Precision Gestational Diabetes Treatment: Systematic review and Meta-analyses

Jamie L Benham*1, Véronique Gingras*2,3, Niamh-Maire McLennan*4, Jasper Most*5, Jennifer M Yamamoto*6, Catherine E Aiken*7,8, Susan E Ozanne**9, Reynolds RM**4,10 on behalf of ADA/EASD PMDI

*These authors contributed equally
** These authors contributed equally

1Departments of Medicine and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
2Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
3Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada
4MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
5Department of Orthopedics, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
6Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
7Department of Obstetrics and Gynaecology, the Rosie Hospital, Cambridge, UK
8NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
9University of Cambridges Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Wellcome-MRC Institute of Metabolic Science, Cambridge, UK
10Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK

Corresponding author: Rebecca M Reynolds
Centre for Cardiovascular Science
Queen's Medical Research Institute
47 Little France Crescent
Edinburgh EH16 4TJ
Email: r.reynolds@ed.ac.uk
ORCID ID: 0000-0001-6226-8270

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

We hypothesized that a precision medicine approach could be a tool for risk-stratification of women to streamline successful GDM management. With the relatively short timeframe available to treat GDM, commencing effective therapy earlier, with more rapid normalization of hyperglycaemia, could have benefits for both mother and fetus. We conducted two systematic reviews, to identify precision markers that may predict effective lifestyle and pharmacological interventions. There were a paucity of studies examining precision lifestyle-based interventions for GDM highlighting the pressing need for further research in this area. We found a number of precision markers identified from routine clinical measures that may enable earlier identification of those requiring escalation of pharmacological therapy. Whether there are other sensitive markers that could be identified using more complex individual-level data, such as ‘omics’, and if these can be implemented in clinical practice remains unknown. These will be important to consider in future studies.
INTRODUCTION

Gestational diabetes (GDM) is the most common pregnancy complication, occurring in 3% to 25% of pregnancies globally. GDM is associated with significant short- and long-term risks to both mothers and babies, including adverse perinatal outcomes, future obesity, type 2 diabetes and cardiovascular disease. The landmark Australian Carbohydrate Intolerance Study in Pregnant Women (ACHOIS) demonstrated that effective treatment of GDM reduces serious perinatal morbidity.

Current treatment guidelines for management of GDM assume homogeneous treatment requirements and responses, despite the known heterogeneity of GDM aetiology. Standard care includes diet and lifestyle advice at a multi-disciplinary clinic, home blood glucose monitoring at least four times per day, clinic reviews every two to four weeks, and then progression to pharmacological treatment with metformin, glyburide and/or insulin if glucose targets are not met. Around a third of women cannot maintain euglycaemia with lifestyle measures alone and require treatment escalation to a pharmacological agent. Yet current treatment pathways often take 4-8 weeks to achieve glucose targets. This delay resulting in continued exposure to hyperglycaemia poses a significant risk of accelerated fetal growth. Previous research has suggested that maternal characteristics including body mass index (BMI) ≥30 kg/m², family history of type 2 diabetes, prior history of GDM and higher glycated haemoglobin (HbA1c) increase the likelihood of need for insulin treatment in GDM, indicating the potential for risk-stratification of women to streamline successful GDM management. There is emerging evidence that precision biomarkers predict treatment response in type 2 diabetes, which has similar heterogeneity to GDM and thus gives rationale to investigate whether a similar precision approach could be successful in optimizing outcomes in GDM.

To address this knowledge gap, we conducted two systematic reviews of the available evidence for precision markers of GDM treatment. We aimed to determine (i) which precision diet and lifestyle interventions delivered in addition to standard of care enable achievement of glucose targets with lifestyle measures alone, (ii) which patient-level characteristics or factors predict whether glucose targets can be achieved in women treated with diet and lifestyle alone, and in women receiving oral agents for treatment of GDM.

The Precision Medicine in Diabetes Initiative (PMDI) was established in 2018 by the American Diabetes Association (ADA) in partnership with the European Association for the Study of Diabetes (EASD). The ADA/EASD PMDI includes global thought leaders in precision diabetes medicine who are working to address the burgeoning need for better diabetes prevention and care through precision medicine. This systematic review is written on behalf of the ADA/EASD PMDI as part of a comprehensive evidence evaluation in support of the 2nd International Consensus Report on Precision Diabetes Medicine.

METHODS

The systematic reviews and meta-analyses were performed as outlined a priori in the registered protocols (PROSPERO registration IDs CRD42022299288 and CRD42022299402). The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were followed. Ethical approval was not required as these were secondary studies using published data.
Literature Searches, Search Strategies and Eligibility Criteria

Search strategies for both reviews were developed based on relevant keywords in partnership with scientific librarians (see Supplementary Text S1 for full search strategies). We searched two databases (MEDLINE and EMBASE) for studies published from inception until January 1st, 2022. We also scanned the references of included manuscripts for inclusion as well as relevant reviews and meta-analyses published within the past two years for additional citations.

For both systematic reviews we included studies (randomized or non-randomized trials, and observational studies) published in English and including women ≥16 years old with diagnosed GDM, as defined by the study authors. For the first systematic review (precision diet and lifestyle interventions), we included studies with any behavioural intervention (e.g., exercise, diet, motivational interviewing) over and above standard care compared to a control group receiving standard care only. For the second systematic review (precision predictors of need for pharmaceutical interventions to achieve glucose targets), we included studies using pharmacological therapy to treat GDM (e.g., insulin, metformin, sulphonylurea) compared to a control group receiving standard care with diet and lifestyle measures, or taking oral agents before progression to insulin. For both reviews, we included any relevant reported outcomes; maternal (e.g., treatment adherence, hypertensive disorders of pregnancy, gestational weight gain, mode of birth), neonatal (e.g., birthweight, macrosomia, shoulder dystocia, preterm birth, neonatal hypoglycaemia, neonatal death), cost efficiency or acceptability. We excluded studies with a total sample size <50 participants to ensure sufficient data to interpret the effect of precision markers. We also excluded studies published before or during 2004, in order to consider studies with standard care similar to ACHOIS4.

Study selection and data extraction

The results of our two searches were imported separately into Covidence software (Veritas Health Innovation, Australia, available at www.covidence.org) and duplicates were removed. Two reviewers independently reviewed identified studies. First, they screened titles and abstracts of all references identified from the initial search. In a second step, the full-text articles of potentially relevant publications were scrutinized in detail and inclusion criteria were applied to select eligible articles. Reason for exclusion at the full text review stage was documented. Disagreement between reviewers was resolved through consensus by discussion with the group of authors.

Two reviewers independently extracted relevant information from each eligible study, using a pre-specified standardized extraction form. Any disagreement between reviewers was resolved as outlined above.

Data extracted included first author name, year of publication, country, study design, type and details of the intervention when applicable, number of cases/controls or cohort groups, total number of participants and diagnostic criteria used for GDM. Extracted data elements also included outcomes measures, size of the association (Odds Ratio (OR), Relative Risk (RR) or Hazard Ratio (HR)) with corresponding 95% Confidence Interval (CI) and factors adjusted for, confounding factors taken into consideration and methods used to control covariates. We prioritized adjusted values where both raw and adjusted data were available. Details of precision markers (mean (standard deviation) for continuous variables or N (%) for categorical variables) including BMI (pre-pregnancy or during pregnancy), ethnicity, age, smoking status, comorbidities, parity, glycaemic variables (e.g., oral glucose tolerance test (OGTT) diagnostic values, HbA1c), timing of GDM diagnosis, history of diabetes or of GDM, and season were also extracted.
Quality assessment (risk of bias and GRADE assessments)

We first assessed the quality and risk of bias of each individual study using the Joanna Briggs Institute (JBI) critical appraisal tools17. A Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach was then used to review the total evidence for each precision marker, and the quality of the included studies to assign a GRADE certainty to this body of evidence (high, moderate, low and/or very low)18. Quality assessment was performed in duplicate and conflicts were resolved through consensus.

Statistical analysis

Where possible, meta-analyses were conducted using random effects models for each precision marker available. The pooled effect size (mean difference for continuous outcomes and ORs for categorical outcomes) with the corresponding 95% CI were computed. The heterogeneity of the studies was quantified using I^2 statistics, where I^2 >50% represents moderate and I^2 >75% represents substantial heterogeneity across studies. Publication bias was assessed with visual assessment of funnel plots. Statistical analyses were performed using Review Manager software [RevMan, Version 5.4.1, The Cochrane Collaboration, Copenhagen, Denmark].

RESULTS

Study selection and study characteristics

PRISMA flow charts (Figures 1A and 1B) summarize both searches and study selection processes.

For the first systematic review (precision diet and lifestyle interventions), we identified 2 eligible studies (n=2,354 participants), which were randomized trials from USA and Singapore (Table 1A)19,20.

For the second systematic review (precision predictors of need for pharmacological interventions to achieve target glucose levels), we identified 48 eligible studies (n=25,724 participants) (Table 1B)21-68.

There were 34 studies (n=23,831 participants) where standard care with diet and lifestyle advice was not adequate to achieve target glucose levels. Of these, 29 studies (n=20,486) reported progression to insulin21-49 and 5 (n=3,345) reported progression to any medication (metformin, glyburide and/or insulin)50-54.

There were 12 studies (n=1,669 participants) where treatment with oral agents was not adequate to achieve target glucose levels, and escalation to insulin was required. Initial treatment was with glyburide in 6 of these studies (n=527)55-60 and metformin in the other 6 studies (n=1142)61-66.

A further 2 eligible studies reported maternal genetic predictors of need for supplementary insulin after glyburide (n=117 participants) 67 and maternal lipidome responses to metformin and insulin (n=217 participants)68.

The majority of included studies were observational in design. Most studies reported outcomes of singleton pregnancies. The studies were from a range of geographical locations: Europe (Belgium, Finland, France, Italy, Netherlands, Poland, Portugal, Spain, Sweden), Switzerland, Middle East (Israel, Qatar, United Arab Emirates), Australasia (Australia, New Zealand), North America/Latin America (Canada, USA and Brazil) and Asia (China, Malaysia, Japan). There were
a range of approaches to GDM screening, choice of diagnostic test and diagnostic glucose thresholds.

Quality assessment

Study quality assessment is presented as an overall risk of bias for the studies included in the meta-analyses in Figure 2.1 and as a heat map for quality assessment for each included study in Figure 2.2. Most of the studies were rated as low risk of bias, as they adequately described how a diagnosis of GDM was assigned, defining inclusion and exclusion criteria, and reported the protocol for initiation of pharmacological therapy. Not all studies reported whether women received diet and lifestyle advice as standard care. Few studies reported whether the precision marker was measured in a valid and reliable way. Using the GRADE approach, the majority of precision markers were classified as having a low certainty of evidence with some classified as very low certainty (Tables 2 and 3). No publication bias (as ascertained by funnel plot analyses) was detected.

Synthesis of results

Precision diet and lifestyle interventions in GDM

Two studies examining different behavioural interventions were included in the first systematic review, so we present a narrative synthesis of the findings. Neither study examined whether a precision lifestyle intervention enabled achievement of glucose targets during pregnancy.

In one study\(^{19}\), the intervention was distribution of a tailored letter detailing gestational weight gain (GWG) recommendations (as defined by the Institute of Medicine). Receipt of this tailored letter increased the likelihood of meeting the end-of-pregnancy weight goal among women with normal pre-pregnancy BMI, but not among women with overweight or obese pre-pregnancy BMI. This study identified normal pre-pregnancy BMI as a precision marker for intervention success.

The second study\(^{20}\) used a Web/Smart phone lifestyle coaching program. Pre-intervention excessive GWG was evaluated as a potential precision marker. There was no difference between study arms with respect to either excess GWG or absolute GWG by the end of pregnancy indicating that early GWG is not a useful precision marker with respect to this intervention.

Precision predictors of need for pharmacological interventions to achieve glucose targets in GDM

Of the 34 studies of predictors of need for medical therapy in addition to standard care with diet and lifestyle advice to achieve glucose targets, 23 studies (n=19,112 participants) were included in the meta-analysis and 11 studies (n=7158 participants) in the narrative synthesis\(^{21-23,25,26,31-36,38,40,41,43-46,48,50-53}\). Table 2 and Supplementary Figures 1.1-1.13 show that precision markers for GDM to be adequately managed with lifestyle measures without need for additional pharmacological therapy were lower maternal age, nulliparity, lower BMI, no previous history of GDM, lower HbA1c, fasting, 1 hour, 2 and 3 hour glucose, no family history of diabetes, later gestation of diagnosis of GDM and no macrosomia in previous pregnancies. There was a similar pattern for not smoking but this did not reach statistical significance.

Twelve studies (n=1669 participants) of predictors of need for supplemental insulin to achieve normoglycaemia following treatment with oral agents were included in the meta-analysis\(^{55-66}\).
Table 3 and Supplementary Figures 2.1-2.12 show that precision markers for achieving normoglycaemia with oral agents only were nulliparity, lower BMI, no previous history of GDM, lower HbA1c, fasting, 1 hour, and 2 hour glucose, later gestation of diagnosis of GDM and later gestation at initiation of the oral agent. In sensitivity analyses, there were no differences in the precision markers predicting response to metformin versus glyburide.

Similar findings were observed in the 11 studies (n=7158 participants) that were not included in the meta-analysis24,27-30,37,39,42,47,49,54 (Supplementary Table 1). Additional precision markers including fetal sex28, ethnicity30,47, and season of birth37 were evaluated but there was insufficient data to draw conclusions.

There was a paucity of data in examining other precision markers with only weak evidence that the maternal lipidome68 or genetics67 hold potential as precision markers of need for pharmacological treatment (Supplementary Table 1).

DISCUSSION

As the factors contributing to development of GDM are heterogeneous5-8, it is plausible that the most effective treatment strategies may also be variable. A precision medicine approach resulting in more rapid normalization of hyperglycaemia could have substantial benefits for both mother and fetus. By synthesizing the evidence from two systematic reviews, we sought to identify key precision markers that may predict effective lifestyle and pharmacological interventions. There were a paucity of studies examining precision lifestyle-based interventions for GDM highlighting the pressing need for further research in this area. However, we found a number of precision markers to enable earlier identification of those requiring escalation of pharmacological therapy. These included characteristics such as BMI, that are easily and routinely measured in clinical practice, and thus have potential to be integrated into prediction models with the aim of achieving rapid glycaemic control. With the relatively short timeframe available to treat GDM, commencing effective therapy earlier, and thus reducing excess fetal growth, is an important target to improve outcomes. Basing treatment decisions closely on precision markers could also avoid over-medicalisation of women who are likely to achieve glucose targets with dietary counselling alone.

In our first systematic review we identified only two studies addressing precision markers in lifestyle-based interventions for GDM, over and above standard care19,20. In both studies, precision markers were examined as secondary analyses of the trials and only two precision markers (BMI and GWG) were assessed; it is thus not possible to conclusively identify any precision marker in lifestyle-based interventions for GDM. This gap in the literature highlights the need for more research, as also echoed by patients and healthcare professionals participating in the 2020 James Lind Alliance (JLA) Priority Setting Partnership (PSP)69.

Our second systematic review extends the observations of a previous systematic review reporting maternal characteristics associated with the need for insulin treatment in GDM11. We identified a number of additional precision markers of successful GDM treatment with lifestyle measures alone, without need for additional pharmacological therapy. The same set of predictors identified women requiring additional insulin after treatment with glyburide as with metformin, despite their different mechanisms of action. However the numbers of women included in most studies were relatively low and most studies with data in relation to glyburide failure were over 10 years old55,56,58-60. We acknowledge that there are also differences in diagnostic criteria, clinical practices, and preferences for choice of which drug to start as first pharmacological agent in various global regions which may limit the generalizability of our findings.
Notably, many of the identified precision markers are routinely measured in clinical practice and so could be incorporated into prediction models of need for pharmacological treatment70,71. By identifying those who require escalation of pharmacological therapy earlier, better allocation of resources can be achieved. Additionally, some of the precision markers identified, such as BMI, are potentially modifiable. This raises the question of how women can be helped to better prepare for pregnancy72. Implementing interventions prior to pregnancy could help understand if these precision markers are on the causal pathway, thus providing an opportunity for prevention and improving health outcomes.

Importantly, there was a lack of data on other potential precision treatment biomarkers, with only two eligible low quality studies reporting maternal genetic and metabolomic findings67,68. In the non-pregnancy literature, efficacy of dietary interventions has been reported to differ for patients with distinct metabolic profiles, for example high fasting glucose vs high fasting insulin, or insulin resistance vs low insulin secretion73-75. More recent evidence from appropriately designed, prospective dietary intervention studies has confirmed that dietary interventions tailored towards specific metabolic profiles have more beneficial effects than interventions not specifically designed towards a patient’s metabolic profile76-79. Ongoing studies such as the Westlake Precision Birth Cohort (WeBirth) in China (NCT04060056) and the USA Hoosier Moms Cohort (NCT03696368) are collecting additional biomarkers which will enhance knowledge in this field. However implementing such measures in clinical practice, if they prove informative, could be complex and expensive and thus not suitable for use in all global contexts.

Our study has several limitations: Our reviews primarily relied on secondary analyses from observational studies that were not specifically designed to address the question of precision medicine in GDM treatment and were not powered for many of the comparisons made. Prior to introduction in clinical practice, any marker would have to be rigorously and prospectively tested with respect to sensitivity and specificity to predict treatment needs. The majority of data were extracted from clinical records leading to a lack of detail, such as the precise timing of BMI measurements, and limited information about whether BMI was self-reported or clinician measured. There was marked variation in approaches to GDM screening methods, choice of glucose challenge test and diagnostic thresholds. Whilst we included studies from a range of geographical settings, the majority of studies were from high income settings, and therefore our findings may not be applicable to low- and middle-income countries. Pregnancy outcomes of precision medicine strategies for GDM also remain unknown, underscoring the need for tailored interventions that account for patient perspective and diverse patient populations.

Despite these limitations, our study has several strengths. We used robust methods to identify a broad range of precision markers, many of which are routinely measured and can be easily translated into prediction models. We excluded studies where the choice of drug was decided by the clinician based on participant characteristics to avoid bias. Our study also highlights the need for further research in this area, particularly in exploring whether there are more sensitive markers that could be identified through “omics” approaches.

In conclusion, our findings suggest that precision medicine for GDM treatment holds promise as a tool to stream-line individuals towards the most effective and potentially cost-effective care. Whether this will impact on short-term pregnancy outcomes and longer term health outcomes for both mother and baby is not known. More research is urgently needed to identify precision lifestyle interventions and to explore whether more sensitive markers could be identified. Prospective studies, appropriately powered and designed to allow assessment of discriminative abilities
(sensitivity, specificity), and (external) validation studies are urgently needed to understand the utility and generalizability of our findings to under-represented populations. Consideration of how identified markers can be implemented feasibly and cost effectively in clinical practice is also required. Such efforts will be critical for realising the full potential of precision medicine and empowering patients and their health care providers to optimise short and long-term health outcomes for both mother and child.

Author contributions: All authors contributed to the design of the research questions, study selection, extraction of data, data analyses, quality assessment and data interpretation. RMR wrote the first draft of the manuscript. All authors edited the manuscript and all approved the final version.

Conflicts of Interest: None of the authors have any conflicts of interest to declare.

Funding: The ADA/EASD Precision Diabetes Medicine Initiative, within which this work was conducted, has received the following support: The Covidence license was funded by Lund University (Sweden) for which technical support was provided by Maria Björklund and Krister Aronsson (Faculty of Medicine Library, Lund University, Sweden). Administrative support was provided by Lund University (Malmö, Sweden), University of Chicago (IL, USA), and the American Diabetes Association (Washington D.C., USA). The Novo Nordisk Foundation (Hellerup, Denmark) provided grant support for in-person writing group meetings (PI: L Phillipson, University of Chicago, IL). JMM acknowledges the support of the Henry Friesen Professorship in Endocrinology, University of Manitoba, Canada. NMM and RMR acknowledge the support of the British Heart Foundation (RE/18/5/34216). SEO is supported by the Medical Research Council (MC_UU_00014/4) and British Heart Foundation (RG/17/12/33167).

REFERENCES

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagrams for the two systematic reviews: A) behavioural (diet and lifestyle) interventions and B) pharmacological interventions.

Figure 1A. Behavioural (diet and lifestyle) interventions

[Flowchart showing the PRISMA process for behavioural interventions]

- 3829 references imported for screening
- 3820 studies screened against title and abstract
- 156 studies assessed for full-text eligibility
- 9 duplicates removed
- 3664 studies excluded
- 154 studies excluded
 - 120 No precision marker
 - 17 No lifestyle intervention
 - 6 Not GDM population
 - 3 Not English
 - 2 Retracted article
 - 2 Meta-analyses / systematic review / review
 - 2 No outcome of interest or outcome is after birth
 - 1 Commentary/editorial
 - 1 sample size <50

- 2 studies included
Figure 1B. Pharmacological interventions

Identification
- 1404 references imported for screening
 → 5 duplicates removed

Screening
- 1399 studies screened against title and abstract
 → 1170 studies excluded

- 229 studies assessed for full-text eligibility
 → 181 studies excluded
 - 153 No precision marker
 - 9 No outcome of interest or outcome is after birth
 - 7 Commentary/editorial
 - 7 No pharmacological intervention
 - 4 Not GDM population
 - 1 Meta-analysis/systematic review

Eligibility
- 48 studies included

Inclusion
- Diet adequate vs not adequate
 - n=34
 - Insulin required after diet – n=29 (n=10 narrative, n=19 meta-analysis)
 - Any other medication required after diet – n=5 (n=1 narrative, n=4 meta-analysis)

- Oral agent adequate vs not adequate
 - n=12
 - Insulin required after glyburide, n=6
 - Insulin required after metformin, n=6 (all n=12 meta-analysis)

- Other precision treatment markers
 - n=2
 - Genetic responses of need for supplementary insulin after glyburide, n=1
 - Maternal lipidome responses to metformin and insulin, n=1
Figure 2.1 Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all studies included in the meta-analyses.

Figure 2.2 Risk of bias summary: review authors' judgements about each risk of bias item for each study included in the meta-analyses.
Tables 1A and 1B Summary of included studies in the two systematic reviews

Table 1A Precision behavioural (diet and lifestyle) interventions

<table>
<thead>
<tr>
<th>First Author Year</th>
<th>Study Name</th>
<th>Country</th>
<th>Population</th>
<th>Intervention</th>
<th>Precision Marker</th>
<th>GDM Diagnostic Criteria</th>
<th>Sample Size</th>
</tr>
</thead>
</table>
| bHedderson 2018\(^{19}\) | GEM Study | USA | Pregnant, age 18+, GDM | Receiving a tailored letter with messages regarding weight | Pregnancy BMI category | Carpenter Coustan | \(n\) control =1047
\(n\) intervention=967 |
| bYew 2021\(^{20}\) | SMART-GDM Study | Singapore | Pregnant, age 21+, singleton, GDM | Web/Smart phone lifestyle coaching program | Gestational weight gain at study entry | WHO 2013 criteria (12-30 weeks) | \(n\) control= 170
\(n\) intervention= 170 |

GDM, gestational diabetes; BMI, body mass index; WHO, World Health Organization

Table 1B. Precision predictors of need for pharmacological interventions to achieve target glucose levels

<table>
<thead>
<tr>
<th>*First Author Year</th>
<th>Study Design and Name</th>
<th>Country</th>
<th>Population</th>
<th>GDM Diagnostic Test Criteria</th>
<th>Sample Size</th>
<th>Precision Marker(s)</th>
</tr>
</thead>
</table>
| *Ares 2017\(^{21}\) | Retrospective cohort study | Spain | Pregnant, GDM, singleton pregnancy, no malformations | 100g 3h OGTT | Total in analysis \(N = 201\)
\(N\) (%) diet not adequate \(N = 36\) (18) | age, BMI, OGTT glucose values |
| *Barnes 2013\(^{22}\) | Retrospective cohort study | Australia | Pregnant, GDM, singleton pregnancy | ADIPS criteria | Total in analysis \(N = 1695\)
\(N\) (%) diet not adequate \(N = 524\) (30.9) | Pre-pregnancy BMI, total maternal GWG, HbA1c at GDM diagnosis |
<table>
<thead>
<tr>
<th>Study</th>
<th>Type of Study</th>
<th>Country</th>
<th>Description</th>
<th>Criteria</th>
<th>Total in Analysis</th>
<th>Variables</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benhalima 2015<sup>23</sup></td>
<td>Retrospective cohort study</td>
<td>Belgium</td>
<td>Pregnant, GDM</td>
<td>50g GCT and 100g 3h OGTT, Carpenter and Coustan</td>
<td>N = 601 N (%) diet not adequate N = 145 (24.1)</td>
<td>age, GA at delivery, BMI at first prenatal visit, ethnicity, family history of GDM, history of GDM, parity, results of OGTT and GCT, GA at GDM diagnosis and at GDM screening, insulin sensitivity and beta cell function</td>
<td></td>
</tr>
<tr>
<td>Berg 2007<sup>24</sup></td>
<td>Retrospective cohort study</td>
<td>Sweden</td>
<td>Pregnant, GDM</td>
<td>75g OGTT, 1998 WHO classification criteria</td>
<td>N = 719 N (%) diet not adequate N = 112 (15.6)</td>
<td>BMI</td>
<td></td>
</tr>
<tr>
<td>Ducarme 2019<sup>25</sup></td>
<td>Prospective observational study</td>
<td>France</td>
<td>Pregnant, GDM, singleton pregnancy.</td>
<td>75g OGTT</td>
<td>N = 200 N (%) diet not adequate N = 72 (36.0)</td>
<td>age, pre pregnancy BMI, obesity, overweight, parity, previous >4kg baby, previous GDM, glucose values in OGTT, fructosamine, HbA1c.</td>
<td></td>
</tr>
<tr>
<td>Durnwald 2011<sup>26</sup></td>
<td>Secondary analyses of RCT</td>
<td>USA</td>
<td>Pregnant, Women with mild GDM, who were randomized to dietary intervention in prospective RCT</td>
<td>fasting glucose less than 95 mg/dL and at least two of three glucose values that met or exceeded the following: 1-hour of 180 mg/dL, 2-hour 155 mg/dL, 3-hour 140 mg/dL</td>
<td>N = 460 N (%) diet not adequate N = 36 (7.8)</td>
<td>age, GWG, ethnicity, smoking, alcohol, BMI at enrollment, 50-g glucose screening value</td>
<td></td>
</tr>
<tr>
<td>Elnour 2008<sup>27</sup></td>
<td>Observational, cohort study, within RCT</td>
<td>United Arab Emirates</td>
<td>Pregnant, Women with</td>
<td>100g, 3h OGTT, National Diabetes Data Group and</td>
<td>N = 165</td>
<td>OGTT values</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Study Design</td>
<td>Country</td>
<td>Gestational Diabetes Mellitus (GDM) Characteristics</td>
<td>Test Used</td>
<td>Total in Analysis</td>
<td>Diet Not Adequate</td>
<td>Additional Details</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>---------</td>
<td>--</td>
<td>-----------</td>
<td>-----------------</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>bGiannubilo 2018<sup>28</sup></td>
<td>Prospective observational cohort study</td>
<td>Italy</td>
<td>Pregnant, GDM, singleton pregnancy, European, primiparous, non-smoking</td>
<td>100g, 3h OGTT, Carpenter & Coustan</td>
<td>Total in analysis N = 327 N (%) diet not adequate N = 133 (40.6)</td>
<td>Offspring sex</td>
<td></td>
</tr>
<tr>
<td>bGibson 2012<sup>29</sup></td>
<td>Case-control (1:3) study</td>
<td>USA</td>
<td>Pregnant, GDM, singleton pregnancy, no malformations</td>
<td>50g GCT and 100g OGTT, Carpenter & Coustan</td>
<td>Total in analysis N = 163 N (%) diet not adequate N = not recorded</td>
<td>GWG by 24 weeks GA, pre-pregnancy BMI, glucose values</td>
<td></td>
</tr>
<tr>
<td>bHillier 2013<sup>30</sup></td>
<td>Population-based epidemiology study</td>
<td>USA</td>
<td>Pregnant, GDM, singleton pregnancy</td>
<td>Carpenter & Coustan</td>
<td>Total in analysis N = 1326 N (%) diet not adequate N =158 (11.9)</td>
<td>BMI group, ethnicity, GA at diagnosis</td>
<td></td>
</tr>
<tr>
<td>aIkenoue 2014<sup>31</sup></td>
<td>Retrospective cohort study</td>
<td>Japan</td>
<td>Pregnant, GDM, singleton pregnancy, no malformations</td>
<td>50g GCT and diagnostic 75g OGTT, IADPSG criteria</td>
<td>Total in analysis N = 141 N (%) diet not adequate N = 50 (35.5)</td>
<td>Age, BMI, GCT & OGTT values, family history, GA at diagnosis, HbA1C, Insulin sensitivity</td>
<td></td>
</tr>
<tr>
<td>aIto 2016<sup>32</sup></td>
<td>Retrospective cohort study</td>
<td>Japan</td>
<td>Pregnant, GDM</td>
<td>Risk factors – 75g OGTT; no risk factors 2-step GCT and 75g OGTT, IADPSG criteria</td>
<td>Total in analysis N = 102 N (%) diet not adequate N = 32 (31.4)</td>
<td>Age, GA at GDM diagnosis, BMI at diagnosis, family history of diabetes, prior fetal macrosomia, results of OGTT, glycoalbumin, daily calories at diagnosis, plasma glucose profile</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>Country</td>
<td>Study Population</td>
<td>Diagnostic Criteria</td>
<td>Total in Analysis</td>
<td>Diet Not Adequate</td>
<td>Additional Details</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Kalok 2020<sup>33</sup></td>
<td>Retrospective cohort study</td>
<td>Malaysia</td>
<td>Pregnant, GDM, singleton pregnancy</td>
<td>75g OGTT NICE guideline (fasting glucose ≥ 5.6 mmol/L and/or 2h post glucose load ≥ 7.8 mmol/L)</td>
<td>N = 1064 N (%)</td>
<td>N = 96 (9)</td>
<td>Age, GA at GDM diagnosis, trimester of pregnancy at diagnosis, OGTT glucose values, family history of diabetes, previous GDM, obesity</td>
</tr>
<tr>
<td>Koning 2016<sup>34</sup></td>
<td>Retrospective cohort study</td>
<td>Netherlands</td>
<td>Pregnant, GDM, singleton pregnancy</td>
<td>75g OGTT, WHO 1999, FPG ≥ 7.0 mmol/l and/or the 2h plasma glucose ≥ 7.8 mmol/l</td>
<td>N = 820 N (%)</td>
<td>N = 360 (44)</td>
<td>Age, family history of diabetes, previous GDM, previous infant weighing >4500g, history of intrauterine death, parity, pre-pregnancy BMI, GWG, glucose levels in OGTT, Hba1c</td>
</tr>
<tr>
<td>Mecacci 2021<sup>35</sup></td>
<td>Retrospective cohort study</td>
<td>Italy</td>
<td>Pregnant, GDM, singleton pregnancy</td>
<td>IADPSG</td>
<td>N = 1974 N (%)</td>
<td>N = 1012 (51.3)</td>
<td>Age, pre-pregnancy BMI, family history of diabetes, previous GDM, FPG, hypothyroidism, and assisted reproductive technologies</td>
</tr>
<tr>
<td>Meghelli 2020<sup>36</sup></td>
<td>Retrospective cohort study</td>
<td>France</td>
<td>Pregnant, GDM, pre-pregnancy BMI ≥40</td>
<td>1999-2009 O'sullivan's test (2-step); after that IADPSG</td>
<td>N = 121 N (%)</td>
<td>N = 63 (52.9)</td>
<td>Age, BMI, parity, history of C-section, history of gestational HTN, history of GDM, smoking, GWG</td>
</tr>
<tr>
<td>Molina-Vega 2020<sup>37</sup></td>
<td>Retrospective cohort study</td>
<td>Spain</td>
<td>Pregnant, GDM</td>
<td>2 step 50g GCT and 75g OGTT, National Diabetes Data Group criteria</td>
<td>N = 473 N (%)</td>
<td>N = 129 (27.3)</td>
<td>Age, BMI, Season</td>
</tr>
<tr>
<td>Ng 2020<sup>38</sup></td>
<td>Retrospective cohort study</td>
<td>Australia</td>
<td>Pregnant, GDM, singleton</td>
<td>ADIPS 75g OGTT - >5.5, 2-h >=8.0</td>
<td>N = 1857</td>
<td>Age, BMI, alcohol consumption, smoking</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Study Type</td>
<td>Country</td>
<td>Criteria</td>
<td>Total in Analysis</td>
<td>N (%)</td>
<td>Diet Not</td>
<td>Additional Factors</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>bNguyen 2016</td>
<td>Retrospective cohort study</td>
<td>Canada</td>
<td>Pregnant, GDM</td>
<td>N = 1827</td>
<td>N (%)</td>
<td>diet not adequate</td>
<td>Glucose values, pre-pregnancy BMI, GWG, previous C-section, history of macrosomia, previous GDM</td>
</tr>
<tr>
<td>aNishikawa 2018</td>
<td>Retrospective cohort study</td>
<td>Japan</td>
<td>Pregnant, GDM</td>
<td>N = 529</td>
<td>N (%)</td>
<td>diet not adequate</td>
<td>GA at GDM diagnosis, history of pregnancy, family history of DM, pre-pregnancy BMI, OGTT values, HbA1c</td>
</tr>
<tr>
<td>aOuzounian 2011</td>
<td>Retrospective cohort study</td>
<td>USA</td>
<td>Pregnant, GDM, singleton pregnancy, liveborn fetus, ≥ 37 weeks GA at birth</td>
<td>N = 1451</td>
<td>N (%)</td>
<td>diet not adequate</td>
<td>Maternal age, multiparity, ethnicity, prenatal care in 1st trimester, BMI category, prior GDM, history of macrosomia, history of stillbirth, OGTT values</td>
</tr>
<tr>
<td>bParrettini 2020</td>
<td>Retrospective cohort study</td>
<td>Italy</td>
<td>Pregnant, GDM, singleton pregnancy, age ≥ 18 years</td>
<td>N = 602</td>
<td>N (%)</td>
<td>diet not adequate</td>
<td>Maternal age, OGTT results</td>
</tr>
<tr>
<td>aSilva 2006</td>
<td>Retrospective cohort study</td>
<td>USA</td>
<td>Pregnant, GDM</td>
<td>N = 2155</td>
<td>N (%)</td>
<td>diet not adequate</td>
<td>Ethnicity</td>
</tr>
<tr>
<td>aSouza 2019</td>
<td>Retrospective cohort study</td>
<td>Brazil</td>
<td>Pregnant, GDM, singleton pregnancy</td>
<td>N = 408</td>
<td></td>
<td></td>
<td>age, parity, pre-pregnancy (BMI), GWG, smoking</td>
</tr>
<tr>
<td>aSuhonen 2008[^45]</td>
<td>Retrospective cohort study</td>
<td>Finland</td>
<td>Pregnant, GDM, singleton pregnancy</td>
<td>75g OGTT 5.1 mmol/l after fasting, 10.0 mmol/l at 1 hour, and 8.7 mmol/l at 2 hours; risk factor based screening</td>
<td>Total in analysis N = 905 N (%) diet not adequate N = 385 (42.5)</td>
<td>history, prior chronic hypertension, prior history of GDM, prior fetal macrosomia, family history of diabetes, GA at GDM diagnosis, FPG</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>aSun 2021[^46]</td>
<td>Retrospective cohort study</td>
<td>China</td>
<td>Pregnant, GDM</td>
<td>75g OGTT, ADA diagnostic criteria</td>
<td>Total in analysis N = 708 N (%) diet not adequate N = 92 (12.9)</td>
<td>BMI, glucose values in OGTT</td>
<td></td>
</tr>
<tr>
<td>bWong 2012[^47]</td>
<td>Retrospective cohort study</td>
<td>Australia</td>
<td>Pregnant, GDM, singleton pregnancy</td>
<td>ADIPS 1998; 50g GCT followed by 75g OGTT</td>
<td>Total in analysis N = 827 N (%) diet not adequate N = 421 (50.9)</td>
<td>age, more childbirths, obesity</td>
<td></td>
</tr>
<tr>
<td>aWong 2011[^48]</td>
<td>Retrospective cohort study</td>
<td>Australia</td>
<td>Pregnant, GDM, singleton pregnancy</td>
<td>ADIPS 1998; 50g GCT followed by 75g OGTT</td>
<td>Total in analysis N = 612 N (%) diet not adequate N = 323 (52.8)</td>
<td>BMI >30, OGTT glucose values, GA at GDM diagnosis</td>
<td></td>
</tr>
<tr>
<td>bZawiejska 2014[^49]</td>
<td>Retrospective cohort study</td>
<td>Poland</td>
<td>Pregnant, GDM, diet or diet-failure requiring insulin</td>
<td>75g OGTT WHO criteria: FPG ≥5.5 mmol/dL, 1-h ≥10.0 mmol/dL, 2-h ≥7.8 mmol/dL</td>
<td>Total in analysis N = 492 N (%) diet not adequate N = 88 (17.9)</td>
<td>Fasting hyperglycaemia (>=5.1 mmol/dL)</td>
<td></td>
</tr>
</tbody>
</table>

Medication (metformin, glyburide and/or insulin) required when diet not adequate
<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Country</th>
<th>GDM Management</th>
<th>Glucose Values in OGTT</th>
<th>Total in Analysis</th>
<th>Additional Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bashir 2020<sup>50</sup></td>
<td>Retrospective cohort study</td>
<td>Qatar</td>
<td>Pregnant, GDM, managed with diet, metformin, metformin + insulin, or insulin</td>
<td>WHO FPG 5.1 mmol/l, 1-hour post-OGTT 10.0 mmol/l or 2 hours post-OGTT 8.5mmol/l</td>
<td>N = 801</td>
<td>age, pre-pregnancy weight, pre-pregnancy BMI, BMI categories, GA at diagnosis, Glucose values in OGTT (FPG, 1 hr, 2hr)</td>
</tr>
<tr>
<td>Gilbert 2021<sup>51</sup></td>
<td>Prospective cohort study</td>
<td>Switzerland</td>
<td>Pregnant, GDM, managed with diet or insulin or metformin</td>
<td>IADPSG and ADA guidelines</td>
<td>N = 341</td>
<td>age, education, social support, GA at first and last visits, HbA1c, family history of diabetes, depression score</td>
</tr>
<tr>
<td>Krispin 2021<sup>52</sup></td>
<td>Retrospective cohort study</td>
<td>Israel</td>
<td>Pregnant, GDM, singleton pregnancy managed with diet or any of metformin, glyburide or insulin</td>
<td>1 hour, 50 g oral glucose challenge followed by 100g OGTT Carpenter and Coustan's criteria</td>
<td>N = 642</td>
<td>age, BMI, obesity, GWG, gravidity, parity, smoking, chronic HTN, hypertensive disorders of pregnancy, previous GDM, previous macrosomia, family history of diabetes</td>
</tr>
<tr>
<td>Meshe1 2016<sup>53</sup></td>
<td>Retrospective cohort study</td>
<td>Israel</td>
<td>Pregnant, GDM, managed with diet, glyburide, glyburide + insulin or insulin</td>
<td>1 hour, 50 g oral glucose challenge followed by 100g OGTT Carpenter and Coustan's criteria</td>
<td>N = 1324</td>
<td>age, parity, OGTT 0 min, gestational age at first diagnosis, pre-pregnancy BMI, BMI > 30, family history of diabetes, GDM in previous pregnancy</td>
</tr>
<tr>
<td>Zhu 2021<sup>54</sup></td>
<td>Retrospective cohort study</td>
<td>Australia</td>
<td>Pregnant, GDM, managed with diet, metformin, metformin + insulin, or insulin</td>
<td>Not given</td>
<td>N = 237</td>
<td>age, parity, BMI, 2nd trimester Hba1c, FPG and 2 hour glucose</td>
</tr>
</tbody>
</table>

Supplemental insulin required to achieve target glucose levels when oral agent (glyburide or metformin) not adequate

Glyburide not adequate
<table>
<thead>
<tr>
<th>Study</th>
<th>Type of Study</th>
<th>Country</th>
<th>Population Details</th>
<th>Glucose Challenge and Criteria</th>
<th>Analysis Details</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chmait 2004</td>
<td>Retrospective cohort</td>
<td>USA</td>
<td>Pregnant, GDM, glyburide treated but requiring supplemental insulin therapy to meet glycaemic targets</td>
<td>1 hour, 50 g oral glucose challenge followed by 100g OGTT Carpenter and Coustan’s criteria</td>
<td>Total in analysis N = 69 N (%) glyburide not adequate N = 13 (18.8%)</td>
<td>GA at GDM diagnosis and at glyburide initiation, fasting and 1 hour postprandial glucose</td>
</tr>
<tr>
<td>Conway 2004</td>
<td>Retrospective cohort</td>
<td>USA</td>
<td>Pregnant, GDM, glyburide treated but requiring supplemental insulin therapy to meet glycaemic targets</td>
<td>ADA guidelines</td>
<td>Total in analysis N = 75 N (%) glyburide not adequate N = 12 (16%)</td>
<td>glucose values, GA at glyburide initiation</td>
</tr>
<tr>
<td>Harper 2016</td>
<td>Retrospective cohort</td>
<td>USA</td>
<td>Pregnant, GDM, glyburide treated but requiring supplemental insulin therapy to meet glycaemic targets</td>
<td>1 hour glucose tolerance test followed by 3 hour glucose tolerance Carpenter and Coustan’s criteria</td>
<td>Total in analysis N = 63 N (%) glyburide not adequate N = 63 (17.5%)</td>
<td>previous GDM, GA at GDM diagnosis, glucose values</td>
</tr>
<tr>
<td>Kahn 2006</td>
<td>Retrospective cohort</td>
<td>USA</td>
<td>Pregnant, GDM, glyburide treated but requiring supplemental insulin therapy to meet glycaemic targets</td>
<td>1 hour, 50 g oral glucose challenge followed by 100g OGTT Carpenter and Coustan’s criteria</td>
<td>Total in analysis N = 95 N (%) glyburide not adequate N = 18 (19%)</td>
<td>age, GA of diagnosis of GDM, gravidity, parity, glucose values</td>
</tr>
<tr>
<td>Rochon 2006</td>
<td>Retrospective cohort</td>
<td>USA</td>
<td>Pregnant, GDM, glyburide treated but requiring supplemental insulin therapy to meet glycaemic targets</td>
<td>1 hour, 50 g oral glucose challenge followed by 100g OGTT Carpenter and Coustan’s criteria</td>
<td>Total in analysis N = 101 N (%) glyburide not adequate N = 21 (20.8%)</td>
<td>age, parity, BMI, family history of diabetes, Previous GDM, glucose values</td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>Country</td>
<td>Population</td>
<td>Methodology</td>
<td>Target</td>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Yogev 2011</td>
<td>Retrospective cohort study</td>
<td>Israel</td>
<td>Pregnant, GDM, glyburide treated but requiring supplemental insulin therapy to meet glycaemic targets</td>
<td>1 hour, 50 g oral glucose challenge followed by 100g OGTT Carpenter and Coustan’s criteria</td>
<td>Total in analysis N = 124 N (%) glyburide not adequate 31 (25%)</td>
<td>Previous GDM, glucose values and GWG</td>
</tr>
<tr>
<td>Gante 2018</td>
<td>Retrospective cohort study</td>
<td>Portugal</td>
<td>Pregnant, GDM, metformin treated but requiring supplemental insulin therapy to meet glycaemic targets</td>
<td>Portuguese Directorate-General of Health (Direção Geral de Saúde) criteria based on IADPSG criteria</td>
<td>Total in analysis N = 388 N (%) metformin not adequate N = 135 (34.8%)</td>
<td>Age, pre-pregnancy BMI, earlier introduction of metformin</td>
</tr>
<tr>
<td>Khin 2018</td>
<td>Retrospective cohort study</td>
<td>UK</td>
<td>Pregnant, GDM, metformin treated but requiring supplemental insulin therapy to meet glycaemic targets</td>
<td>75 g OGTT between 24-28 weeks of gestation with fasting levels of 6.1 mmol/l and/or 2 h postprandial 7.8 mmol/l</td>
<td>Total in analysis N = 138 N (%) metformin not adequate N = 77 (55.8%)</td>
<td>Age, fasting glucose level and HbA1c at OGTT, GA at medication initiation</td>
</tr>
<tr>
<td>McGrath 2016</td>
<td>Retrospective cohort study</td>
<td>Australia</td>
<td>Pregnant, GDM, metformin treated but requiring supplemental insulin therapy to meet glycaemic targets</td>
<td>Not given</td>
<td>Total in analysis N = 53 N (%) metformin not adequate N = 34 (54%)</td>
<td>GA at metformin initiation</td>
</tr>
<tr>
<td>Picón-César 2021</td>
<td>RCT metformin for GDM trial</td>
<td>Spain</td>
<td>Pregnant, GDM, singleton pregnancy, age 18-45 years, GA 14-35 weeks, met criteria for medical therapy</td>
<td>50-gram oral glucose screening (O’Sullivan test) followed by a 100-gram OGTT using the National Diabetes Data</td>
<td>Total in analysis N = 90 N (%) metformin not adequate N = 20 (22.3%)</td>
<td>Previous GDM, GA at randomisation, glucose values in the OGTT, SBGM at randomization</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Country</td>
<td>Criteria</td>
<td>Intervention</td>
<td>Outcome 1</td>
<td>Outcome 2</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>aRowan 2008<sup>65</sup></td>
<td>RCT Metformin in Gestational Diabetes (MIG) Trial</td>
<td>Australia and New Zealand</td>
<td>Pregnant, GDM, singleton pregnancy, age 18-45 years, met criteria for medical therapy, randomized to metformin but required subsequent insulin therapy</td>
<td>Group criteria. Isolated fasting glycaemia at 100 mg/dL (5.6 mmol/L) was also considered as GDM</td>
<td>Total in analysis N = 363 N (%) metformin not adequate N = 168 (46.3%)</td>
<td>BMI, glucose values</td>
</tr>
<tr>
<td>aTertti 2013<sup>***66</sup></td>
<td>RCT comparing metformin vs. insulin</td>
<td>Finland</td>
<td>Pregnant, GDM, singleton pregnancy, met criteria for medical therapy, randomized to metformin but required subsequent insulin therapy</td>
<td>75 g OGTT Australasian Diabetes in Pregnancy Society criteria</td>
<td>Total in analysis n = 110 N (%) metformin not adequate N = 23 (20.9%)</td>
<td>age, GA at OGTT and randomisation, HbA1c, fructosamine</td>
</tr>
<tr>
<td>Others</td>
<td>Observational study of a subset of the</td>
<td>France</td>
<td>Pregnant, GDM, met criteria for medical therapy</td>
<td>not given, other than diagnosed between</td>
<td>Total in analysis N = 117</td>
<td>CYP2C9 and OATP1B3 genetic polymorphisms</td>
</tr>
</tbody>
</table>

^aReferences provided in the original text.

^{***}Significant results.
<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
<th>Location</th>
<th>Participants</th>
<th>Outcome</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Insulin Daonil trial (INDAO) participants of randomization to glyburide vs. insulin</td>
<td></td>
<td></td>
<td>and randomized to glyburide</td>
<td>24-34 weeks gestation</td>
</tr>
<tr>
<td>b) Huhtala 2020***68</td>
<td>Secondary analysis of data from RCT comparing metformin vs. insulin</td>
<td>Finland</td>
<td>Pregnant, GDM, singleton pregnancy, met criteria for medical therapy</td>
<td>75 g OGTT determined by Finnish national criteria (as above)</td>
<td>N = 100-108 Metformin treated; N = 95-107 Insulin treated</td>
</tr>
</tbody>
</table>

ADA, American Diabetes Association; ADIPS, Australian Diabetes in Pregnancy Society; BMI, body mass index; FPG, fasting plasma glucose; GA, gestational age; GCT, glucose challenge test; GDM, gestational diabetes; GWG, gestational weight gain; HbA1c, glycosylated haemoglobin; HTN, hypertension; IADPSG, International Association of Diabetes and Pregnancy Study Group; OGTT, oral glucose tolerance test; RCT, randomized controlled trial; SBGM, self blood glucose monitoring

*Studies in each subgroup listed in alphabetical order of first author

a Studies included in meta-analyses

b Studies included in narrative synthesis

**Wong 2011 and 2012 contain overlapping data

***Huhtala 2020 is secondary analyses of Tertti 2013
Table 2. Lifestyle adequate to achieve target glucose levels vs not adequate

<table>
<thead>
<tr>
<th>Precision Marker</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate (95%CI)</th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>20</td>
<td>14620</td>
<td>Mean difference (95%CI)</td>
<td>-0.98 [-1.23, -0.73]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Nulliparity</td>
<td>8</td>
<td>6969</td>
<td>Odds Ratio (95%CI)</td>
<td>1.53 [1.23, 1.89]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Body mass index</td>
<td>16</td>
<td>11313</td>
<td>Mean difference (95%CI)</td>
<td>-1.83 [-2.32, -1.35]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Previous history of GDM</td>
<td>13</td>
<td>9885</td>
<td>Odds Ratio (95%CI)</td>
<td>0.46 [0.37, 0.57]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Haemoglobin A1C</td>
<td>8</td>
<td>4825</td>
<td>Mean difference (95%CI)</td>
<td>-0.21 [-0.27, -0.14]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>13</td>
<td>8663</td>
<td>Mean difference (95%CI)</td>
<td>-6.26 [-8.44, -4.08]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>1-hour glucose</td>
<td>10</td>
<td>6579</td>
<td>Mean difference (95%CI)</td>
<td>-15.33 [-20.81, -9.85]</td>
<td>⬤⬤⬤⬤⬤</td>
</tr>
<tr>
<td>2-hour glucose</td>
<td>12</td>
<td>8255</td>
<td>Mean difference (95%CI)</td>
<td>-9.06 [-13.55, -4.56]</td>
<td>⬤⬤⬤⬤⬤</td>
</tr>
<tr>
<td>3-hour glucose</td>
<td>3</td>
<td>2126</td>
<td>Mean difference (95%CI)</td>
<td>-8.56 [-12.58, -4.56]</td>
<td>⬤⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Family history of diabetes</td>
<td>13</td>
<td>9256</td>
<td>Odds Ratio (95%CI)</td>
<td>0.66 [0.59, 0.75]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Gestational age at GDM diagnosis</td>
<td>9</td>
<td>5882</td>
<td>Mean difference (95%CI)</td>
<td>3.06 [2.33, 3.79]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Smoking history</td>
<td>5</td>
<td>3488</td>
<td>Odds Ratio (95%CI)</td>
<td>0.80 [0.52, 1.23]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Previous history of macrosomia</td>
<td>7</td>
<td>5595</td>
<td>Odds Ratio (95%CI)</td>
<td>0.63 [0.42, 0.94]</td>
<td>⬤⬤⬤⬤</td>
</tr>
</tbody>
</table>

Very low ⬤⬤⬤⬤⬤

Low ⬤⬤⬤⬤
Table 3. Oral pharmacological agent adequate to achieve target glucose levels vs not adequate

<table>
<thead>
<tr>
<th>Precision Marker</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate (95%CI)</th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>11</td>
<td>1473</td>
<td>Mean difference (95%CI)</td>
<td>-1.04 [-2.10, 0.03]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Nulliparity</td>
<td>8</td>
<td>1215</td>
<td>Odds Ratio (95%CI)</td>
<td>1.55 [1.17, 2.04]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Body mass index</td>
<td>10</td>
<td>1692</td>
<td>Mean difference (95%CI)</td>
<td>-1.21 [-2.21, -0.21]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Previous history of GDM</td>
<td>8</td>
<td>1412</td>
<td>Odds Ratio (95%CI)</td>
<td>0.43 [0.30, 0.63]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Haemoglobin A1C</td>
<td>6</td>
<td>1152</td>
<td>Mean difference (95%CI)</td>
<td>-0.21 [-0.29, -0.13]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>12</td>
<td>1836</td>
<td>Mean difference (95%CI)</td>
<td>-8.02 [-11.87, -4.16]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>1-hour glucose</td>
<td>8</td>
<td>1177</td>
<td>Mean difference (95%CI)</td>
<td>-10.64 [-18.25, -3.02]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>2-hour glucose</td>
<td>10</td>
<td>1378</td>
<td>Mean difference (95%CI)</td>
<td>-7.31 [-11.38, -3.25]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>3-hour glucose</td>
<td>6</td>
<td>679</td>
<td>Mean difference (95%CI)</td>
<td>0.00 [-11.79, 11.79]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Family history of diabetes</td>
<td>6</td>
<td>1040</td>
<td>Odds Ratio (95%CI)</td>
<td>0.79 [0.50, 1.25]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Gestational age at GDM diagnosis</td>
<td>11</td>
<td>1473</td>
<td>Mean difference (95%CI)</td>
<td>2.64 [1.42, 3.86]</td>
<td>⬤⬤⬤⬤</td>
</tr>
<tr>
<td>Gestation at oral pharmacological agent initiation</td>
<td>7</td>
<td>967</td>
<td>Mean difference (95%CI)</td>
<td>3.79 [2.08, 5.51]</td>
<td>⬤⬤⬤⬤</td>
</tr>
</tbody>
</table>

Very low ⬤⬤⬤⬤
Low ⬤⬤⬤⬤