Digital psychosocial intervention for older adults with subthreshold depression in primary care in Brazil (PRODIGITAL): protocol for an individually randomised controlled trial

Thiago Vinicius Nadaleto Didone¹, Carina Akemi Nakamura³, Nadine Seward³, Felipe Azevedo Moretti³, Monica Souza dos Santos¹, Mariana Mendes de Sá Martins¹, Luara Aragoni Pereira¹, Evelyn da Silva Bitencourt³, Marcelo Oliveira da Costa¹, Caio Hudson Queiroz de Souza¹, Gabriel Macias de Oliveira¹, Marcelo Machado⁴, Jamie Murdoch⁵, Pepijn Van de Ven⁶, William Hollingworth⁷, Tim J. Peters⁸, Ricardo Araya², Marcia Scazuufca¹*

¹ Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil

² Health Service and Population Research, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom

³ Faculdade de Arquitetura e Urbanismo FAU, Universidade de Sao Paulo, Sao Paulo, SP, Brazil

⁴ Debasé Audiovisual, Sao Paulo, SP, Brazil

⁵ Department of Population Health Sciences, King’s College London, London, United Kingdom

⁶ Health Research Institute, University of Limerick, Limerick, Ireland

⁷ Health Economics Bristol, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom

⁸ Population Health Sciences, Bristol Medical School, and Bristol Dental School, University of Bristol, Bristol, United Kingdom

* Corresponding author

E-mail: scazuufca@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Subthreshold depression is a substantial risk factor for the development of major depression and is, for example, associated with poorer health in older adults, functional disabilities, and reduced quality of life. There is a paucity of cost-effective psychosocial interventions for this population in primary care worldwide, particularly in low- and middle-income countries.

Objective: We will evaluate the effectiveness and cost-effectiveness of the Viva Vida Programme, a 6-week digital psychosocial intervention for treating older adults with subthreshold depression in primary care.

Methods: A two-arm, individually randomised controlled trial with a 1:1 allocation ratio with integrated economic and process evaluations. We will recruit 450 individuals 60 years of age and older with subthreshold depression (essentially, at least 5 and below 10 on the 9-item Patient Health Questionnaire (PHQ-9)) registered with one of the 46 primary care clinics in Guarulhos, Brazil. The intervention comprises a 6-week self-help digital psychosocial package delivered via automated WhatsApp messages (audio and visual), with psychoeducation and behavioural activation contents adapted from our previously-evaluated PROACTIVE intervention. It involves 48 messages, delivered twice-daily, four days a week. Participants in the control arm will receive a single message with general information about depression. The primary outcome is PHQ-9 at the three-month follow-up. The cost-effectiveness of the intervention will be assessed at five months. A detailed process evaluation will explore context and implementation outcomes.

Discussion: The Viva Vida Programme is an innovative digital psychosocial intervention delivered via WhatsApp messaging without the participation of health professionals. The results of this study will hopefully contribute to the development of simple and cost-effective models of remote self-help interventions for reducing depressive symptoms among older adults with subthreshold depression in primary care.

Trial registration: The protocol is registered with Registro Brasileiro de Ensaios Clinicos (ReBEC) (RBR-6c7ghfd).
Introduction

The development of simple and effective treatments for older adults with subthreshold depression is a significant public health issue and has been seen as a neglected area of research [1–3]. The definition and diagnostic criteria of subthreshold depression (also called subsyndromal depression, subclinical depression or minor depression) are heterogeneous [1]. Broadly described, subthreshold depression requires the presence of at least one core symptom of depression (depressed mood or anhedonia) whilst the severity of symptoms does not meet the criteria for diagnosing depression [4,5].

The adverse impact of subthreshold depression on older people’s health and health systems is well established. Subthreshold depression is associated with functional disability, deterioration in the quality of life, loneliness, suicide attempts, mortality, and increased health care utilisation [1,6–8]. Furthermore, the high prevalence of subthreshold depression among older adults in the community, the persistence of symptoms over time, and the progression to moderate and severe forms of depression in many cases, demonstrate the public health challenge to treat the condition [3].

A review of trials conducted in the 2000s to reduce depressive symptoms in older, community-dwelling adults with subthreshold depression, recommended the use of psychotherapy [9]. This review showed that psychotherapeutic approaches (that is, Cognitive Behavioural Therapy, Problem Solving Therapy, Physical activation, and Behavioural Activation) were safe and effective in decreasing depressive symptomatology in primary care settings [10–13]. However, only one study in this review evaluated the efficacy of a remote method of intervention using a web-based self-administered cognitive behavioural therapy [11]. More recently, the United Kingdom Casper study provided evidence of the effectiveness of a collaborative care programme, mainly delivered remotely, in reducing depressive symptoms and progression to moderate and severe symptoms among older adults with subthreshold depression in primary care [14]. The Casper programme has innovative components. Nursing assistants delivered a quick and relatively inexpensive behaviour activation programme over the phone, improving access to treatment.

The availability of remote interventions targeting mental health conditions has been increasing recently [15]. However, the paucity of research evidence worldwide does not allow us to determine which forms of
synchronous or asynchronous, pure (no face-to-face contact) or minimal (maximum three hours contact with professionals) self-help remote psychosocial approaches work for older adults with subthreshold depression in diverse primary care settings. Identifying cost-effective psychosocial treatments and older adults who may benefit most from these treatments is urgent in low- and middle-income countries (LMIC), where primary care struggles to meet the rapidly growing older population’s physical and mental health care needs.

We will conduct a randomised controlled trial to evaluate the effectiveness and cost-effectiveness of the Viva Vida Programme (PRODIGITAL), a 6-week digital psychosocial intervention delivered by automated WhatsApp messaging for the treatment of older adults with subthreshold depression in primary care in Guarulhos, Brazil. A process evaluation using qualitative methodology will investigate implementation outcomes (acceptability, appropriateness, fidelity, and feasibility) of the intervention, contextual barriers and facilitators to the implementation of this programme, and the relationship between its clinical effectiveness and the implementation outcomes.

Methods

This study will be a two-arm (1:1 allocation ratio) randomised controlled trial (RCT) with integrated economic and process evaluations.

Study setting

The study will recruit individuals registered with 46 primary care clinics, known as Unidades Básicas de Saúde (UBSs), and part of the Family Health Strategy model in Guarulhos, Brazil. Guarulhos has a population of approximately 1.4 million, of whom 12.7% are aged 60 years or over. Among older inhabitants, 57.7% are women, and 14.6% are illiterate [16,17].

Participants

Inclusion criteria

(a) Individuals 60 years or over registered with any of the participating UBSs;

(b) Individuals able to receive and listen to WhatsApp messages;
(c) Individuals screening positive for subthreshold depression on the 9-item Patient Health Questionnaire (PHQ-9), defined as a PHQ-9 total score of at least 5 and below 10 and scoring at least 1 on the PHQ-2, which comprises the first two PHQ-9 questions representing the core symptoms of depression (depressed mood and anhedonia) [4,18,19].

Exclusion criteria

(a) Individuals with communication issues (for example, non-Portuguese speaking, cognitive impairment, or vision or hearing loss, if to the extent that these hinder trial assessment or intervention);

(b) Individuals unable to engage in the study for five months (for instance, due to themselves or close relatives having a severe illness);

(c) Individuals identified with acute suicidal risk (that is, a suicidal attempt in the two weeks prior to the screening assessment) on the Immediate Suicide Risk Protocol [20];

(d) Individuals living in the same household as another study participant;

(e) Individuals who participated in the PROACTIVE trial [21].

Interventions

The intervention arm will receive a digital psychosocial intervention delivered through audio and image WhatsApp messaging. The control arm will receive a single audio message. The research team will not influence any other form of health care received by participants in both study arms during and after their participation in the trial.

Digital psychosocial intervention

The intervention will provide care for older adults with subthreshold depression to improve mood-related problems and consequently prevent depression. The Viva Vida Programme will be adapted from the short, animated videos community health workers showed to older adults with depression in the RCT of the PROACTIVE intervention [20,21]. It will consist of approximately 48 messages, sent via WhatsApp messaging over six weeks, four days per week. Each day, participants will receive one message in the
morning and one in the afternoon. There are two types of messages: visual (image with a short text) and audio. Audio messages last on average three minutes and are based on the storytelling technique, a communication tool able to attract attention, stir emotions and captivate listeners to influence their attitudes and beliefs [22]. Through the audio messages, two characters (Mrs. Zuzu and Mr. Zé) will relate their experiences in participating in the Viva Vida Programme. These characters will convey what they learned about depression (psychoeducation), and what sort of activities they did to increase positive interactions with people and their environment by engaging in meaningful and pleasant daily activities (behavioural activation). The messages will also give tips on health promotion, such as information on diet, being physically active, the importance of other health treatments, and relapse prevention. The audio and image messages will advise participants to contact health services if they feel the symptoms of depression are not improving or are worsening. The characters will use language, vocabulary, tone of voice and manner of speaking appropriate for the target audience. They will be realistic to create empathy for the study participants when listening to the messages. The contents of the Viva Vida Programme align with the WHO recommendations for digital interventions targeting depression [23] and the theoretical basis of interactive health communication applications [24,25]. They also follow guidelines suggesting that patients should be educated about depression and encouraged to self-manage their symptoms [26,27].

As part of the programme, participants will receive a WhatsApp message once a week to find out about their experiences with the Viva Vida intervention. These additional WhatsApp messages will be in a format that allows for a quick reply by selecting, for example, “yes”, “more or less”, or “no”. Following the response, participants will receive a standardised response including a pre-recorded audio messages confirming receipt. Participants will also be invited to share further comments about the programme by sending spontaneous WhatsApp audio or text messages.

Single message

Participants allocated to the control arm will receive a single audio message of about three minutes via WhatsApp. This message will inform participants about the main signs of depression and simple ways to
improve mood. They will also be advised to contact health professionals to receive further support if they
do not feel better or need additional care.

System to deliver the messages

The intervention team will coordinate the delivery of the messages. We will use a web system integrated
into the WhatsApp Business Application Programming Interface (API) managed by an intermediate
company. The system is hosted on a cloud service where access is restricted using both authentication and
authorisation processes. Data flowing to and from browsers are also protected by the use of encryption.

The WhatsApp Business API allows us to gather the date and time (timestamp) when messages are
delivered and visualised, answers to the quick reply tool, and the content of spontaneous messages. The
API enables tailored messages (for example, messages with the name of the participant) and the
attachment of audio and image files. Messages will be scheduled weekly and delivered using a job
scheduler on the server.

During the first two weeks of the programme, the research team will actively contact participants who do
not receive or open the messages to check if they are experiencing any technical problems as a strategy to
improve adherence to the intervention. We will identify these participants through the Viva Vida web
dashboard that will show the status of messages as “sent to intermediary company platform”, “delivered to
participant” or “opened by the participant”. During the remaining four weeks of the Viva Vida Programme,
participants will have access to a dedicated helpline to solve technical problems.

To comply with the WhatsApp policy and keep our system functional, we will remove participants who
block their mobile phones from receiving the Viva Vida Programme’s messages. These participants will not
receive new intervention messages but will be contacted again during follow-up evaluations unless they
contact us to withdraw consent to participate in the study.

Outcomes

Follow-up assessments will be performed three and five months after receiving the first message
(intervention arm) or the single message (control arm).
Primary outcome

The primary outcome is the (continuous) PHQ-9 score as a measure of depressive symptomatology severity at the 3-month follow-up, to be compared across the study arms as allocated.

Secondary outcomes

Depressive symptomatology severity (mean PHQ-9 score) at five months. Other secondary measures assessed at 3- and 5-month follow-ups will be the prevalence of depressive symptomatology (PHQ-9≥10), changes in anxiety symptomatology severity measured by the 7-item Generalised Anxiety Disorder (GAD-7) [28], loneliness measured by the 3-item University of California, Los Angeles (UCLA) loneliness scale (3-item UCLA) [29], quality of life measured with the European Quality of Life five-dimensional questionnaire, five-level version (EQ-5D-5L) [30], and capability well-being measured with the ICEpop CAPability measure for Older people (ICECAP-O) [31]. The cost-effectiveness of the Viva Vida Programme will be assessed at the 5-month follow-up.

Sample size

To detect what we consider to be an important difference between the two randomised arms of 0.33 standard deviations [14], 142 to 162 individuals in each arm yields 80% to 85% power with a two-sided 5% significance level. In our PROACTIVE pilot study [32] we observed a standard deviation for PHQ-9 of 1.5; based on this we would be able to detect a difference of about 0.5 points on the PHQ-9 scale, which the results from the pilot study (with means of 5.9 and 6.4) indicate is feasible for this kind of intervention. We anticipate 25% attrition and are therefore planning to recruit 225 individuals in each arm to reach a total sample size of 450.

Recruitment

A list with contact details of all individuals aged 59 years or over registered with the participating UBSs will be provided by the Health Secretariat of Guarulhos (the slightly reduced lower age limit compared with the relevant inclusion criterion is so that we include individuals who would be 60 years of age when our recruitment starts). First, duplicate individuals, individuals without a valid mobile phone number, and
participants from our previous RCT [20] will be excluded. The remaining individuals on the list will receive a random ID number. These numbers will be ordered before entering the study system, and recruitment will follow the ID number in ascending order. The list provided by Guarulhos will be used to simultaneously recruit participants for two RCTs assessing a digital intervention for older adults with depressive symptoms being conducted by our research group [33]. The protocol for recruitment will be the same; only the criteria for the severity of depressive symptoms will be different. In the present study, we will recruit older adults with subthreshold depression as defined above.

The research team will then approach individuals with a valid mobile number through a WhatsApp message. This message will briefly describe the study and inform these individuals that a research assistant will contact them by phone. Initially, only those whose WhatsApp message is successfully delivered will be contacted by phone and invited to initiate the recruitment interview. This interview will comprise three phases:

(a) Screening assessment: comprises inclusion criteria (age, use of WhatsApp, and depressive symptoms), exclusion criteria (communication and engagement issues, acute suicidal risk), health conditions, and depression treatment;

(b) Baseline assessment: participants screened positive for subthreshold depression, and without exclusion criteria, will be assessed for anxiety, loneliness, quality of life, capability well-being, socioeconomic profile (marital status, race, level of education, living arrangement, and personal and household income), and alcohol and tobacco use;

(c) Invitation to participate in the trial.

Screening (a) and baseline (b) assessments will be conducted consecutively during the same phone call. Then, eligible participants will be invited to participate in the trial (c). All three phases will be conducted in the same phone call where possible. Before screening and inviting individuals to participate in the trial, we will inform them about the study and seek consent. The complete study timeline is presented in Figure 1, and a detailed diagram of the procedures of the trial is in Figure 2.
<table>
<thead>
<tr>
<th>TIMEPOINT (in weeks)</th>
<th>Screening/baseline</th>
<th>Invitation</th>
<th>Randomisation</th>
<th>Intervention</th>
<th>3-month</th>
<th>12-16</th>
<th>13-20</th>
<th>20-24</th>
<th>Follow-up Qualitative</th>
<th>5-month</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENROLMENT:</td>
<td></td>
</tr>
<tr>
<td>Eligibility screen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informed consent</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual randomisation</td>
<td></td>
</tr>
<tr>
<td>INTERVENTION:</td>
<td></td>
</tr>
<tr>
<td>Digital psychosocial intervention</td>
<td></td>
</tr>
<tr>
<td>Single message</td>
<td></td>
</tr>
<tr>
<td>ASSESSMENTS:</td>
<td></td>
</tr>
<tr>
<td>Socioeconomic profile</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health conditions</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHQ-9 (primary outcome)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAD-7</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-item UCLA</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ-5D-5L</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICECAP-O</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol/tobacco use</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Need of care, work productivity loss</td>
<td></td>
</tr>
<tr>
<td>Medication use</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious adverse events</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health appointments, hospitalisations</td>
<td></td>
</tr>
<tr>
<td>Qualitative interview</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 1. SPIRIT schedule of enrolment, interventions and assessments. 3-item UCLA, 3-item University of California, Los Angeles (UCLA) loneliness scale; EQ-5D-5L, European Quality of Life five-dimensional questionnaire, five-level version; GAD-7, 7-item Generalised Anxiety Disorder; ICECAP-O, ICEpop CAPability measure for Older people; PHQ-9, 9-item Patient Health Questionnaire. The qualitative interview will be conducted with 24 purposely selected participants from the intervention arm.
Fig 2. Diagram of the main procedures of the trial. Trained research assistants will contact individuals registered in 46 UBSs from Guarulhos, São Paulo, Brazil. After a 3-step recruitment interview, participants will be allocated (1:1) to control (1 audio message) or intervention (Viva Vida Programme) arms. A web system will send messages to both arms, and a web dashboard will identify technical problems. Follow-up assessments at three and five months will be conducted. Qualitative assessments will be made in selected participants between follow-up assessments. Quality control will be performed in a sample of baseline and follow-up assessments.
Allocation

Once individuals are recruited, they will be randomly allocated in a 1:1 ratio to either intervention or control arms and included in a list to start receiving the allocated intervention, which will be sent within a 10-day window. Thus, each list will include participants recruited in the preceding week.

Two research team members not directly involved in the recruitment (CAN and TJP) will generate the randomisation allocation sequence with the support of Microsoft Excel using random permuted blocks with random block sizes. Stratification will be based on gender (women/men), age groups (60-69/70-79/80+ years), and type of primary care clinic model (full FHT or mixed model – part FHT and part traditional primary care). The allocation sequence will be concealed in the “randomisation module” of the Research Electronic Data Capture (REDCap) software.

Blinding

Given the differences between the number and content of the messages received by the intervention and control groups, blinding participants will not be feasible. The recruitment research team (researchers responsible for coordinating research assistants, recruitment, and follow-up processes) and the intervention research team (those responsible for sending the messages) will work independently. Independent research assistants who perform the recruitment and follow-up assessments and invite individuals to participate in the study will be blind to group allocation. The same research assistant will not conduct more than one interview (recruitment or follow-up) with the same participant whenever possible. Hence, the risk of contamination is very low. Messages sent to participants in both study arms will be delivered remotely and individually, and participants will not be informed about other people included in the RCT.

Data collection and management

Data will be collected and managed using the REDCap tool hosted at Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo [34,35]. REDCap is a secure, web-based software platform designed to support data capture for research studies, providing: 1) an intuitive interface for validated data capture; 2) audit trails for tracking data manipulation and export procedures; 3) automated export procedures for
seamless data downloads to standard statistical packages; and 4) procedures for data integration and interoperability with external sources. Recruitment and follow-up assessments will be made by phone by independent research assistants. Research assistants will be trained to properly apply research questionnaires and input data in the REDCap software. They will ask permission to record the interviews.

Assessments of depressive symptomatology (PHQ-9), anxiety symptomatology (GAD-7), loneliness (3-item UCLA), quality of life (EQ-SD-5L), capability well-being (ICECAP-O), alcohol and tobacco use will be conducted at recruitment and repeated at 3- and 5-month follow-ups. We will ask participants about the need for help in daily activities, working hours lost, life-threatening events, consultations with health professionals (including mental health professionals), hospital admissions, and ongoing treatment for depression during the follow-up period. Additionally, we will gather data from electronic health system records on psychotropic medication use and consultations with doctors and nurses from all participants during the five months they were enrolled in the RCT. Data will be collected after the second follow-up assessment. Additionally, we will ask participants allocated to the intervention arm questions regarding their experience with the Viva Vida Programme.

An independent researcher who will not conduct interviews with participants will perform quality control of recruitment and follow-up assessments. A sample of the recorded interviews will be reviewed to ensure the script is followed and identify interviewer bias and scoring errors. The research coordinator will also assess interviews with quality problems before deciding which parts of the interview need to be redone or if the interview will be excluded.

We will leave a 4-week window for the follow-up assessments to minimise attrition. The 3-month follow-up will occur between the 12th to 16th week, and the 5-month between the 20th to 24th week after receiving the first message (intervention arm) or the single messages (control arm). If research assistants have difficulties contacting participants by phone during the follow-up window, then they will send an audio and/or a text message by WhatsApp to try to remind participants about the interview. If there is no response, the UBS manager will be contacted to help reach participants. As an ultimate approach, after three weeks of
unanswered contact attempts (the last week of the 4-week window), a research assistant will visit the participant at home to conduct a face-to-face assessment.

Data analysis and statistical methods

The analysis for all outcome measures will follow the intention-to-treat principle (ITT) in the sense of analysing participants in the arm to which they were allocated (regardless of adherence to the intervention) and will adhere to Consolidated Standards of Reporting Trials guidelines (CONSORT) for randomised trials [36]. There are no planned interim analyses. Descriptive statistics will compare differences in baseline demographics and clinical characteristics between intervention and control arms to identify any imbalances. Linear regression models adjusted for stratification and the relevant baseline score will be used to investigate the primary and secondary continuous outcomes. For the binary outcome, logistic regression will be used, along with Poisson regression models to produce relative risks. For secondary analyses, models will include any baseline variables not balanced between arms.

Exploratory subgroup analyses will employ interaction terms between the relevant baseline variable and trial allocation in the above regression models to investigate if baseline PHQ-9 scores, gender, age, education level, and co-morbid physical illnesses, modify the effect of the intervention on PHQ-9 scores at follow-up. The results of these analyses will need to be interpreted with caution due to the limited power to detect such interactions and the paucity of evidence on the theoretical basis for these hypotheses.

Additional investigations will include Complier Average Case Effect (CACE) analysis to determine the effect of the number of messages listened to on the reduction of depressive symptom severity at both three and five months. At the 3-month follow-up, participants randomised to the intervention arm will be asked at the end of the assessment how many messages they listened to from the beginning to the end, and the following options will be provided: “none”, “a few”, “at least half”, “most”, or “all”. The CACE analysis will consider listening to at least “most” of the messages received as the threshold value because our hypothesis is that this is the minimum number of messages participants need to listen to, to obtain a therapeutic effect. Alternative analyses will be conducted using the thresholds of (a) listening to at least half of the messages and (b) listening to all messages. We will also consider using the number of messages
opened (as recorded by the system) as a continuous variable (if assumptions of linear relationships are fulfilled).

If we find any marked differences in missing data between intervention and control arms, or a proportion of missing data higher than 10%, then we will impute missing data separately for each arm for all analyses described above. We will use multiple imputations by chained equations (MICE models) assuming data are missing at random (MAR) [37]. MICE models will include variables in the original analyses (outcomes, stratification, and gender) and any other variables that predict missingness [38,39]. The Selection Model Approach will be used to perform sensitivity analysis testing for modest departures against the MAR assumption for primary outcomes only [40–42].

The cost-effectiveness analysis will compare the costs and effects of the Viva Vida Programme against a single message from the health system’s perspective. The first analysis will be presented as incremental cost-effectiveness ratios and cost-effectiveness acceptability curves; they show the probability of the intervention being cost-effective at a range of ‘willingness-to-pay’ threshold levels and will be estimated using (a) the primary clinical outcome measure (cost per patient recovered), and (b) the Quality Adjusted Life Years (QALYs) calculated using the EQ-5D-5L [30,43]. The second analysis will be the Net Monetary Benefit (NMB) statistic; it will be calculated at the WHO recommended threshold for LMICs using the difference in costs and the difference in QALYs between the two arms. The EQ-5D-5L responses will be converted into utility scores using the population tariff most appropriate for the Brazilian population available at the time of the analysis. QALYs will be estimated by utility scores adjusted for baseline values.

We will use national, where available, or local unit costs to value resource use.

Process evaluation and analysis

Qualitative interviews will be conducted to provide insight into the reasons, motivations, modes, and contextual barriers and enablers of participants that may affect the intervention’s clinical and implementation outcomes (acceptability, appropriateness, feasibility, and fidelity). We will also investigate the detailed process and content perspectives of how participants received the intervention. Approximately 24 purposely selected participants from the intervention arm, equally represented by gender
(women/men), age (60-69/70+), and PHQ-9 scores at first follow-up (0-4, 5-9, ≥10), will be interviewed individually by phone 1 to 4 weeks after the 3-month follow-up assessment. Trained research assistants blind to participants’ ages and PHQ-9 scores at inclusion and follow-up will use interview guides previously developed and tested by the research group to conduct these interviews. The interviews will include the following topics regarding the participant and their perception of the programme: emotional state before and after the programme; experience of receiving and responding to messages; appropriateness, acceptability, engagement and fidelity of programme delivery; and role of participant's support network. Interviews will last around 30 to 60 minutes.

Interviews will be transcribed verbatim. Transcriptions will be analysed in ATLAS.ti (Version 23.0.0) using both deductive (using pre-established categories of acceptability, appropriateness, feasibility, and fidelity) and inductive (for other relevant categories emerging from the analysis) approaches [44,45]. An in-depth exploration of participants’ experiences will enable us to generate hypotheses about the relationship between clinical and implementation outcomes. Results will be reported according to the Consolidated Criteria for Reporting Qualitative Research (COREQ) [46].

Dissemination policy

No datasets were generated or analysed during the current study. We expect to publish and present the results of this trial in relevant scientific journals and conferences. The findings will also be presented to stakeholders once data collection is concluded. Access to anonymous participant data and statistical coding will be granted to the public 24 months after the publication of the effectiveness results upon request. A research proposal with defined aims and a statistical analysis plan should accompany any request, which will be evaluated by the joint principal investigators.

Ethics

This study was authorised by the Secretaria da Saúde do Município de Guarulhos and approved by the Ethics Committee of the Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo – HCFMUSP (CAPPesq, CAEE: 32078720.0.0000.0068, first approved on 09 July 2020). The Statistical Analysis Plan version 1.0 was submitted to the King’s College London repository. The trial was registered on 21
October 2021 (submitted on 03 August 2021) at the Registro Brasileiro de Ensaios Clínicos (ReBEC, ensaiosclinicos.gov.br), RBR-6c7ghfd. Recruitment of participants began in September 2021.

Verbal informed consent will be sought by research assistants before the start of the screening, during the invitation to participate in the RCT, and before the qualitative interviews. The Ethics Committee mentioned above approved the use of oral consent. Due to the digital aspects of the Viva Vida Programme, written consent could not be obtained. Participants will be informed that non-identifiable data will be used for publication before granting verbal consent. Verbal consent and subsequent interviews will be audio-recorded whenever participants agree.

Anonymity will be guaranteed during data management and analyses. One research team member (CAN) will be responsible for extracting the individual’s information from the list provided by the Health Secretariat of Guarulhos and assigning random ID numbers to each one of them. The same number will identify participants in the REDCap platform and the system developed to deliver the messages. The files of audio recordings of the interviews will be named using the corresponding ID number and initials and will be stored on an online platform. Access to these systems (REDCap, system of message delivery, and system to store audio files) is secured by password and restricted according to the members of the research team’s assigned roles and permissions. Only one research team member (CAN) will have access to information that could identify individual participants during or after data collection. We will keep no paper records.

The risk of harm associated with the RCT and the intervention is considered minimal. We will not interfere with any pharmacological or non-pharmacological treatment participants may receive during the trial. No relevant concomitant care will be prohibited during the trial. Acute suicide risk will be evaluated with a standardised protocol whenever the ninth question of the PHQ-9 is scored 1 or more during baseline or follow-up assessments. This protocol was successfully applied in the PROACTIVE study [20]. Once participants at acute suicide risk are identified, the research team will contact the UBS and, whenever possible, a family member.
Oversight and monitoring

The Coordinating Centre and the Trial Steering Committee (TSC) composition is available in Supplementary information file 2 (S2). Under the guidance of the TSC, a Data Monitoring Committee (DMC) will be formed comprising an independent Chair, an independent statistician, one other independent member, and at least one of the trial statisticians (Professor Tim Peters and/or Dr Nadine Seward).

TSC and DMC will discuss any relevant protocol modifications and Guarulhos health system managers and coordinators will be consulted if necessary. Modifications to the study protocol will be submitted for approval by the Ethics Committee (CAPPesq). TSC will be informed about trial conduct on a regular basis. They will receive reports indicating whether the two arms are reasonably well balanced in each stratum indicating that the allocation sequence and the REDCap “randomization module” are working as expected.

Discussion

Prevention of depression is a major public health issue worldwide. One of the targets for the prevention of major depression is to reduce depressive symptoms among older adults with subthreshold depression [47]. However, evidence for feasible, simple, low-cost psychosocial interventions for this population in primary care is lacking [9,48]. Knowledge about how best to deliver self-help interventions to this population is also scarce. A recent review of eight trials that used pure or minimal self-help interventions for subthreshold depression showed that both methods substantially, and similarly, reduced depressive symptoms [48]. However, neither of these trials used a fully automated messaging system, without the participation of health professionals, to deliver the psychosocial intervention. The Viva Vida Programme aims to help fill some of these gaps in this area of research. The remote delivery method of Viva Vida via WhatsApp was chosen because it can facilitate the provision of care in settings with low or no mental health services available, and for vulnerable and isolated older adults. Moreover, WhatsApp is the most widely used messaging system in Brazil [49]. In addition to remote delivery, the use of the storytelling technique allows older adults to participate regardless of literacy level and mobility ability, barriers to treatment commonly encountered among older adults in LMICs. Finally, we are planning to conduct economic and process evaluation analyses to provide evidence on the cost-effectiveness, acceptability, and feasibility of self-help
digital psychosocial interventions for older adults with subthreshold depression. If these pieces of evidence show that the Viva Vida Programme is low-cost, acceptable, and effective for older adults with subthreshold depression in primary care, it could be easily implemented in the Brazilian Unified Health System.

Acknowledgements

We would like to acknowledge the contribution of the staff of the UBS in Guarulhos, Maria de Jesus Assis Ribeiro, Marcelo Bueno da Silva, and other members of the Escola SUS-Guarulhos and the Health Secretariat of Guarulhos who supported the development of the study. We would also like to thank Prof. David Ekers for his support in the development of the intervention.

Data Availability Statement

No datasets were generated or analysed during the current study. All relevant data from this study will be made available upon study completion.

Funding

This study was funded by São Paulo Research Foundation (FAPESP, https://fapesp.br/, process number 2017/50094-2) and the Joint Global Health Trials initiative jointly funded by the Department of Health and Social Care (DHSC), the Foreign, Commonwealth & Development Office (FCDO), the Medical Research Council (MRC) and Wellcome Trust (https://www.ukri.org/councils/mrc/, process number MR/R006229/1). FAPESP supported TVND (2021/04493-8), CAN (2018/19343-9 and 2022/05107-7), FAM (2020/02272-1), MOC (2020/14768-1), GMO (2021/04230-7), CHQS (2020/14504-4), MSS (2021/10148-1 and 2022/08668-0) and MMSM (2021/03849-3). MS is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil, 307579/2019-0). The funders did not and will not have a role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests

The authors have declared that no competing interests exist.
Supporting information

S1 File. SPIRIT checklist.

S2 File. Administrative information according to the SPIRIT checklist.

S3 File. Protocol that was approved by the ethics committee, in Brazilian Portuguese (original).

S4 File. Protocol that was approved by the ethics committee, in English (translation).

References

