Inpatient Kangaroo Care Predicts Early Cognitive Development at 6 and 12 Months in Infants Born Very Preterm

Molly F. Lazarus, BSa, Virginia A. Marchman, PhDa,b, Edith Brignoni-Pérez, PhDa,c, Sarah Dubner, MDa, Heidi M. Feldman, MD, PhDa, Melissa Scala, MDd, and Katherine E. Travis, PhDa

Affiliations: aDepartment of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, US bDepartment of Psychology, Stanford University, Stanford, CA, USA cDepartment of Psychiatry, Stanford University, Stanford, CA, US dDepartment of Pediatrics, Division of Neonatology, Stanford University, Stanford, CA, USA

Address correspondence to: Katherine E. Travis, Ph.D.
Medical School Office Building
1265 Welch Road Office x228
Stanford, CA 94305
(650) 498-7690
ktravis1@stanford.edu

Short Title: Kangaroo Care Predicts Cognitive Performance in Preterm Infants

Conflict of Interest Disclosure: The authors declare no conflict of interest.

Funding/Support: This research work was supported by grants from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (K.E. Travis, PI: 5R00-HD8474904; H.M. Feldman, PI: 2R01-HD069150) and the National Institute of Mental Health Postdoctoral Research Training in Child Psychiatry and Neurodevelopment (A. Reiss, PI: T32-MH019908).

Data Sharing Statement: Deidentified individual participant data will be made available upon request.

Abbreviations: Kangaroo care (KC); Very Preterm (VPT); Electronic Medical Record (EMR); Socioeconomic Status (SES); Gestational age (GA); Standard Deviation (SD); Cognitive Adaptive Test (CAT); Lucile Packard Children’s Hospital (LPCH); Neonatal Intensive Care Unit (NICU).

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Article Summary: Variation in family-delivered Kangaroo Care in the NICU predicted infants’ higher cognitive performance at 6 and 12 months, beyond visitation, clinical, and demographic factors.

What is Known on This Subject: Kangaroo Care is a developmental care practice associated with positive short-term outcomes for preterm infants. Kangaroo Care is thought to mitigate adverse neurodevelopmental outcomes associated with preterm birth, but direct evidence of effects beyond hospital discharge is limited.

What This Study adds: In this retrospective cohort study, frequency, amount, and duration of family-delivered Kangaroo Care in the NICU predicted cognitive abilities at 6 and 12 months. Kangaroo care may be a long-term neuroprotective clinical strategy for infants born preterm.
Contributors Statement Page

Molly Lazarus compiled data, conceptualized and designed the study, conducted statistical analysis, drafted the initial manuscript, and critically reviewed and revised the manuscript.

Dr. Heidi Feldman, Dr. Virginia Marchman, and Dr. Katie Travis conceptualized and designed the study, conducted statistical analysis, and critically reviewed and revised the manuscript.

Dr. Edith Brignoni-Peréz conceptualized and designed the study, and critically reviewed and revised the manuscript.

Dr. Sarah Dubner compiled data, coordinated and supervised data collection, and critically reviewed and revised the manuscript.

Dr. Melissa Scala conceptualized and designed the study, and critically reviewed and revised the manuscript.

All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.
Abstract

Background
Limited research links hospital-based experiences of Kangaroo Care (KC), or skin-to-skin holding to longer-term neurodevelopmental outcomes in preterm children. The present study examined relations between inpatient KC and cognitive abilities measured at 6- and 12-months of age in a sample of very preterm (VPT) infants.

Methods
Retrospective study reviewing medical records of 132 (54% male) VPT infants (<32 weeks gestational age (GA)). We calculated KC frequency (instances/day), KC rate (minutes/day), and KC duration (minutes/instance). Scores on the Cognitive-Adaptive Test were available as part of routine follow-up care at 6 (n=77) and 12 (n = 37) months.

Results
Families engaged in KC about 2 days/week, 20 minutes/day, and 70 minutes/session, on average, although there was substantial variability. Variation in KC was positively associated with cognitive outcomes at both 6 (frequency: r=0.32; rate: r=0.29) and 12 (frequency: r=0.53; rate: r=0.59; duration: r=0.38) months. KC significantly predicted 7 to 27% unique variance in 6- and 12-month cognitive outcomes, after controlling for GA, socioeconomic status, health acuity, visitation frequency, and prior cognitive scores. Small increases in KC frequency (e.g., 1 day/week), rate (e.g., 20 minutes/day) or duration (e.g., 20 minutes/instance) were associated with 0.5 to 1.0 SD increases in cognitive outcomes at 12 months. SES, GA, and infant health acuity did not moderate these relations.

Conclusion
VPT infants with more KC during hospitalization demonstrated higher scores on 6- and 12-month assessments of cognitive development. Results provide strong evidence that KC may confer neuroprotection on VPT infants through the first year of life.
Introduction

Kangaroo Care (KC), or caregiver-infant skin-to-skin holding, is a developmental care practice associated with numerous benefits to short-term health outcomes for infants born preterm.\(^1\)\(^–\)\(^4\) Infant health outcomes (e.g. cardiorespiratory stability, growth, infection rates) and parenting practices (e.g. bonding, breastfeeding), are positively impacted by KC and are important predictors of cognitive development.\(^4\)\(^–\)\(^9\) However, direct evidence linking hospital-based experiences of KC to *longer-term neurocognitive outcomes* in children born preterm is currently lacking.\(^10\) Moreover, it is unknown whether KC may uniquely predict long-term outcomes over and above other clinical and socio-demographic factors, such as gestational age, socioeconomic status (SES), health or family visitation. Such data are needed to understand the utility of KC for mitigating adverse neurodevelopmental sequelae associated with preterm birth.

We investigated relations between amount of in-hospital parental KC and cognitive abilities measured at 6- and 12-months age (adjusted for degree of prematurity) in infants born very preterm (VPT). We generated three metrics of KC: frequency (instances of KC/day), rate (minutes of KC/day), and duration (minutes of KC/KC instance). We hypothesized that each metric of KC would significantly predict cognitive performance at 6 and 12 months of age. We further explored these relations after accounting for other predictors of cognitive development, such as gestational age (GA) at birth, SES of the family, and the infant’s medical risk for adverse outcomes. We controlled for family visitation to assess the degree to which effects were specific to KC or reflective of general features of family involvement.\(^11\) Results would shed light on the degree to which KC may confer long-term neuroprotection and would be critical for promoting the practice with families of infants born preterm during hospitalization.
Method

Design and oversight

All data were collected during routine clinical care and retrospectively derived from the Electronic Medical Record (EMR). Participants were not required to give consent. Stanford University Institutional Review Board approved the experimental protocol (#IRB-44480).

Sample

Participants were all infants born very preterm between 5/1/2018 and 2/9/2020 (N=132; 56% Male), cared for at Lucile Packard Children’s Hospital (LPCH). Infants were excluded if they were born > 31 6/7 weeks GA at LPCH, transferred into the Neonatal Intensive Care Unit (NICU) after the first 7 days of life, or had a diagnosis of a genetic or congenital anomaly known to affect neurodevelopment. A protocol standardizing the execution and charting of developmental care, including KC, was fully operational by 5/1/2018. After 3/8/2020, the SARS-CoV2 pandemic changed hospital visitation policies. Selected date ranges ensured reliable tracking of KC for the duration of hospitalization and all infants experienced at least 1 month of their hospital course during the pre-pandemic period. A subset (n=77) of infants received follow-up clinical evaluations at 6 months of age and, of those, 37 infants returned for evaluation at 12 months.

Measures

Clinical and demographic measures

Demographic and clinical characteristics of infants were extracted from the EMR, including sex (male or female) assigned at birth, GA (weeks), age at hospital admission (days), weight at birth (kg), and length of hospital stay (days). Insurance type (public vs. private) was
used as a proxy for SES. Information regarding four major comorbidities of prematurity was also extracted. Bronchopulmonary dysplasia (BPD) was defined as treatment with supplemental oxygen at 36 weeks postmenstrual age (PMA), Intraventricular Hemorrhage (IVH) was defined as presence of a grade I or higher IVH, Sepsis was defined as a positive blood culture or >7 days of antibiotics, and necrotizing enterocolitis (NEC) was defined as diagnosis with medical or surgical NEC care. A binary health acuity score was calculated categorizing infants into those with none versus one or more of these conditions. Table 1 presents these variables for the full sample and for participants in the 6- and 12-month samples.

In-hospital Kangaroo Care and Family Visitation

As part of routine charting, clinical staff documented each instance of family visitation and family engagement in developmental care activities. Family visitation frequency was defined as the total number of family visitation instances out of the number of days of each infant's hospital stay. Logging of developmental care activities included the type (Kangaroo Care, Swaddled Holding, Touch, Massage, Music, Talking, and Singing), the approximate duration in minutes, and who was involved (mother, father, other family member, nurse, other staff member, or any combination of these). Total minutes and instances of KC were calculated by summing across all KC activities performed by any family member over the hospital stay. Three metrics of KC were calculated:

a. **KC Frequency** = number of instances of KC/days of hospital stay (instances/day)

b. **KC Rate** = number of minutes of KC/days of hospital stay (minutes/day)

c. **KC Duration** = number of minutes of KC/number of instances of KC (minutes/instance)

2.3.3 Cognitive Outcomes
Every infant born <32 weeks GA is eligible to receive developmental follow up as a part of California’s High-Risk Infant Follow Up program. Our metric of cognitive development was age-adjusted developmental quotient scores on the Capute Scales Cognitive Adaptive Test (CAT), assessed at 6- and 12-months and recorded in the EMR. Using a combination of clinician observation and parental report, the CAT assesses visual-motor problem-solving ability in standardized tasks (e.g., “pulls down a ring,” “releases one cube in a cup,”). Quantitative developmental quotients (DQ = developmental age/adjusted age x 100) were calculated. A DQ ≤ 85 suggests cognitive delays. Prior work has demonstrated the CAT’s concurrent and predictive validity to other standardized assessments such as the Bayley Scales of Infant Development.

2.4 Analytic strategy

All analyses were conducted in R version 4.2.2. We first compared the clinical and sociodemographic features of the infants in the follow-up samples to those who did not have follow-up scores (n = 55). Next, descriptives for visitation frequency, each metric of KC, and cognitive scores were calculated for infants in each follow up group. Zero-order correlations inspected relations between predictors and dependent variables. Hierarchical linear regression examined relations between KC and dependent measures when controlling for covariates. We chose GA, SES, and health acuity as covariates because we expected a priori that these would be associated with outcomes. We included visitation frequency to distinguish the effects of KC from a general proxy of family involvement. In analysis of the 12-month scores, we additionally controlled for 6-month scores to account for continuity in development. Follow-up analysis examined GA, health acuity, and SES as moderators of the relations between KC metrics and 12-month outcomes. All significance levels were set at p < .05.
Results

Independent samples t-tests and chi-square tests indicated no significant group differences in health or sociodemographic variables between infants in either follow-up sample compared with those who did not have follow-up scores (all $p > .05$). Independent samples t-tests and chi-square tests also indicated no significant group differences between infants with 6-month visits who returned for the 12-month visits compared to those who did not return at 12 months (all $p > .05$).

Table 2 summarizes hospital visitation frequency, KC frequency, rate and duration, chronological age at follow up, adjusted age at follow-up, and scores on the cognitive assessments. Since a visitation rate of 1.0 reflects visitation on a daily basis, results indicated that families visited about 5 days/week, on average, though some families visited up to 1.5 times/day.

In contrast, families engaged in KC only 2 days/week, on average, when averaging across the entire hospital stay. Note that some families did not engage in KC at all, while others performed KC about 5 days/week, on average. Over their entire stay, on average, infants received nearly 20 minutes/day of KC, with some receiving nearly 60 minutes/day. Each instance of KC lasted, on average, nearly 70 minutes, with a range of 35 to 120 minutes/session.

Adjusted age at the initial follow-up visit was about 5 months, on average, and approximately 13 months, on average, at the second visit. Developmental quotients varied substantially across infants. At 6 months, 30 children had scores in the range of developmental delay (<85) while four children fell in this range at 12 months.

Visitation frequency was positively associated with all three metrics of KC (r range=0.34 to 0.50, all $p < .05$), such that families who visited more tended to perform KC more often, for more minutes/day, and for more minutes/instance. Infants from families who used private health
insurance experienced higher levels of all KC metrics, on average, than those infants from families using public insurance (\(t\) range=-2.37 to -5.32, all \(p < .05\)). KC duration was correlated with infants’ GA (\(r = -0.42, p < .001\)), such that those infants born earlier tended to have longer KC sessions, on average. Those infants who had one or more health issues experienced KC that was longer/instance, on average, than infants who did not experience any of those health issues (\(t(60) = -2.05, p = .04\)).

Cognitive scores at 6-months were significantly associated with KC frequency (\(r = 0.32, p = .005\)) and rate (\(r = 0.29, p = .009\)), but not duration (\(r = 0.007, p = .95\)). Table 3 demonstrates that both frequency and rate of KC predicted 6-month cognitive scores after consideration of GA, SES, health acuity, and family visitation, with each KC metric accounting for 7-8% unique variance. An increase of KC frequency by one session a week was associated with 4.8 points higher cognitive scores (B=33.9, 95% CI 6.8–61.1), representing about 0.3 of a standard deviation (SD) increase. Moreover, doubling the KC minutes/day (e.g., from 20 to 40 minutes) was associated with 7.8 points higher scores (B=0.39, 95% CI 0.5–0.7), representing nearly a 0.5 SD increase.

All three metrics of KC were related to 12-month cognitive scores (frequency: \(r = 0.53, p < 0.001\); rate: \(r = 0.59, p < .001\); duration: \(r = 0.38, p = .02\)). Table 4 demonstrates that KC predicted 12-month cognitive scores after GA, SES, health acuity, family visitation, and 6-month cognitive scores, with each KC metric accounting for 16-27% unique variance. An increase in the frequency with which family engaged in KC by 1 day/week was associated with a 7.0-point increase in cognitive performance at 12 months (B=49.2, 95% CI 17.8–80.6), about a 0.5 SD increase. On average, a 20-minute increase in the amount of average daily KC was associated with a 15.2 point increase in scores on 12-month cognitive assessments (B=.76, 95% CI 0.4–1.1),
about a 1.0 SD increase. An increase in the duration of KC by 20 minutes/session was associated
with a 9.0-point increase in cognitive scores (B=.45, 95% CI 0.2–0.7), about a 0.6 SD increase.
Figure 1 illustrates associations of KC rate and frequency with cognitive scores at 6 and 12
months, after covariates.

Follow-up analysis showed that GA, SES, and health acuity did not change these patterns
(all p<.05), suggesting that relations between variation in frequency, rate, and duration of KC
were associated with benefits in 12 month cognitive outcomes similarly across clinical and SES
groups.

Discussion

The present study provides convincing evidence that KC may serve as a powerful and
long-lasting neuroprotective strategy for infants at risk of developmental delay. Consistent with
our hypotheses, infants who experienced KC more often, in larger amounts over their hospital
stay, and for longer periods/instance, had higher scores on a standardized measure of cognitive
abilities at 12-months. These relations remained when controlling for clinical, demographic, and
developmental predictors that might also influence cognitive abilities. In addition, the strong and
positive relations between KC and cognitive scores did not differ based on infants’ GA at birth,
SES, or health status, suggesting that KC may be beneficial for children from a range of
demographic and health backgrounds. Interestingly, KC predicted outcomes over and above
frequency of family visitation, suggesting that specifically having families actively engage in KC
activities may contribute to positive cognitive outcomes to a greater extent than just encouraging
families to visit the hospital without engaging in KC. Similar effects were seen at 6 months.
The present findings are generally consistent with previous observational studies showing positive relations between amounts of parental KC and gross motor development, as well as amounts of parent holding activities and emergent language abilities in children born preterm. The current study adds to this work by documenting the specificity of in-hospital experience of KC for predicting later neurocognitive outcomes in preterm infants. The design and conception of the present study also closely resembles that of Gonya and colleagues, who reported positive relations between parental KC and cognitive outcomes. However, the associations did not reach statistical significance in their study, possibly because their measure of KC was tracked at the hour level and developmental outcomes were categorized into high/low binary groups. A strength of the current study is the specificity and robustness of our minute-level KC metrics, a distinction that perhaps explains our ability to detect significant associations.

Prior evidence for the long-term protective properties of KC on neurodevelopment comes from randomized control trials. Such studies addressed the issue of causality and established efficacy of KC as a medical intervention for supporting longer-term outcomes. However, such studies do not necessarily reflect the real-life variation of KC that exists outside stringent experimental settings. Using a retrospective cohort design, our study was able to examine variations in patterns of family KC that occurred naturally during hospitalization, independently of any explicit study involvement. Taking this approach, we documented the effectiveness of KC as a potential clinical intervention for supporting neurocognitive development. Taken together, these findings add to a growing body of literature documenting the neuroprotective benefits of family-centered care practices for supporting health outcomes of preterm infants.

The high level of explanatory power captured in our study is particularly noteworthy, given the relatively small amounts of KC families provided. On average, infants were exposed to
KC for an average of less than 20 minutes/day, once every 3 days, and for sessions that lasted about one hour. Given that transitioning babies from their cribs may be potentially stressful and disruptive, and considering infant’s natural sleep cycles, our current hospital protocols recommend that KC sessions should last at least 60 minutes. However, many sessions observed here failed to reach this benchmark. At the same time, it is impressive that variation in levels of KC activity even in these low ranges can nevertheless contribute substantial predictive utility to cognitive outcomes at 6 and 12 months of age. Future research in a larger sample should explore whether our findings represent a threshold dose effect or if variation in the doses of KC rate, frequency, and duration at higher baseline levels produce similar or possibly even greater effects.

Several mechanisms may be at play to explain the observed relations between KC and better cognitive scores. First, KC has been related to stress reduction and autonomic regulation20,21 both of which affect cognition22,23 Additionally, KC may provide a formative bonding experience for infants and their caregivers6 which in turn, may facilitate dyads’ capacities for exploration, teaching, and shared attention later in infancy24 KC may also directly contribute to brain maturation and emergent neurocognitive abilities by providing non-noxious sensorimotor neural stimulation25 Future studies should investigate these potential mechanisms more thoroughly.

Our findings argue in favor of increasing institutional and social supports to promote opportunities for families to engage more directly and regularly in the care of their preterm infants. Many parents of hospitalized infants feel that their role as a parent is diminished because they lack the agency and expertise to care for their child26 Increased institutional support for educating families about the benefits of family-administered KC may help NICU families feel more empowered in their unique ability to help their babies health both in the short- and long-
term. Clinical staff have been found to be reluctant to support KC because they believe it is not based on scientific evidence27. The present study may help to dispel this notion. Increased societal support, such as improved paid parental leave policies, is also an important component of providing families with more equitable opportunities to provide KC to their hospitalized infants. Such supports are likely to be important factors in mitigating the negative long-term consequences of preterm birth on cognitive development that disproportionately affect lower-income and non-white families.28,29

This study has several limitations to note. Our measures of engagement in KC relied on clinical charting. While clinical staff members are highly trained and such charting has been an established part of daily routines since 2018, charting accuracy may have varied depending on the diligence of individual clinical staff members. The study design precluded us from drawing causal conclusions about direct relations between the amount of in-hospital KC and later infant outcomes. For example, perhaps family members who engaged in more frequent KC, for more minutes/day, or for longer durations/instance, also engaged in more stimulating activities with the infant after being discharged from the hospital. While GA, SES, and infant health acuity did not moderate the relations between KC and cognitive outcomes, there may have been other characteristics, such as caregiver level of education, experience with children, or involvement with certain childcare arrangements, that may have impacted families’ abilities to engage in KC and which would have moderated our effects. Because information on parent income and education were not accessible in the EMR, our proxy for SES (i.e., insurance type) may not have best captured those demographic factors that were associated with the level of engagement of our participants. Finally, our sample size, especially for 12-month outcomes, was small. However, note that the demographic and other clinical characteristics of the infants assessed at follow-up...
were not different from those who were not assessed, confirming the representativeness of our sample. Future studies should seek to replicate our findings using larger samples.

Conclusion

Infants born very preterm are at risk for adverse neurodevelopmental outcomes later in life. Given increases in survival rates among children born preterm, these developmental delays pose an increasingly pronounced concern for public health. The results of this study suggest that in-hospital, family-administered KC is an effective and low-cost intervention to mitigate cognitive delay in very preterm infants.
<table>
<thead>
<tr>
<th></th>
<th>Full Sample</th>
<th>6-Month Sample</th>
<th>12-Month Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (SD) or n (%)</td>
<td>Min-Max</td>
<td>M (SD) or n (%)</td>
</tr>
<tr>
<td>Female (%)</td>
<td>61 (46)</td>
<td>-</td>
<td>36 (47)</td>
</tr>
<tr>
<td>GA at Birth (weeks)</td>
<td>28.6 (2.5)</td>
<td>22.7–31.9</td>
<td>28.7 (2.3)</td>
</tr>
<tr>
<td>Admit Age (days)</td>
<td>0.6 (0.5)</td>
<td>0.0–5.1</td>
<td>0.6 (0.6)</td>
</tr>
<tr>
<td>Weight at Birth (kg)</td>
<td>1.1 (0.4)</td>
<td>0.4–1.9</td>
<td>1.2 (0.4)</td>
</tr>
<tr>
<td>Length of Stay (days)</td>
<td>74.8 (44.6)</td>
<td>19.8–304.6</td>
<td>75.0 (47.1)</td>
</tr>
<tr>
<td>Private Insurance (%)(^1)</td>
<td>64 (49)</td>
<td>-</td>
<td>38 (49)</td>
</tr>
<tr>
<td>Health Acuity (%)(^2)</td>
<td>65 (49)</td>
<td>-</td>
<td>34 (44)</td>
</tr>
<tr>
<td>BPD (%)</td>
<td>36 (27)</td>
<td>-</td>
<td>19 (25)</td>
</tr>
<tr>
<td>IVH (%)</td>
<td>31 (24)</td>
<td>-</td>
<td>15 (20)</td>
</tr>
<tr>
<td>NEC (%)</td>
<td>18 (14)</td>
<td>-</td>
<td>8 (10)</td>
</tr>
<tr>
<td>Sepsis (%)</td>
<td>18 (14)</td>
<td>-</td>
<td>11 (14)</td>
</tr>
</tbody>
</table>

\(^1\) SES as defined by percentage of families with private versus public health insurance.
\(^2\) Health acuity score reflecting diagnoses of one or more of the following conditions: bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), necrotizing enterocolitis (NEC), sepsis.
Table 2. Descriptive Statistics for Visitation, Inpatient Kangaroo Care, and Cognition Scores at 6 (n=77) and 12 months (n=37).

<table>
<thead>
<tr>
<th>Inpatient Metrics</th>
<th>6-months Sample</th>
<th>12-months Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visitation Frequency(^1)</td>
<td>0.7 (0.3)</td>
<td>0.6 (0.2)</td>
</tr>
<tr>
<td>KC Frequency(^2)</td>
<td>0.3 (0.2)</td>
<td>0.2 (0.2)</td>
</tr>
<tr>
<td>KC Rate(^3)</td>
<td>19.6 (16.0)</td>
<td>15.5 (13.4)</td>
</tr>
<tr>
<td>KC Duration(^4)</td>
<td>69.2 (16.4)</td>
<td>65.5 (16.5)</td>
</tr>
</tbody>
</table>

Neurodevelopmental Follow Up

<table>
<thead>
<tr>
<th></th>
<th>6-months Sample</th>
<th>12-months Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronological age (months)</td>
<td>7.9 (0.9)</td>
<td>16.1 (1.4)</td>
</tr>
<tr>
<td>Adjusted age (months)</td>
<td>5.3 (0.1)</td>
<td>13.5 (1.2)</td>
</tr>
<tr>
<td>Cognitive Outcome(^5)</td>
<td>91.0 (18.6)</td>
<td>97.2 (13.6)</td>
</tr>
</tbody>
</table>

\(^1\) Total instances of visitation/days of inpatient hospital stay.
\(^2\) Total instances of KC/days of inpatient hospital stay.
\(^3\) Total minutes of KC/days of inpatient hospital stay.
\(^4\) Total minutes of KC/total instances of KC.
\(^5\) Developmental quotient scores on the Capute Scales Cognitive Adaptive Test, adjusted for prematurity.
Table 3. Multiple regression models (unstandardized coefficients) predicting 6-month cognitive developmental quotient scores (n=77)

<table>
<thead>
<tr>
<th></th>
<th>Model 1a</th>
<th>Model 1b</th>
<th>Model 1c</th>
<th>Model 1d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B (95% CI)</td>
<td>B (95% CI)</td>
<td>B (95% CI)</td>
<td>B (95% CI)</td>
</tr>
<tr>
<td>Gestational Age</td>
<td>-0.35 (-2.4–1.7)</td>
<td>-0.37 (-2.3–1.6)</td>
<td>-0.81 (-2.8–1.2)</td>
<td>-0.35 (-2.6–1.9)</td>
</tr>
<tr>
<td>SES¹</td>
<td>5.45 (-2.8–13.7)</td>
<td>-0.15 (-9.6–9.3)</td>
<td>-1.17 (-10.8–8.4)</td>
<td>4.79 (-4.3–13.8)</td>
</tr>
<tr>
<td>Health Acuity²</td>
<td>-8.38⁺ (-17.7–1.0)</td>
<td>-8.56⁺ (-17.7–0.5)</td>
<td>-8.44⁺ (-17.5–0.6)</td>
<td>-8.15 (-17.9–1.6)</td>
</tr>
<tr>
<td>Visitation³</td>
<td>5.21 (-8.3–18.7)</td>
<td>-3.76 (-19.1–11.6)</td>
<td>-4.12 (-19.2–11.0)</td>
<td>8.68 (-7.4–24.8)</td>
</tr>
<tr>
<td>KC Frequency⁵</td>
<td>-</td>
<td>33.93* (6.8–61.1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KC Rate⁴</td>
<td>-</td>
<td>-</td>
<td>0.39* (0.5–0.7)</td>
<td>-</td>
</tr>
<tr>
<td>KC Duration⁶</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.04 (-0.4–0.3)</td>
</tr>
<tr>
<td>R²</td>
<td>0.07</td>
<td>0.15</td>
<td>0.14</td>
<td>0.07</td>
</tr>
<tr>
<td>R²Δ⁷</td>
<td>-</td>
<td>0.08*</td>
<td>0.07*</td>
<td>0.01</td>
</tr>
<tr>
<td>F (df)</td>
<td>1.45 (4; 72)</td>
<td>2.44* (5; 71)</td>
<td>2.22⁺ (5; 71)</td>
<td>1.06 (5; 66)</td>
</tr>
</tbody>
</table>

¹ Private versus public health insurance.
² Diagnosis with one or more of the following conditions: bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), necrotizing enterocolitis (NEC), sepsis.
³ Total instances of visitation/days of inpatient hospital stay.
⁴ Total minutes of KC/days of inpatient hospital stay.
⁵ Total instances of KC/days of inpatient hospital stay.
⁶ Total minutes of KC/total instances of KC.
⁷ R²Δ is in reference to Model 1a R².
*p<.1; *p<.05; **p<.01; ***p<.001.
Table 4. Multiple regression models (unstandardized coefficients) predicting 12-month cognitive developmental quotient scores ($n=37$)

<table>
<thead>
<tr>
<th></th>
<th>Model 2a B (95% CI)</th>
<th>Model 2b B (95% CI)</th>
<th>Model 2c B (95% CI)</th>
<th>Model 2d B (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational Age</td>
<td>0.55 (1.8–2.7)</td>
<td>0.94 (-0.7–2.6)</td>
<td>0.50 (-1.4–2.4)</td>
<td>2.07 (1.05)</td>
</tr>
<tr>
<td>SES1</td>
<td>10.49* (2.7–18.3)</td>
<td>0.11 (-7.4–7.6)</td>
<td>0.84 (-8.4–10.1)</td>
<td>6.33 (3.72)</td>
</tr>
<tr>
<td>Health Acuity2</td>
<td>-1.88 (-11.8–8.1)</td>
<td>-1.45 (-9.1–6.2)</td>
<td>-0.86 (-9.7–8.0)</td>
<td>-1.59 (4.45)</td>
</tr>
<tr>
<td>6-month Score3</td>
<td>0.33** (0.1–0.6)</td>
<td>0.23* (0.1–0.4)</td>
<td>0.26* (0.1–0.5)</td>
<td>0.36** (0.10)</td>
</tr>
<tr>
<td>Visitation4</td>
<td>-5.61 (-22.9–11.7)</td>
<td>-21.42** (-36.4–6.5)</td>
<td>-18.21* (-35.5–0.9)</td>
<td>-15.03 (8.73)</td>
</tr>
<tr>
<td>KC Frequency5</td>
<td>-</td>
<td>49.20** (17.8–80.6)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KC Rate6</td>
<td>-</td>
<td>-</td>
<td>0.76*** (0.4–1.1)</td>
<td>-</td>
</tr>
<tr>
<td>KC Duration7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.45** (0.2–0.7)</td>
</tr>
</tbody>
</table>

R2 | 0.35 | 0.51 | 0.62 | 0.56 |
R2$^\Delta$ | 0.01 | 0.16** | 0.27*** | 0.21** |
F (df) | 3.33* (5; 31) | 5.10** (6; 30) | 8.25*** (6; 30) | 5.61*** (6; 27) |

1 Private versus public health insurance.
2 Diagnosis with one or more of the following conditions: bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), necrotizing enterocolitis (NEC), sepsis.
3 6-month developmental quotient on the cognitive adaptive test adjusted for prematurity.
4 Total instances of visitation/days of inpatient hospital stay.
5 Total instances of KC/days of inpatient hospital stay.
6 Total minutes of KC/days of inpatient hospital stay.
7 Total minutes of KC/total instances of KC.
8 R2 Δ is in reference to Model 2a R2.
$^+$ p＜.1; * p＜.05; ** p＜.01; *** p＜.001.
Figure 1. Modeled estimates of the associations between KC frequency (instances/day) and rate (mins/day) and cognitive outcomes at 6 (n=77) and 12 (n=37) months, after covariates.

Cognitive Outcomes

<table>
<thead>
<tr>
<th>Cognitive Outcomes</th>
<th>6 months</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kangaroo Care Frequency (instances/day)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kangaroo Care Rate (minutes/day)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Cognitive Outcomes = CAT Developmental Quotient modeled estimate; Kangaroo Care Frequency = total instances of KC/days of inpatient hospital stay (instances/day); Kangaroo Care Rate = total minutes of KC/days of inpatient hospital stay (minutes/day). Controls = GA, SES (public versus private insurance), health acuity, and visitation.
References

