prior to its confirmation in the country. This appears to be largely driven by age and the ecological zones such as the rainforest. The study also indicates possible coinfection considering the timing of the sample collection which will be investigated in subsequent research. Low confirmed cases, which led to the low inclusion of sera from rural areas could be due to the facility deficit required for testing [20]. With Ghana included in the list of countries issued with the level 2 travel notice for Mpox [21], it is imperative that further studies be conducted to elucidate the true burden of Mpox with a focus on the factors driving transmission, especially among risk populations.
Declarations

Ethics approval and consent to participate

Procedures in this study conform with the Ghana Public Health Act, 2012 (Act 851) and the Data Protection Act, 2012. Ethical approval (NMIMR-IRB CPN 075/19-20) was obtained from the Institutional Review Board (IRB) of the Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana. Informed consent was obtained from all subjects and/or their legal guardians (when subject is below 18 years). All consenting participants agreed to future use of their samples. Consent sought was both verbal and written from all participants in the presence of a witness and a parent/guardian for child participants. This was done to ensure that the study was thoroughly explained to participants and their parents/guardians.

Consent for publication

Not applicable

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Competing interests

The authors declare that they have no competing interests.

Funding

The study was funded in part by The Bill and Melinda Gates Foundation, (Investment ID INV-024130), the African Academy of Sciences (SARSCov2-4-20-004) to IOD. Funding was also provided by the World Health Organization, AFRO (Reference 2021/1166179-0) to IOD and the World Health Organization, Country Office, Ghana to JHKB. The funders had no role in study design, data collection and analysis and decision to publish or preparation of the manuscript.
Authors’ contributions
IOD, VM, JHKB and RF conceptualized and designed the study. CD, GOG, VM, JHKB and RF performed laboratory analyses of the samples. IOD, CD, GOG, JGS, VM and RF analyzed the data and drafted the manuscript. IOD, CD, GOG, JGS, AAOA, SAO, JHKB, VM and RF reviewed, edited, and approved the final manuscript.

Acknowledgements
We acknowledge the technical support of all research staff of the iDEL group, Daniel A. Odumang, Millicent Opoku, Yvonne Ashong, Elvis Suatye Lomotey, Prince Sylvanus Ketorwoley, Magdalene Sarah Ofori and Nancy Enimil for their involvement in laboratory analyses of the samples.
References

Figure