Title: Association of MIOX with Autosomal Dominant Polycystic Kidney Disease

Chandra Devi¹, Shivendra Singh², Bhagyalaxmi Mohapatra³, Ashok Kumar⁴, Sanjay Vikrant⁵, Rana Gopal Singh⁶, and Parimal Das¹*,

1 Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, U.P., India-221005
2 Department of Nephrology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India-221005
3 Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, U.P., India-221005
4 Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India-221005
5 Department of Nephrology, AIIMS, Bilaspur, Himachal Pradesh, India-174001
6 Department of Medicine, Heritage Institute of Medical Science, Varanasi, U.P., India-221311

*Correspondence: parimal@bhu.ac.in

Abstract

Polycystic Kidney Disease (PKD), which affects 1 in 500 to 1000 people globally, is a monogenic, hereditary nephropathy marked by the gradual growth and expansion of many fluid-filled kidney cysts often resulting in end-stage renal disease. Even within the same family, ADPKD shows variation in phenotype, genotype, and disease severity. While PKD1 and PKD2 mutations account for the majority of ADPKD cases (75% and 15%, respectively), about 7% of cases are currently genetically unexplained. The ADPKD-associated genes GANAB, DNAJB11, and ALG9 are also found in several genetically unresolved cases. Being a large gene constituted with 46 exons covering a 52 kb area and a 14 kb transcript and with six pseudogenes, PKD1 poses a challenge for direct PCR and Sanger sequencing of all exons and exon-intron boundaries for mutation analysis. In order to find the disease-causing mutation(s) in a trio, whole exome sequencing (WES) was carried out. In the affected mother and daughter, no pathogenic variation(s) in the PKD1, PKD2, DNAJB11, GANAB, and ALG9 candidate genes was observed. However, WES analysis identified a frameshift deletion [c.32del/p.Leu11ArgfsTer61] in MIOX as the most likely cause of the disease shared by both affected individuals. This has not previously been reported in ADPKD. Further, the differential gene expression profile analysis of the data of cysts from GEO database showed reduced expression of MIOX in cystic samples of ADPKD individuals as compared to minimal cystic tissues (MCT) and control tissue samples. Myo-Inositol Oxygenase, or MIOX, is an enzyme that specifically expresses in renal tubules and catalyses the initial step of the kidney-based myoinositol catabolism pathway. Both affected candidates also shared benign variants and other variations of uncertain significance which might
function as modifiers in the development of the disease. Further functional analysis of the variation(s) will clarify whether and how MIOX contributes to the development of the disease.

Keywords: Autosomal Dominant Polycystic Kidney Disease, MIOX, whole exome sequencing, trio study, PKD, differential gene expression

Introduction:

With 1 in 500-1000 worldwide prevalence, Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a monogenic, inherited nephropathy characterized by progressive development and enlargement of numerous fluid-filled cysts in kidney often leading to End Stage Renal Disease (1,2). PKD exhibits heterogeneity in disease phenotype, genotype, and variability in disease severity, even within families (2,3). The major pathogenic variations occur in PKD1 (~75%) and PKD2 (~15% -18%) genes. However, in around 7% - 10% of cases, the genetic cause remains unresolved, and sporadic and mosaic ADPKD cases are also observed (4–6). The traditional clinical diagnosis of PKD relies on ultrasound examination to count the number of cysts in the kidneys, but this approach has limitations, particularly for individuals without a family history of the disease (7,8). Ultrasonography alone cannot identify at-risk patients or those with de novo disease until after the age of 40. While abdominal MRI can be utilized for the diagnosis of PKD, it is less accessible and more costly compared to ultrasound (8). Furthermore, an additional diagnostic hurdle is presented when patients exhibit visible cysts in the kidneys but fail to meet the clinical criteria for ADPKD diagnosis, and there is limited literature on a diagnostic approach in these patients (4).

PKD1 is a large gene that spans a 52kb region of genomic DNA and presents a challenge for direct PCR and Sanger sequencing for mutation analysis due to the presence of six pseudogenes (9). Adding to the genetic complexity of the disease, recent studies have identified GANAB, DNAJB11, ALG9, as minor/ associated genes (6,10). Whole exome sequencing (WES) has emerged as a quick and accurate diagnostic approach for genetic studies, particularly in cases where the genetic cause is unclear or hard to find (11,12). In this study, using WES of a trio, a frameshift-truncation deletion [c.32del/p.Leu11ArgfsTer61] in MIOX was found to be the most likely cause of the disease shared by both the affected mother and daughter, which has not been previously reported in ADPKD or other polycystic kidney diseases. No pathogenic variation(s)
was found in PKD1, PKD2, DNAJB11, GANAB, and ALG9 candidate genes in affected mother and daughter. In addition, the differential gene expression analysis the cystic tissue samples (GEO dataset: GSE7869) revealed a remarkable reduction in MIOX gene expression. MIOX encodes Myo-Inositol Oxygenase, which expresses exclusively in renal tubules and catalyzes the first step of myoinositol catabolism pathway predominantly occurring in the kidney (13). While further functional evaluation is needed to elucidate the precise role of this variation in disease progression, the study highlights the potential of WES as a tool for PKD diagnosis and towards enhancing the scope for practicing personalized/precision medicine.

Material and Methods:

Sample collection and DNA extraction:

The trio was recruited from Sir Sunderlal Hospital, Banaras Hindu University with informed consent and the consent to publish the study findings keeping patient confidentiality. The study is approved by the Institute Ethical Committee of Institute of Science, Banaras Hindu University. The genomic DNA was isolated from peripheral blood samples using the standardized salting out method (14). DNA quality and quantity were estimated using both spectrophotometric (Nanodrop 2000, Thermo Scientific Inc.) and fluorometry-based (DNA Assay BR, Invitrogen, Cat# Q32853 / Qubit High Sensitivity Assay, Invitrogen,) methods.

Whole Exome Sequencing:

The SureSelectXT Human All Exon V5+UTR kit was used for library preparation. The indexed captured libraries were on Illumina HiSeqX/Novaseq using 2 x 150bp paired-end reads. The raw sequencing data was assessed for quality control using FastQC. The reads were aligned to the human reference genome (GRCh37) using BWA aligner. Variant Calling was done using Sentieon’s GATK Haplotypecaller and UnfiedGenotype. The variants were annotated using databases such as 1000G, dbSNP, ExAC, and gnomAD etc.

Variants’ Filtration/ Variation in Candidate gene:

The annotated variants were filtered based on allele frequency, read depth, pathogenicity, and functional impact. The annotated variants were filtered based on ExAc allele frequency ≤ 0.05
and NA (not available), read depth ≥ 20, pathogenicity, and functional impact. A self made gene panel of 1209 kidney disease related genes was applied to the annotated data to find out the plausible causative variation common in affected members of the trio. The candidate variant was further validated by Sanger sequencing on ABI3730 capillary sequencer (Applied Biosystems) with a BigDye® Terminator version 3.1 cycle sequencing kit.

STRING analysis:

String networks of *PKD1* and *MIOX* were generated separately upto ten more additions. The common genes in both networks were picked and string network was generated to see possible interactions among them. The String interaction network of these common genes is shown in figure 3B.

Gene Expression Data Source

The GEO database, GSE7869, from which the microarray gene expression data from renal cysts of different sizes of five PKD1 patients was retrieved, includes small cysts (<1 ml, n = 5), medium cysts (10–20 ml, n = 5), large cysts (>50 ml, n = 3), minimally cystic tissue (MCT, n = 5), and non-cancerous renal cortical tissue from three nephrectomized kidneys with isolated renal cell carcinoma as normal control (n = 3). The samples were examined using the Human Genome U133 Plus 2.0 Array chip platform from Affymetrix.

Differential Gene Expression Analysis:

The raw data were normalized using the using R - RMA normalization followed by

```r
BiocManager::install (version = "3.12") BiocManager::install ("GEOquery")
BiocManager::install ("affy") BiocManager::install ("hgu133a.db", type = "source")
BiocManager::install ("hgu133acdf")
```

Calling Libraries: library (GEOquery) library (affy) library (hgu133a.db) library (hgu133acdf). The limma function package of the R language (version 3.5.2) was used for the differentially expressed gene analysis (15), and the absolute logarithmic conversion of the differential expression multiple (Log2FC) value >2 and FDR 0.05 were used as screening criteria.
Results: Variants’ Filtration/ Variation in Candidate gene:

There were no variations detected in the PKD1, PKD2, DNAJB11, GANAB, and ALG9 candidate genes. MIOX was filtered out to have the frameshift-truncation deletion [c.32del/p.Leu11ArgfsTer61]. The heterozygous deletion variant of the MIOX was identified as the top possible disease causing variant. This variant was cross-validated bi-directionally by Sanger sequencing (figure 2A). The frameshift deletion leads to truncated protein of 70 amino acids as compared to wild protein of 285 amino acids. The alignment of 285aa long normal and 70aa long mutated MIOX protein sequence is shown in figure 2B.

Variants in other genes:

There were several other common variants in II-1 and III-2 obtained after filtering criteria with ClinVar status as benign or uncertain significance. Table 1 shows the common variants in proband (II-1) and affected daughter (III-2) on filtering and prioritization on the basis of self made gene panel of 1209 genes. These other shared variations of uncertain significance and benign variations in both candidates may likely to act as modifier in the disease progression.

Integrated Proteomics:

As per the information available on the databases (Proteomics DB and MOPED) the MIOX protein specifically expresses in the kidney (figure 3C).

STRING Analysis:

No direct interactions between PKD1, PKD2, and MIOX were generated in the STRING network. String networks of PKD1 and MIOX were generated separately upto ten further additions. The ACTN1, PARVB, PXN, PIK3R1, CTNNB1, MAPK3, HRAS, MTOR, PTEN, WNT1, IGF1R, KL proteins present in the PKD1 network upto ten additions were also present in
the MIOX network of ten additions. These common proteins in both networks were again studied to see the possible interactions among them. This interaction network is depicted in figure 3B.

Differential Gene Expression Analysis:

The normalized gene expression data of the cysts is shown in figure 4A. The analysis revealed that the cyst samples assembled together as a distinct group, while the minimal cystic tissues and normal renal cortical samples sorted together as a separate group (figure 4B). This indicates the similarity in the gene expression pattern between renal cysts of varying sizes, as well as between minimal cystic tissues and normal renal cortical tissue. In addition, the expression profile analysis of *MIOX* reveal that its expression level is reduced in cystic samples compared to minimal cystic tissues and control tissue samples, suggesting a potential role of this gene in the development of polycystic kidney disease.

Discussion:

Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by progressive cyst formation and enlargement of the kidneys, often leading to end-stage kidney disease. The genetic basis of ADPKD is heterogeneous, with PKD1 (~75% of cases) and PKD2 (~15% of cases) being the most common loci, and *GANAB, DNAJB11*, and *ALG9* being minor genes (5,6). PKD is a ciliopathy, a disease associated with defects in the function of primary cilia, and many syndromic ciliopathies exhibit a PKD phenotype (16). Improving outcome, preventing complications, and initiating effective treatment rely heavily on accurate diagnosis. Molecular diagnosis plays a critical role in the management of the diseases. WES is now becoming the choice of quick and accurate diagnosis for PKD and practicing personalized medicine. Given the complexity of the disease genetic testing in combination with clinical phenotypes offers definitive diagnosis contributing to better prognosis, clinical care, diagnosis in atypical cases, and family planning (11,12,17). The genomic analysis of ADPKD in this study revealed another gene associated with it which emphasizes the importance of genetic testing and family studies for precise diagnosis and treatment. This research has added knowledge to the genetics of PKD, paving the way for the development of targeted therapies in the future.
This study using whole exome sequencing identified a heterozygous frameshift deletion [c.32del/p.Leu11ArgfsTer61, Exon 2], subsequently validated by Sanger sequencing, in MIOX in a trio consisting of a female in her 40s (proband), her husband (unaffected), and their daughter affected (in her early 20s) with ADPKD. The variant was screened using the dominant inheritance pattern. This deletion has not been previously reported as an ADPKD related variation. The frameshift deletion leads to a truncated protein of 70 amino acids as compared to the wild protein of 285 amino acids which disrupts the binding site according to primary structure prediction.

MIOX encodes for a 32Kda myo-inositol oxygenase (MIOX), which is a cytosolic enzyme expressed specifically in the renal proximal tubules, and is the first rate-limiting enzyme of myo-inositol catabolism. This enzyme is found to be upregulated in hyperglycemic conditions. MIOX is a single-domain protein with a mostly helical fold distantly related to the diverse HD domain superfamily. So far, studies have shown that MIOX plays a critical role in the metabolism of inositol, a carbohydrate molecule, and is involved in the regulation of glucose metabolism, insulin signaling, and oxidative stress response (13). Studies have suggested the role of MIOX in insulin signaling in the renal proximal tubule cells and may play a role in the development of diabetic kidney disease (18). Additionally, MIOX has been found to be involved in the regulation of oxidative stress, which can contribute to kidney injury in various disease states. MIOX promoter contains several response elements: oxidant-, antioxidant-, osmotic-, carbohydrate-, sterol-, response elements (18). While the role of MIOX has been linked to acute kidney injury, tubulointerstitial renal fibrosis, diabetic-associated nephropathies, and reactive oxygen species (ROS) generation (figure 3A), its role in ADPKD has not yet been reported (13,19,20)(19–21). Recently, higher expression of MIOX has been reported in prostate adenocarcinoma (22). The STRING interaction network showed that there are no direct interactions between PKD1, PKD2, and MIOX proteins, indicating that this particular area has not been extensively explored. However, there are several common interacting proteins that are present in their respective networks (figure 3B).

The other shared variations of uncertain significance and benign listed in Table 1 may potentially act as modifiers of disease progression, but their significance and role in the development of
ADPKD remain uncertain. Some of these variations may be benign, while others may have a subtle impact on disease severity or presentation.

As for MIOX, previous studies have explored the effects of overexpression and knockdown of MIOX in diabetic conditions. The current study identified a heterozygous frame shift deletion. This deletion leads to a premature termination of the MIOX protein, resulting in a truncated protein (70aa) that is much shorter than the wild-type MIOX protein (285aa). One possible impact of this deletion could be haploinsufficiency, where a single functional copy of the gene is insufficient to produce the required amount of functional protein necessary for normal cellular processes. This may lead to a reduction in the amount of functional MIOX protein below a threshold level, which could potentially trigger cyst formation. The other possibility could be a dominant-negative effect where the truncated protein created by heterozygous deletion may interfere with the function of the normal protein. This can disrupt the activity of protein complexes or signaling pathways, leading to disease.

The finding of a heterozygous frame-shift deletion in the MIOX in the ADPKD patient suggests that this gene may be involved in the development of polycystic kidney disease. This is further supported by the gene expression profile analysis of the data of cysts of variable sizes from GEO database, which shows that the expression level of MIOX gene is reduced remarkably in cystic samples compared to minimal cystic tissues (MCT) and control tissue samples (figure 4E). These results indicate that the down-regulation of MIOX expression may play a significant role in the development of PKD. In addition to this, the down regulation of Klotho (KL) protein in the reference study done by Song X et al. in 2009 (23) is noteworthy, as its direct STRING interaction with MIOX can be seen in our STRING interaction network (figure 3B & 4F). The KL encoded protein is a type-I membrane protein which is related to beta-glucosidases. Decreased expression of this KL protein has been reported in individuals with chronic renal failure. This suggests that the down-regulation of KL protein may be linked to the reduced expression of MIOX and further investigation into the relationship between these genes may shed light on their role in PKD pathogenesis. Overall, these findings highlight the importance of understanding the complex interplay between various genes and their expression profiles in the development and progression of PKD.
Overall, identification of this mutation in MIOX in an ADPKD trio study provides a potential avenue for further exploratory studies into the genetic underpinnings of ADPKD. Future functional evaluations of the MIOX variation will be necessary to determine if and how this gene is involved in the progression of ADPKD.

Conclusion:

This study identifies a frame-shift deletion [c.32del/p.Leu11ArgfsTer61] using whole exome sequencing in MIOX, reconfirmed by Sanger sequencing as the most likely cause of the disease shared by both affected individuals in a trio which is not earlier reported in ADPKD. No pathogenic variation(s) was found in candidate genes PKD1, PKD2, DNAJB11, GANAB, and ALG9. The frame-shift deletion results in a truncated protein with only 70 amino acids, which disrupts the binding site according to primary structure prediction. The differential gene expression analysis also showed reduced expression of MIOX in cysts samples. Further functional investigation is needed to determine the involvement of the MIOX variation in disease progression.

Acknowledgement:

We acknowledge the funding support obtained from Department of Biotechnology (DBT) and Indian Council of Medical Research (ICMR), India. We thank the participants for their involvement in this study. We also acknowledge Mr. Prashant Ranjan, ICMR-SRF, Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, for his contribution in Differential Gene Expression analysis done in this study.

Conflict of Interest:

The authors declare no conflict of interest.

References:

A)

Figure 1: Recruitment of the study subjects. A) Pedigree of the ADPKD subject. Star (★) indicates the trio undergone WES.

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>VAR-Class</th>
<th>cDNA Change</th>
<th>AA Change</th>
<th>VEP VAR Impact</th>
<th>ClinVar rsid</th>
<th>ClinVar Origin</th>
<th>ClinVar Significance</th>
<th>ExAC Overall AF</th>
<th>Role in</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTD-2256P15 Chr5</td>
<td>EXONIC-NC</td>
<td>n.1797C>T</td>
<td>NA</td>
<td>Modifier</td>
<td>NA</td>
<td>Germline</td>
<td>Uncertain significance</td>
<td>NA</td>
<td>IncRNAs</td>
</tr>
<tr>
<td>PKHD1</td>
<td>INTRONIC</td>
<td>c.10156+22835C>A</td>
<td>MODIFIER</td>
<td>Modifier</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Ciliogenesis</td>
</tr>
<tr>
<td>NPHP4</td>
<td>MISSENSE</td>
<td>c.2021G>T</td>
<td>p.Arg674Leu</td>
<td>Moderate</td>
<td>rs375416303</td>
<td>Germline</td>
<td>Likely benign, uncertain significance</td>
<td>0.000977</td>
<td>renal tubular development and function</td>
</tr>
<tr>
<td>AGT</td>
<td>3UTR</td>
<td>c.*556C>A</td>
<td>NA</td>
<td>Modifier</td>
<td>rs7079</td>
<td>Germline</td>
<td>Benign</td>
<td>NA</td>
<td>renal tubular development</td>
</tr>
<tr>
<td>BBS7</td>
<td>3UTR</td>
<td>c.*1286G>A</td>
<td>NA</td>
<td>Modifier</td>
<td>rs1507996</td>
<td>Germline</td>
<td>Benign</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>BBS7</td>
<td>3UTR</td>
<td>c.*690T>C</td>
<td>NA</td>
<td>Modifier</td>
<td>rs3217753</td>
<td>Germline</td>
<td>Benign</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>PKHD1</td>
<td>3UTR</td>
<td>c.*3393C>A</td>
<td>NA</td>
<td>Modifier</td>
<td>rs2784198</td>
<td>Germline</td>
<td>Benign</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

It is made available under a CC-BY-NC-ND 4.0 International license.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Region</th>
<th>Variant</th>
<th>Description</th>
<th>Modifier</th>
<th>Significance</th>
<th>Germline</th>
<th>Uncertain Significance</th>
<th>NA</th>
<th>Poly cystic Liver Disease 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEC63</td>
<td>3UTR</td>
<td>c.*1685A>C</td>
<td>NA</td>
<td>NA</td>
<td>Germline</td>
<td>NA</td>
<td>Uncertain significance</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>CEP164</td>
<td>MISSENSE</td>
<td>c.3364C>T</td>
<td>p.Arg1122Cys</td>
<td>Moderate</td>
<td>Germline</td>
<td>Benign/likely benign</td>
<td>0.001659</td>
<td>nephronophthisis-related ciliopathies</td>
<td></td>
</tr>
<tr>
<td>CEP164</td>
<td>MISSENSE</td>
<td>c.3716C>T</td>
<td>p.Pro1239Leu</td>
<td>Moderate</td>
<td>Germline</td>
<td>Benign</td>
<td>0.011193</td>
<td>NA</td>
<td>Benign/likely benign</td>
</tr>
<tr>
<td>MIOX</td>
<td>Chr22</td>
<td>c.32del</td>
<td>p.Leu11ArgfsTer61</td>
<td>High</td>
<td>NA</td>
<td>NA</td>
<td>None yet</td>
<td>0.000125</td>
<td>myoinositol catabolism, occurs predominantly in the kidney</td>
</tr>
</tbody>
</table>

Table 1: Common variants in II-1 and III-2 obtained after filtering criteria: Table shows the common variants in proband (II-1) and affected daughter (III-2) on filtering and prioritization on the basis of self made gene panel of 1209 genes. The heterozygous deletion variant of the MIOX was identified as the top possible disease causing variant. Other shared variations of uncertain significance and benign variations in both candidates may act as modifier in the disease progression. NA-Not Available
Figure 2: Sanger sequencing confirmation and alignment of normal (Miox285) and mutated (Miox70) protein sequence. A) Sanger sequencing confirmed the heterozygous deletion variant in the proband and affected daughter. Red arrow points the variant base. B) The alignment of normal (Miox285) and mutated (Miox70) protein sequence. The Asterisks (*) represents the matched amino acids. Red and blue arrows indicate the amino acid change due to nucleotide change and truncation position respectively. Frame-shift deletion leads to truncated protein of 70 amino acids as compared to wild protein of 285 amino acids.
Figure 3: Role of MIOX protein. A) Association of *MIOX* in kidney and non-kidney diseases. B) Representative image depicting different types of interactions among common genes in *PKD1* and *MIOX* STRING interaction networks. C) Integrated Proteomics: protein expression in normal tissues and cell lines from Proteomics DB and MOPED for *MIOX*.
Figure 4: MIOX differential expression study in PKD1 cysts. A) Samples are colored based on groupings. Median-centered values indicate that the data are cross-comparable and normalized. B) The dimension reduction method known as uniform manifold approximation and projection (UMAP) representing the relationships between different cyst samples. C & D) The differentially expressed genes are depicted by volcano and mean difference plot. The red and sky-blue dots reflect upregulated and downregulated genes respectively. E) Expression of MIOX in cystic samples of ADPKD patients is downregulated as compared to minimal cystic tissues and control tissue samples. F) KL gene expression is downregulated as compared to minimal cystic tissues and control tissue samples.