Optimizing rabies vaccination of dogs in India

Kim Cuddington*¹,³ and William H.B. McAuliffe²,³

* Address for correspondence: Department of Biology, 200 University Ave N., University of Waterloo, Waterloo, ON, Canada, N2L 3G1, email: kcudding@uwaterloo.ca, phone: 519-888-4567 ex 33669

1University of Waterloo, Waterloo, Ontario, Canada
2Rethink Priorities, San Francisco, California, USA
3These authors contributed equally to the manuscript

April 10, 2023

Article Summary Line: Oral rabies vaccine baits can be used to reduce the costs of dog vaccination campaigns and increase vaccine coverage even when baits are up to 10x more expensive than parenteral vaccines.

Running Title: Optimizing rabies vaccination of dogs

Keywords: Oral vaccination, rabies, linear programming, free-ranging dogs, India
Abstract

Dog vaccination is the key to controlling rabies in human populations. However, in countries like India, with large free-roaming dog populations, vaccination strategies that rely only on parenteral vaccines are unlikely to be either feasible or successful. Oral rabies vaccines could be used to reach dogs which are either not owned or have small probability of being brought to vaccination centers. We show that an oral bait handout method for free-roaming dogs can reduce costs of vaccination campaigns, and increase vaccine coverage, using linear optimization. This finding holds even when baits cost up to 10x the price of parenteral vaccines, if there is a large dog population or proportion of dogs that are never confined. We suggest that the use of oral rabies vaccine baits will be required to meet the initiative to eradicate human deaths from dog-mediated rabies by 2030.

Introduction

Rabies is a neglected tropical disease (1) that has the highest mortality rate of all known infectious agents (2). Incubation can take 1-3 months following infection, and the paralytic form of the disease is not widely recognized (e.g., 3). As a result, the disease is probably under-reported (4). In addition, although rabies is a notifiable disease in many countries where it is endemic, it has not been in all (e.g., the Indian government only recently announced that reporting would be required, 5). Unfortunately, notifiability does not necessarily ensure effective surveillance either (6, 7). Therefore, estimates in databases such as global burden of disease (8) are almost certainly too low (~14,000 deaths for 2019, http://ihmeuw.org/5wfj). The World Health Organization (WHO) suggests that an estimate of ~59,000 deaths per annum, which attempts to account for under-reporting (9), is also likely an underestimate (10). The majority of deaths occur in Africa and Asia, where free-roaming dogs are the primary means of transmission. India probably accounts for 36% of rabies deaths, or an estimated 18,000 - 20,000 per year (11). In this contribution, we use optimization techniques to show that the most cost-effective vaccination campaign for eradicating rabies in India will include vaccination of free-roaming dogs with oral rabies vaccine baits, which is not currently part of the management of rabies.

The negative economic impact of rabies is relatively large. About 29 million post-exposure treatments (PEP) are delivered each year (1), and ~ 83% of the total rabies control budget in both
Asia and Africa is put towards this treatment (12). The disease is disproportionately found in poor rural populations, where treatment costs may be a heavy burden (1). Timely PEP is almost 100% effective in preventing death (13), but because of costs (currently estimated at US $ 108 including with travel costs and loss of income, 1), a portion of those possibly exposed do not finish treatment. In addition, livestock losses due to rabies are estimated at 62 million (CI 29 - 237 million, 9) and, again, may be disproportionately borne by those in poor rural areas. Hampson et al. (9) estimated the global welfare impact of human rabies at 3.7 million disability-adjusted human life years (DALYs) lost every year, with a related global economic burden of ~ USD $ 8.6 billion per year (1).

Over 99% of cases of human rabies are caused by an infected dog bite (1). The WHO suggests that dog vaccination is the most cost-effective strategy for preventing rabies in people, and reduces both human deaths and the need for PEP (1). Programs in regions of Tanzania, the Philippines, and South Africa beginning in 2010 (14) found that while costs per dog vaccinated varied (~$1.18 - 15.62 2012 USD), they were much lower than costs of PEP ($ 44.91 to $ 64.38 2012 USD). A recent cost comparison in Chad also suggests canine mass vaccination has approximately double the cost-effectiveness per DALY averted compared to PEP alone (15). Investment in dog vaccination, however, accounts for less than 1.5% of the global economic burden of the disease, and until recently, large-scale dog vaccination activities in India accounted for less than 0.5% of the estimated economic burden from the disease (9).

The WHO, Food and Agriculture Organization (FAO), and the World Organization for Animal Health (OIE) have prioritized rabies as a model disease for a One Health approach. These agencies have launched the ‘United Against Rabies Forum’ that advocates and prioritizes investments in rabies control, and coordinates global efforts to achieve zero human deaths from dog-mediated rabies by 2030 (16). However, these campaigns do not include financial pledges. Moreover, most charitable donations associated with rabies control are commitments to contribute to the costs of PEP in endemic regions (e.g., 4), while investment in dog vaccination has been judged insufficient (17).

Annual vaccination of over 70% of the dog population can stop transmission and eventually lead to elimination if repeated over several years (e.g., 18). Mass vaccination campaigns targeting dogs have been highly successful in many countries. For example, the U.S. was able to eliminate the canine rabies variant in the late 1970s and again in the 2000s. Widely used strategies for dog vaccination include
central point vaccination and door-to-door vaccination. In central point vaccination (CP) dog owners bring their pets to a central location such as a veterinarian office or a community clinic during a vaccination campaign. Door-to-door (DD) strategies are where teams move from home-to-home to vaccinate dogs that can be handled by their owners. These two strategies have only been successful at large scales where most dogs are responsibly owned (e.g., Latin America, 19).

In countries like India, where there are many free-roaming dogs that may or may not be owned (20), catch-vaccinate-release techniques (CVR) have been employed. For animals that cannot be easily handled, CVR entails a team of people (4-7) capturing the animal in a net, injecting the vaccine, and then releasing. For example, in 2013, the charity Mission Rabies (https://missionrabies.com/) conducted synchronized mass dog vaccination campaigns in 12 Indian cities using CVR. They vaccinated 54,227 dogs with an average vaccination rate of 14.6 (CI 10- 20) dogs/person/day (21). Post-vaccination surveys at five of the sites indicated coverage rates of about 71.2%. To date, however, there is no example of a large-scale national campaign that relies primarily on CVR. Wallace et al. (22) and Gibson et al. (21) suggest that the labor force required for such a campaign is prohibitively large.

Instead, several authors promote oral rabies vaccine bait handouts (ORV) as a key strategy in the control of canine rabies where there are large populations of free-roaming dogs (23, 24, 22). This strategy involves providing attractive oral rabies vaccine baits to animals that cannot be easily handled, observing consumption or removing the bait if rejected. The WHO has been recommending ORV as a complementary measure to reach inaccessible dogs since at least 1998 (25). Moreover, oral baits dispersed in the environment have been used successfully in North America and Europe to control rabies in a variety of wildlife species, and have resulted in a net savings in disease control costs (e.g., 26). India formally endorsed the use of ORV for a WHO-recommended dog oral vaccine, SAG2, in 2007; however ORV was never used in a large campaign, since the costs of commercial vaccine baits exceeded funding (24).

It is likely, however, that the total costs of ORV vaccination of free-roaming dogs will be lower than those of CVR. Mission Rabies conducted a pilot test of oral baiting in Goa, India in 2018, where they compared two vaccination strategies. Either teams of two traveled by scooter and offered dogs an empty oral bait construct (ORV), or teams of seven traveled by supply vehicle and used CVR (23). The fixed operational team cost of ORV was one quarter of CVR, and had a faster daily vaccination
rate. ORV also increased the proportion of dogs accessible for vaccination across land use types, such as urban areas and rural villages. Further, staff reported that dogs are more likely to run away from CVR teams and alert other dogs in the area by barking, while ORV teams reported that dogs were often attracted to the baits and would gather around them.

Gibson et al. (21) used a spreadsheet tool, originally created by Wallace et al. (27) for use by public health agents, to calculate the costs of canine vaccination campaigns which included ORV for Indian cities. We show how a simple optimization routine can instead use this same information to identify the best vaccination strategy for different dog populations. This technique has the advantage of suggesting lower cost strategies that may not have been considered by practitioners. For the scenarios examined, we find that an optimal strategy that includes ORV is almost always more cost-effective than programs that do not include this method of vaccination.

Methods

We used linear programming to determine the optimal combination of canine rabies vaccination methods that will minimize costs for a desired level of vaccination coverage (see detailed methods in Appendix 1). Following Gibson et al. (21) and Wallace et al. (27), we divided the total dog population into three categories: always confined (C), sometimes confined (SC), and never confined (NC). To determine if there were cost savings of ORV we compared optimal solutions where four different methods of vaccination were available (CP, DD, CVR, and ORV), or only the three standard methods (CP, DD, and CVR). The number of dogs and the proportion in each category in a region is most uncertain, so we varied the total population size and proportion of NC dogs to examine a range of scenarios. The usefulness of ORV will depend heavily on the number number of NC dogs, and because of this, we merely divided the remaining population evenly between C and SC dogs.

For each scenario, the optimization routine identified the strategies that minimized the per dog vaccination cost, while still meeting the coverage target. To calculate per dog costs, we used a selection of the mean cost estimates proposed by Wallace et al. (27) and specified for the city of Bangalore by Gibson et al. (21, see Supplementary material Bang Scen A - OBH - 11d.xlsx), with some modifications (see Appendix 1). We then calculated the per dog costs using vaccination rates of 30 dogs/team/day for CP, DD, and CVR methods, and either the same rate for ORV (Table 1), or a rate 50 of
dogs/team/day to reflect the faster handling rate of this method (as one possible rate used in 21). We then used these costs for the optimization procedure.

The actual vaccination coverage achieved by these methods is determined by both vaccine efficacy and accessibility of dogs to these various methods. Gibson et al. (21) assume parenteral vaccination provides a 100% chance of rabies immunity, while ORV provides only an 80% chance of immunity. To get vaccination coverage, we multiply the probabilities of being able to use a given vaccination method on each dog confinement category (Table 2) by vaccination efficacy. For example, ORV can reach 79% of NC dogs (Table 2), but since it has an estimated 80% efficacy once administered, this method has a maximum coverage of 63%. CVR has an accessibility of 64%, and parenteral vaccination provides a 100% immunity, so the maximum coverage rate remains quite similar at 64%.

After an optimal vaccination strategy was identified, we calculated the cost of a 30 day campaign to yield a final per dog cost. We assume fixed costs will not vary significantly for different optimal strategies. However, we include one additional fixed cost for campaigns that included ORV: $10,000 for an information campaign specific to oral baits (see rationale in Appendix 1). As a result, a strategy identified as having the lowest per dog vaccination cost could have a higher final per dog cost than other strategies.

Results

We generated optimal solutions (see example in Table 3) for each combination of oral bait price (ranging from $0.5 to $5.50), proportion of NC dogs (ranging from 0.05 to 0.99), over a range of total dog population sizes (5000 - 150000), with target vaccination thresholds of 70% for C and SC dogs, and 60% for NC dogs, where this lower value for NC dogs is close to the maximum possible for either OVR or CVR (See rationale in Appendix 1).

In general, the total cost per vaccinated dog for an optimal strategy that included the use of ORV was lower than a vaccination campaign that did not. For example, linear optimization suggests that for a fixed proportion of free-roaming dogs of 0.5 in a total population of 50,000, OVR will result in lower per dog costs until a fairly high oral bait cost of $3.85 (Figure 1).

We find a similar price threshold across a range of proportion NC dogs in this fixed population size. Unless the proportion of NC dogs is less than 0.2 or the oral bait price is greater than ~$4.00, the
use of ORV will always result in lower per dog costs for the total campaign (Figure 2). With a larger population size, higher proportion of NC dogs, or greater vaccination rate of 50 dogs/team/day this price threshold is even higher (e.g., $4.85 for 100,000 dogs, see Figure 3). However, for very small proportions of NC dogs (e.g., <0.1) there may be no cost advantage in using this method unless the total population is quite large.

We then categorized the optimal solutions across the range of oral bait price and proportion of NC dogs for an intermediate fixed population size of 50,000 dogs. There are two major categories of solution for NC dogs, but CP vaccination is always suggested for C and SC dogs for the vaccination accessibilities in Table 2. If the oral bait cost is less than ~$4.00, the optimal strategy is to always use ORV for NC dogs, and CVR otherwise.

Changes to ORV accessibility will change the optimal solution. Unsurprisingly, optimal solutions are more likely to include ORV for higher accessibility and lower cost. For example, for a population of 50,000 dogs we find three different optimal strategies: ORV alone when accessibility for this method is greater than 0.75, a combination of ORV and CVR when accessibility is lower and oral bait cost is less than $4.00, or CVR alone for lower accessibility and higher costs. Similarly, the optimal strategy for other dog categories can vary with changes to vaccine method accessibility. Where we allow the CP compliance rate for owners of SC dogs to vary, we find there are solutions where use of low cost ORV may be optimal for this population when the daily vaccination rate for this method is higher than DD (Figure 4).

We also examined the impact of introducing probabilistic constraints on meeting the vaccination targets (see rationale in Appendix 1), but did not find any differences in the optimal strategies. As expected, achieving a higher probability of success requires vaccinating more dogs. For instance, in a population of 50,000, we will need to vaccinate ~10% more dogs (5500-6400) to have 70% probability of meeting our coverage targets, versus having only a 20% probability of doing so.

Discussion

A renewed commitment to achieve zero human deaths from dog-mediated rabies in India (5) requires effective vaccination solutions. However, this region faces the difficult problem of vaccinating large populations of free-roaming dogs. In cities like Bangalore, recent estimates suggest that the
free-roaming population may be as large as 300,000 dogs (Worldwide Veterinary Service Centre, as reported by 28). Our analysis indicates that for dog populations like these, the use of oral rabies vaccine baits (ORV) may minimize costs, while still meeting reasonable vaccination coverage targets. Importantly, we find that ORV can offer significant cost-savings even when the baits themselves cost significantly more than parenteral vaccines, and have a lower efficacy rate.

Using cost estimates from previous work on dog vaccination (27, 21), we show that ORV becomes more cost-effective as the number of never confined (NC) dogs increases. This occurs because more vaccinations will be required to achieve the same vaccination coverage, and the only other feasible method for these dogs, catch-vaccinate and release (CVR), has higher personnel and equipment costs. We examined a wide range of possible per unit prices for oral baits, assuming that while initially baits would have to be imported at potentially high cost, they may have lower cost in the future when domestic manufacture becomes possible. In 2020, Wallace et al. (22) suggested a price range of $2.00-$4.00 USD while Gibson et al. (21) examined a range from $1.50-$2.50. We find that even for prices almost as high as 10x that of parenteral vaccines. The cost savings of ORV methods can be considerable when there are large free-roaming dog populations.

We note that all cost estimates included here are examples only and will likely vary widely from location to location. We expect the general trend of solutions to hold as long as the ratio of various costs remains similar. For example, changing the maximum daily vaccination rate for a two person crew using ORV from 50 to 30 dogs decreases the break-even per bait cost, but does not change the outcome that use of ORV is optimal for NC dogs below this cost. However, if a particular cost category changes significantly relative to others, optimal solutions may change (e.g., if the difference in daily wage of ORV vs CVR technicians is greatly altered).

When it is suspected that the total population size or the proportion of NC dogs is small (e.g., <0.1 for a population of 50,000 dogs), it is less clear if ORV should be employed in a campaign. Unfortunately, dog population estimates are usually poor. There is usually little survey data, and estimates are often created by using a fixed proportion of the known human populations. Photo mark-recapture data collection seems quite promising (e.g., 29) and could be used before the design of a vaccination campaign to estimate the size of free-roaming populations more accurately. Such methods may reveal that different areas in the same urban community have quite different population
structures (e.g., 30), so that more effective methods can be targeted for specific areas, again using optimization (e.g., 31). However, for large NC populations, it seems clear that ORV will usually be the best option.

Optimal solutions were determined in part by the accessibility of dogs to different methods because of the requirement to meet vaccination coverage targets. While we found solutions included an increased use of CVR as ORV accessibility decreased, we strongly suspect that low accessibility to ORV methods is correlated with low accessibility to CVR methods, except perhaps in the case of low bait palatability. We also note that it will be quite difficult to meet 70% vaccination targets for NC dogs with either of these methods, although the recent successes in Goa are inspiring (32). Therefore, we suggest the efficacy of lower targets for reducing the human burden of disease should be further investigated.

Other vaccination accessibility changes, such as low rates of CP vaccination for semi-confined (SC) dogs, may lead to optimal strategies that use ORV for different dog categories. For example, in rural India, Tiwari (20) suggests that dogs are mostly “partially” owned, meaning that a household may claim ownership but not consider themselves responsible for the animal’s vaccination and veterinary care. In Bangalore specifically, there is a higher density of free-roaming dogs in areas with a higher human density and lower average income. Households in this area are also more likely to feed free-roaming dogs (30). This scenario both increases risks of rabies transmission, and potentially makes it less likely household-associated dogs with be transported to a central location for vaccination. Owner-driven vaccination programs used elsewhere (e.g., 19) may not be as effective in these regions. For low CP compliance rates, optimal solutions can employ low cost ORV for SC dogs.

Finally, methods not considered here may offer better cost savings. For example, mobile CP methods, where vaccination centers on vehicles move through neighborhoods, combined with DD, may be a better option when ORV costs are high. For fractious dogs, or staff that have not been trained in injection, oral bait handout with a door-to-door access method is another option that may be a reasonable choice.

In conclusion, pilot projects and analyses have previously suggested that oral baits will make a valuable contribution to India’s campaign to eliminate rabies (23, 21). We use optimization to demonstrate that even if oral baits are considerably more expensive and less effective than parenteral
vaccinates, they may reduce costs in most scenarios involving free-roaming dogs, while still providing very good vaccination coverage. We note that charitable efforts aimed at providing low cost OVR may be more cost-effective in reducing the human burden of disease than additional efforts directed at PEP.

Acknowledgments

This study was funded by Rethink Priorities.

Biographical Sketch

Kim Cuddington is an Associate Professor in the Department of Biology at the University of Waterloo. William McAuliffe is a Senior Research Manager at Rethink Priorities.

References

Table 1: Per dog vaccination costs calculated using estimates from Gibson et al. (21) with differences noted in Appendix 1

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost per dog (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccines (Parenteral)</td>
<td>0.40</td>
</tr>
<tr>
<td>Vaccines (Oral)</td>
<td>0.50-5.50</td>
</tr>
<tr>
<td>Syringes and needles (CP/DD/CVR)</td>
<td>0.13</td>
</tr>
<tr>
<td>Vaccination certificates (CP/DD)</td>
<td>0.05</td>
</tr>
<tr>
<td>Dog marking (CVR/ORV)</td>
<td>0.03</td>
</tr>
<tr>
<td>CP technicians (1 per dog)</td>
<td>0.40</td>
</tr>
<tr>
<td>CVR technicians (4 per dog)</td>
<td>1.47</td>
</tr>
<tr>
<td>DD/ORV technicians (2 per dog)</td>
<td>0.87</td>
</tr>
<tr>
<td>CVR driver</td>
<td>0.27</td>
</tr>
<tr>
<td>CVR vehicle rental & fuel</td>
<td>2.00</td>
</tr>
<tr>
<td>DD/ORV vehicle rental & fuel</td>
<td>1.00</td>
</tr>
<tr>
<td>CP/DD bite PEP (1 in 2,000)</td>
<td>0.05</td>
</tr>
<tr>
<td>CVR bite PEP (1 in 500)</td>
<td>0.20</td>
</tr>
<tr>
<td>ORV bite PEP (1 in 1,000)</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Table 2: Example of vaccination accessibility from Gibson et al. (21)

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>DD</th>
<th>CVR</th>
<th>ORV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.95</td>
<td>0.95</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>SC</td>
<td>0.80</td>
<td>0.80</td>
<td>0.70</td>
<td>0.95</td>
</tr>
<tr>
<td>NC</td>
<td>0.05</td>
<td>0.10</td>
<td>0.64</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Table 3: Optimal vaccination strategy for a population of 50,000 dogs with 48% NC, oral bait cost of $2.50 with other costs as given in Table 1 and vaccination accessibility as given in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>SC</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total dogs</td>
<td>13000</td>
<td>13000</td>
<td>24000</td>
</tr>
<tr>
<td>Target coverage</td>
<td>70%</td>
<td>70%</td>
<td>60%</td>
</tr>
<tr>
<td>Number of vaccinations needed</td>
<td>CP: 9579</td>
<td>11375</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DD</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CVR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ORV</td>
<td>0</td>
<td>22785</td>
</tr>
</tbody>
</table>
Figure 1: Total per dog costs for vaccination campaigns with and without the use of oral rabies vaccine bait handout (ORV) for a dog population of 50,000, where the number of never confined dogs (NC) is either 50% or 10% of the population, and the ORV vaccination rate is either 30 dogs/team/day (a) or 50 dogs/team/day (b). Horizontal dashed lines give the final per dog cost for a campaign without ORV, while solid lines show how total per dog costs of a campaign with ORV increase with bait cost. The intersection of the lines gives the bait cost at which the campaigns have the same final per dog costs.
Figure 2: Difference between final per dog costs for optimal vaccination strategies with and without ORV for a total dog population of 50,000 with varying proportions of never confined (NC) dogs and oral bait cost, and other costs as given in Table 1.
Figure 3: Maximum cost per oral bait at which there would no longer be a vaccination campaign cost advantage of using oral rabies vaccine bait handout (ORV) for costs as given in Table 1, accessibility as in Table 2, and a range of total dog population sizes and different proportions of never confined (NC) dogs. Vertical line shows outcomes for a population size of 50,000 dogs used for other figures.
Figure 4: Most cost-effective vaccination strategies for semi-confined (SC) dogs with the constraint of 70% coverage. Shaded areas and text indicate whether the optimal strategy is to use central point (CP), door-to-door (DD), oral rabies vaccine bait handout (ORV) or mixed strategies as oral bait cost and vaccination accessibility vary, with faster ORV vaccination rate of 50 dogs/team/day. We show the scenario where SC dogs comprise 50% of a total dog population of 50,000.
Appendix 1: Detailed Methods

Model formulation

We use linear optimization on per dog vaccination costs to identify cost-minimizing strategies with the constraint that the solution maintains the desired vaccination coverage, for a range of scenarios.

Detailed vaccination costs

Some costs for consumables in Gibson et al. (1) were already provided on a per dog cost (e.g., vaccines, syringes, certificates and dog marking). However, since there is considerable uncertainty regarding the exact price of oral baits for use in India (2), we allow the this cost to vary from $0.50 to $5.50 in our calculations. Costs that were not be expressed per dog included vehicle rentals, equipment and staff wages that would scale with a given number of vaccinations (e.g., the costs of CVR include among other things, the cost of renting a van, the budgeted expense of treating employees that received a bite, and the salary of a driver).

To obtain personnel costs per dog vaccination, the number of employees required to implement each vaccination type were set at 1 person for CP, 2 for DD and ORV and 4 for CVR, with a per person vaccination capacity of 30 dogs/team/day for injection, and either the same rate for ORV, or a faster rate of 50 dogs/team/day for oral baits (taken from the Bangalore spreadsheet in 1). In addition, a driver was required for CVR. Using the estimated daily wage, we can then calculate the per dog cost of personnel. Naturally these costs may vary wildly with location, but we confirmed that the rates used by Gibson et al. (1) (i.e., $12, $13, $11, $13 daily wage for technicians using CP, DD, CVR and OVR vaccination respectively, and $8 for the driver) were reasonable (about double the current minimum wage for skilled worked in the state of Karnataka, 3). The per dog rate of other expenses such as CP/DD Bite PEP can be calculated from the rates provided (1 in 2,000). A separate rate for ORV was not provided, but we assumed the same cost as CP/DD PEP with a higher rate (1 in 1,000), but a lower rate than CVR PEP (1 in 500). We assumed that vaccination certificates would only be provided for CP and DD dogs, and dog marking (e.g., paint or similar) would be completed only for CVR and ORV dogs (see Table 1).

While DD and ORV vaccination requires a team of two and minimal equipment than can be transported on a small vehicle like a moped, CVR requires a lot of equipment and a vehicle that can
transport 4-5 people. Therefore unlike Gibson et al. (1), we differentiate the vehicle rental costs and assume that the larger vehicle for CVR will cost 2 times more ($30 USD/day) than a vehicle required for DD and OBR ($15/day), and will require twice the amount of gasoline. We believe this estimate is underestimate of required vehicle costs, since our informal online search of rental agencies suggests moped rentals will range from $3 to $7 USD per day, passenger cars $25-85 and larger minivan ~$100. Therefore, while not included in this analysis, if mopeds could indeed be used for DD and ORV, and a larger vehicle such as a minivan was needed for CVR, the costs would differ by a factor of 10. Note that when the faster vaccination rate of 50 dogs/team/day for ORV is used, the per dog cost of personnel and vehicle rental for DD and ORV methods will differ from Table 1.

Wallace et al. (4) notes that the WHO suggests the use of oral baits requires information campaigns, as well as surveillance systems capable of detecting unintended vaccine exposures, which could add additional unknown costs to such a campaign. This recommendation for surveillance seems to relate more to the case where oral baits are broadcast in the environment rather than handed out to individual dogs. In addition, recent developments in these vaccines make adverse effects on accidental exposure very unlikely (5). Nonetheless, we included one additional fixed cost for vaccination campaigns that included oral baits: $10000 for dissemination regarding the deployment of oral baits. This value was based on estimates from Gibson et al. (1) for a more general advertising campaign, and included costs for 10000 pieces of printed information and 30 days of radio or car loudspeaker announcements.

There are no differences in costs noted by these authors with respect to using the different methods for different classes of dogs. Using these estimates we obtain a per dog vaccination cost of $1.03, $2.50, $6.36, for CP, DD and CVR methods, and a range of $1.75-$6.25 for ORV. Thus the cost of central point vaccination (CP) for a never confined dog (NC), is given as the same for an always confined (C) dog. The difference in using these methods for different categories is accounted for in an accessibility metric (see Vaccination method effectiveness).

Detailed vaccination method effectiveness We use the vaccine accessibility values provided by Gibson et al. (1) for the city of Bangalore (Table 2), but do note: 1. these authors are explicit that the vaccine accessibility values will depend on the particular location, and 2. that the meaning of the accessibility value lies in the exact method of implementation for the oral baits. For example, Gibson
et al. (1) indicates that CP and DD campaigns will have a higher probability of reaching C and SC
dogs, and estimates a 5% chance of vaccinating an always confined (C) dog with an oral bait handout.
However, it is of course entirely possible to have a door-to-door campaign that employs oral baits
instead of injections, and it may be cheaper and more effective to do so if trained personnel to
administer injections are too costly, or the probability of owners responding to calls to attend CP
vaccination locations is too low. We allow NC ORV and SC CP vaccine accessibility to vary in our
analysis to address the first point, but have not included more hybrid strategies such as the use of oral
baits in a door-to-door campaign.

Optimization

To determine optimal vaccine delivery solutions, we use linear programming to minimize over per dog
costs. All code used to generate out results can be found as either a compiled .pdf file or the raw .Rmd
on github (see https://github.com/kcudding/rabies). This approach has been used for other similar
health care problems (e.g., 6, 7). We note that our problem can be characterized as an example of the
classic transportation problem.

The objective function of a linear programming problem represents the main objective of the
decision-maker. In this case, our objective is to minimize the per dog costs of vaccination. To do this,
we need to find the optimal number of dogs to vaccinate using each vaccination method.

Our objective function is

\[
\min \sum \sum c_j x_{ij},
\]

where \(c_j \) is the cost for each vaccination method, and \(x_{ij} \) is the number of dogs vaccinated in each of
the three categories, \(i \) by one of the four methods \(j \).

Where solutions were possible (see below regarding Constraints to achieve rabies vaccination
targets), we compared to those without the option of oral bait delivery in order to determine if costs
were lowered by incorporating this vaccination technique. Optimal solutions were found using lpSolve,
an R (8) interface to the freely available software lp_solve (version 5.5,
https://lpsolve.sourceforge.net/5.5/).
Constraints to achieve rabies vaccination targets

In addition to minimizing costs, we added constraints to set the minimum percentage of dogs successfully vaccinated to ensure that disease transmission was halted or at least slowed. We use 70% as the minimum annual vaccination coverage (e.g., 9) required for rabies control ($R_0 < 1$), and add that constraint for C and SC dog categories as: $\sum x_{ij} v_{ij} \geq 0.7d_i$, where x_{ij} is the number of dogs in category i vaccinated by method j, d_i is the number of dogs in each category in the population, and v_{ij} is the effectiveness of method j on dog category i.

Given the example vaccine efficacy and accessibility of ORV and CVR provided by Gibson et al. (1) for Bangalore, this 70% vaccination target cannot be met for NC dogs. However, rabies may have relatively low transmission rates, such that in some populations lower vaccination coverage may be sufficient to substantially reduce economic and DALY impacts. For example, Fitzpatrick et al. (10) predict an 88% reduction in annual human rabies deaths for an ongoing program of canine vaccination that reaches $\approx 13\%$ of the overall dog population. We therefore set the vaccination target for NC dogs at 60%, to fall slightly below the maximum possible coverage for CVR and ORV methods.

We note that another option is to set a 70% vaccination target for the combined transmission category of free-roaming dogs which includes both NC and SC dogs, as well as 70% of C dogs. Solutions that meet this constraint can only be found where NC dogs comprise $<50\%$ of the population, if only one vaccination attempt is made per dog, and the remaining dog population is divided evenly between SC and C dogs.

Optimization with probabilistic constraints

We also investigated solutions where the probability of reaching the specified vaccination constraints was met with either a 20% probability or a 70% probability, on the grounds that lower probabilities of meeting vaccination targets may be sufficient for significant positive impact as suggested by Fitzpatrick et al. (10).

To incorporate a probabilistic approach to meeting vaccination targets, we use a chance constraint optimization procedure (e.g., 11). We impose the constraint that for each dog category, i,

$$P\left(\sum x_{ij} v_{ij} \geq \zeta_i\right) \geq p,$$
where ζ_i is the number of vaccinated dogs required to achieve the desired vaccination coverage for that category (e.g., $0.7d_i$), and p is a given probability.

Then, we can relax the probabilistic problem into the equivalent deterministic problem by using the appropriate probability density function and substituting the left hand side of the constraint with a deterministic expression. If we assume that ζ_i is normally distributed with mean μ_i and variance σ^2_i, we can transform the constraint for each i into

$$P \left(\sum x_{ij}v_{ij} \right) \geq \mu_i + \sigma_iq_p,$$

where q_p is the p-quantile of the standard normal distribution. We then assume that the dog population estimates were normally distributed with means as previously indicated and variance set as 20% of the mean. After this, we then solve as usual for a given p. However, we note that issues with convexity and stability can mean that small changes in the actual density function could cause major changes in the optimal solution.

References

