The value of inspiratory muscle training on post-stroke sarcopenia and its effect on rehabilitation outcomes: A randomized controlled trial

Short title: Inspiratory muscle training and stroke rehabilitation.

Qianping Zhao*, Chenlan Shao†, Yongzheng Wang†, Weiwei Zhao, Liang Wang, Wei Zhou, Yuxing Mo

The Rehabilitation Medicine Center, Peoples Hospital of Deyang City, Deyang, Sichuan Province, China.

*Corresponding author

E-mail: qianpingzhao@cqu.edu.cn(Q Z)

†These authors contributed equally to this work.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Purpose: The study aimed to verify the value of inspiratory muscle training (IMT) in the prevention of post-stroke sarcopenia, and to analyze the effects of IMT on the rehabilitation prognosis, including daily living activities, social regression, balance, and pneumonia, of stroke patients.

Methods: A total of 367 patients with a first stroke event were randomly allocated to an experimental group (n = 164) and a control group (n = 165). Both groups received conventional neurological rehabilitation treatment, and the experimental group also received IMT. After eight weeks of treatment, the incidence of post-stroke sarcopenia and pneumonia were analyzed and compared. The maximum inspiratory pressure (MIP) was assessed using a respiratory resistance trainer, and the Modified Barthel Index (MBI) was used to assess activities of daily living (ADL). The ability to return to society was assessed using the modified Rankin Scale (mRS), the trunk impact scale (TIS) was used to evaluate trunk balance in both groups before and after treatment, and the differences in MIP, MBI, mRs, and TIS between the two groups were analyzed.

Results: There were no significant differences in the baseline demographics between the two groups. After eight weeks of treatment, the incidence of post-stroke sarcopenia (P = 0.004) and pneumonia (P = 0.017) in the experimental group was lower than that in the control group. The trial group performed better than control group in MBI (P = 0.02, effect size d = 0.3), TIS (P < 0.001, effect size d = 0.52), MIP (P < 0.001, effect size d = 0.4) and mRS (P = 0.001, effect size d = 0.3) scores after intervention.
Conclusion: Early inspiratory muscle training can effectively reduce the incidence of post-stroke sarcopenia and pneumonia and improve the rehabilitation prognosis of patients after stroke. (clinicaltrials.ChiCTR2200057067).

Keywords: inspiratory muscle; sarcopenia; stroke; activities of daily living; trunk impact scale

Introduction

Stroke is a major contributor to disability, morbidity, and mortality, and thus poses a significant threat to human health. The skeletal muscles are often severely affected during post-stroke disability. Two-thirds of stroke patients suffer varying degrees of motor, cognitive, emotional, and social dysfunction, which can severely affect their quality of life. Stroke also has adverse effects on the effectiveness of coughing and respiratory muscle function [1–2], increasing the risk of aspiration and pneumonia and resulting in longer hospitalization, higher mortality, and worse functional outcome.

Primary sarcopenia is a progressive, systemic skeletal muscle disease characterized by reduced skeletal muscle mass, insufficient muscle strength, and physical dysfunction; it is commonly associated with age. However, not all sarcopenia is age-related and can occur in the process of specific systemic diseases [3], termed secondary sarcopenia. The secondary sarcopenia that occurs after stroke is termed post-stroke sarcopenia [4]. Previous studies have shown a 50% prevalence of post-stroke sarcopenia in the first month and 34% after six months [5], with an average prevalence over the first six months of 46.7% [6]. Its occurrence is related to factors such as post-stroke dyskinesia, eating disorders, inflammation, sympathetic activation, denervation,
and neuropathic pain [7]. Post-stroke sarcopenia can further aggravate the disability experienced by stroke patients and affect their functional outcomes such as balance, independent walking, and activities of daily living [3,8–9]. The improvement of post-stroke sarcopenia enhances the patient’s ability to perform daily activities and reduces the length of hospitalization [10]. Therefore, the active prevention and treatment of post-stroke sarcopenia are helpful to improve the rehabilitation and overall prognosis of stroke patients.

Most of the contralateral corticospinal tract is affected by stroke, leading to reduced strength in the contralateral limbs and trunk muscles, including the respiratory muscles. Studies have shown average reductions of 21.4% in the hemiplegic diaphragmatic activity in stroke patients compared with that in normal unaffected people [11], and the baseline average inspiratory muscle strength of subacute stroke patients was found to be only 46 cmH₂O [12]. A study has shown that respiratory muscle strength is markedly related to limb muscle strength [13]. The respiratory muscle strength of healthy people, especially the strength of the inspiratory muscles, is positively correlated with indicators of sarcopenia such as limb muscle strength and the skeletal muscle index, and negatively correlated with the occurrence of sarcopenia. Reductions of 1 cmH₂O in MIP and MEP can increase the probability of sarcopenia by 8% and 7%, respectively [14]. While sarcopenia is a known complication of chronic obstructive pulmonary disease (COPD), it has been found that the sarcopenia incidence can be reduced by 28% after inspiratory muscle training [15]. Therefore, inspiratory muscle training may have preventive value for post-stroke sarcopenia.
However, information on the effects of inspiratory muscle training for stroke patients is limited. This study aimed to explore whether inspiratory muscle training can reduce the incidence of post-stroke sarcopenia, and analyze the influence of inspiratory muscle training on the rehabilitation prognosis of stroke patients, to further optimize the early rehabilitation program of stroke, improve the effectiveness of rehabilitation, and reduce the degree of disability after stroke.

Methods

Study design and patient randomization

This was a prospective single-blind randomized controlled trial. A stratified random method was used to assign patients to the two groups according to sex and age ≥65/<65 years. The study was approved by the Ethics Committee (approval no. 2021-04-148-K01) of the People’s Hospital of Deyang City, and was registered prospectively as a clinical trial (code: ChiCTR2200057067) in the Chinese Clinical Trial Registry. All participants signed an informed consent form.

Sample Size

To determine the required number of participants, we calculated the sample size based on the results of previous studies. The average incidence rate of sarcopenia within six months after stroke was found to be 46.7% [16]. Assuming a clinical difference of 15%, 165 patients in each group would be required to test the difference between the two groups at 5% significance (two-tailed) and 80% confidence. If a loss to follow-up of 10% was taken into account, a minimum of 181 subjects in each group would be required. Thus, a total of 362 subjects would be required for the 2 groups.
Participants

A total of 367 stroke patients were recruited in the People’s Hospital of Deyang City (Department of Rehabilitation Medicine, Department of Neurology and Neurosurgery) from May 2021 to October 2022. The patients were required to meet the following inclusion criteria: ① First unilateral stroke meeting the diagnostic criteria for stroke established at the Fourth National Academic Conference on Cerebrovascular Diseases in 1995; ② A course of disease ≤4 weeks; ③ A maximum inspiratory pressure < 60 cmH₂O; ④ A body mass index (BMI) > 18.5 kg/m²; ⑤ Stable vital signs with no tracheal intubation and tracheotomy; ⑥ An ability to actively cooperate with the training without obvious cognitive impairment (MMSE score ≥ 24 points).

Patients were excluded on the following grounds: ① Age < 18 years; ② The presence of pre-stroke sarcopenia (SAFC-F score ≥ 4, with calf circumferences below the threshold for men < 34 cm and women < 33 cm); ③ An inability to move out of bed; ④ The presence of autoimmune disease, malignant tumors, or serious liver and kidney diseases; ⑤ The presence of chronic respiratory diseases (such as COPD and pulmonary fibrosis), acute cardiovascular events within the past three months, or other diseases causing respiratory muscle damage (such as myasthenia gravis or Guillain-Barré syndrome); ⑥ An inability to complete the inspiratory muscle training due to severe facial paralysis or other oropharyngeal structural abnormalities.

Interventions

Patients in the control group underwent conventional neurorehabilitation treatment. This included comprehensive training for hemiplegic limbs (45 min/session, once daily),
power bicycle training (30 min/session, twice daily), hand function training (30 min/session, twice daily), and physical factor therapy (45 min/session, once daily). Training was conducted five days per week for a total of eight weeks.

The experimental group received additional inspiratory muscle training (IMT) in addition to the conventional neurorehabilitation treatment given to the control group. The maximum inspiratory pressure (MIP) was measured before the first IMT, as follows. The patient used a respiratory endurance trainer (Model S2, Xeek Medical Appliance Company Limited) with the threshold resistance adjusted to 3 cmH\textsubscript{2}O while seated in a comfortable position, leaning forward slightly with calm abdominal breathing until the breathing was stable. The MIP was measured at the end of expiration by the patient inhaling as strongly as possible and holding the breath for 2-3-s; the measurement was repeated three times with the maximum value selected as the MIP.

The IMT was measured by adjusting the resistance of the S2 training program to 30% of the MIP (the MIP was re-evaluated and resistance was adjusted according to the latest value obtained during the first training session every two weeks). While sitting comfortably and leaning forward slightly, the patients breathed calmly using abdominal breathing until the breathing was stable, followed by forcible inhalation to the maximum lung capacity at the end of expiration and removal of the filter with slow exhalation for approximately 6 s. This was performed 30 times/group, two groups per day, with one group in the morning and one group in the afternoon. The patient rested after each 3-5 repetitions, according to their degree of fatigue, and paid attention to quiet abdominal breathing and lip-contracting breathing during rest. The total training
time was 8 weeks, 5 days per week. IMT can be performed both with or without supervision. If the patient experienced dizziness, headache, dyspnea, or a decrease of more than 4% in oxygen saturation during the training, the training was halted.

Observation Outcomes

After eight weeks of training, a doctor or physical therapist evaluated the incidence of post-stroke sarcopenia and pneumonia in both groups. The MIP, activity of daily living (ADL), social regression, and balance functions were evaluated at baseline and after completing the interventions in both groups. The evaluators did not know the study purpose and the subject distribution.

Primary Outcomes

Incidence of post-stroke sarcopenia: After eight weeks of intervention, the grip strength and the calf circumference on the non-hemiplegic side were used as indicators to evaluate the incidence of sarcopenia in the two groups. According to the 2019 Asian Consensus on the Diagnosis and Treatment of Sarcopenia [17], the diagnosis of primary sarcopenia requires a decline in both muscle strength and muscle mass [17]. However, the use of the calf circumference has been proposed by many studies as an alternative index for evaluating skeletal muscle mass in stroke patients [18–21]. Therefore, in this study, the grip strength and calf circumference on the non-hemiplegic side were used for the diagnosis of post-stroke sarcopenia; sarcopenia was diagnosed when both measurements were below the thresholds of <28 kg grip strength for men and >18 kg for women and calf circumference of <34 cm for men and <33 cm for women [17].

Grip strength measurement: In the sitting position or the auxiliary sitting position,
the patient held the spring-type grip strength device in his hand and extended his elbow
for two equal-length contractions with maximum force, with a one-minute rest after
each. The maximum reading represented the grip strength.

Calf circumference measurement: the patient lay in the supine position in the
morning, with the knee joint on the non-hemiplegic side flexed 90 degrees while the
ankle joint was relaxed. The maximum calf circumference was measured using a non-
elastic band.

Secondary Outcomes

Pneumonia incidence: The pneumonia incidence in the two groups was assessed
during the training and was expressed as the ratio (%) of the number of cases of
pneumonia to the total number of patients in each group.

Maximum inspiratory pressure (MIP): the MIP measurement was repeated three
times to obtain the optimal value. The normal MIP values are 120±37 for men and
84±30 for women[22]. The MIP measurement method was described in the intervention
section.

Activities of daily living (ADL): The ADL was evaluated using the modified
Barthel Index (MBI), which includes 10 items (eating, dressing, defecation, urination,
toileting, walking, climbing up and down stairs, transferring, modifying, and bathing).
The maximum score is 100, and patients who score more than 60 points can mostly take
care of themselves. Scores of 40-60 points indicate moderate disability, dysfunction,
and a requirement for help, while 20-40 points indicates severe disability with
significant dependence, and patients who score below 20 are completely disabled and
dependent on others for daily living.

Social regression: Social regression was assessed with the modified Rankin scale (mRs). The criteria are as follows: 0 points, no symptoms; 1 point, the presence of symptoms but no obvious dysfunction and able to complete all daily tasks; 2 points, mild disability, with an inability to complete all pre-illness activities but can take care of his/her daily life without help; 3 points, moderate disability requiring some help but can walk independently; 4 points, moderate to severe disability, with an inability to walk independently and requiring help from others in daily life; 5 points, severe disability, bed rest, and complete dependence on others for daily life. Of a total score of 0-5 points, scores ≤3 indicate good function with the patient able to at least walk without help while scores >3 points indicate that the user has poor function and needs help in daily life such as walking.

Balance function: The trunk impairment scale (TIS) is a scale used for evaluating trunk balance in diseases of the nervous system disease and consists of 17 items. These include static sitting balance (3 items, 7 points in total), dynamic sitting balance (10 items, 10 points in total), and trunk coordination (4 items, 6 points in total). The overall score ranges between 0 and 23 with higher scores indicating better balance. The scale has been tested for validity and reliability in stroke patients [23].

Statistical Analysis

All statistical analyses were performed using SPSS 22.0 statistical software and the Shapiro-Wilk test was used to test whether the variables conformed to the normal distribution. Enumeration data were expressed as percentages, and inter-group
comparisons were performed using the Chi-squared test. Measurement data were expressed as mean ± standard deviation (mean ± SD). If the data conformed to the normality and homoscedasticity, independent t-tests were used for inter-group comparisons, and paired t-tests were used for intra-group comparisons before and after treatment. The Mann-Whitney U test was used for inter-group comparisons of non-normality and the Wilcoxon signed rank-sum test was used for intra-group comparisons. The incidence of sarcopenia and pneumonia between the two groups was compared using the Chi-squared test. Two-sided tests were used for statistical analysis, and $P<0.05$ indicated that the difference had statistical significance.

Results

Baseline Characteristics of Participants

Between May 2021 and October 2022, 700 patients were screened for study participation. Of these, 333 were excluded for various reasons, leaving 367 patients who were then enrolled in the study. The patients were randomly allocated to the experimental group (n =184) and the control group (n =183). During the study, 38 patients withdrew from the study due to personal reasons (20 in the experimental group and 18 in the control group). Thus, 329 patients completed the study and were included in the analysis (Fig 1). No significant differences in general clinical data, NIHSS, mRS, MBI, MMSE, TIS, MIP, and calf circumference were observed at baseline between the two groups, and they were thus comparable ($P>0.05$, Table 1). We found no associated adverse effects either during or after treatment.

Fig 1. Flow Diagram of the Study Protocol.
Table 1. Baseline Demographics of Both Groups.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>experimental group (n = 184)</th>
<th>Control Group (n = 183)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td>0.69</td>
</tr>
<tr>
<td>Men</td>
<td>73(48.7%)</td>
<td>77(51.3%)</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>91(50.8%)</td>
<td>88(49.2%)</td>
<td></td>
</tr>
<tr>
<td>Age (year)</td>
<td>61.32±8.79</td>
<td>60.64±8.6</td>
<td>0.48*</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>22.46±2.19</td>
<td>22.6±2.13</td>
<td>0.54*</td>
</tr>
<tr>
<td>Etiology, n (%)</td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Ischemia</td>
<td>79(48.2%)</td>
<td>68(41.2%)</td>
<td></td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>85(51.8%)</td>
<td>97(58.8%)</td>
<td></td>
</tr>
<tr>
<td>Hemiplegia, n (%)</td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Right</td>
<td>75(45.7%)</td>
<td>64(38.8%)</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>89(54.3%)</td>
<td>101(61.2%)</td>
<td></td>
</tr>
<tr>
<td>Dominant hand, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>180</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>dysphagia, n (%)</td>
<td>120(73.2%)</td>
<td>125(75.8%)</td>
<td>0.59</td>
</tr>
<tr>
<td>complication, n (%)</td>
<td>156(95.1%)</td>
<td>162(98.2%)</td>
<td>0.12</td>
</tr>
<tr>
<td>hypertension, n (%)</td>
<td>99(60.4%)</td>
<td>107(64.8%)</td>
<td>0.4</td>
</tr>
<tr>
<td>diabetes</td>
<td>55(33.5%)</td>
<td>58(35.2%)</td>
<td>0.76</td>
</tr>
<tr>
<td>hyperlipemia, n (%)</td>
<td>20(12.2%)</td>
<td>16(9.7%)</td>
<td>0.47</td>
</tr>
<tr>
<td>CHD</td>
<td>22(13.4%)</td>
<td>26(15.8%)</td>
<td>0.55</td>
</tr>
<tr>
<td>arrhythmia, n (%)</td>
<td>17(10.4%)</td>
<td>12(7.3%)</td>
<td>0.32</td>
</tr>
<tr>
<td>osteoporosis, n (%)</td>
<td>5(3%)</td>
<td>5(3%)</td>
<td>0.9</td>
</tr>
<tr>
<td>albumin</td>
<td>37.5±4.7</td>
<td>36.5±4.9</td>
<td>0.4</td>
</tr>
<tr>
<td>prealbuminin, n (%)</td>
<td>198±41.8</td>
<td>193.58±41.62</td>
<td>0.3</td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>25.2±35.05</td>
<td>24.6±36.92</td>
<td>0.92</td>
</tr>
<tr>
<td>hemoglobin</td>
<td>130.34±16.39</td>
<td>128.13±15.19</td>
<td>0.21</td>
</tr>
<tr>
<td>RBC</td>
<td>4.31±0.56</td>
<td>4.3±0.56</td>
<td>0.83</td>
</tr>
<tr>
<td>NIHSS</td>
<td>13.39±6.01</td>
<td>12.89±6.05</td>
<td>0.41</td>
</tr>
<tr>
<td>mRS</td>
<td>3.48±0.63</td>
<td>3.44±0.61</td>
<td>0.4</td>
</tr>
<tr>
<td>MBI</td>
<td>44.09±11.76</td>
<td>44.18±11.05</td>
<td>0.94</td>
</tr>
<tr>
<td>MMSE</td>
<td>24.13±2.29</td>
<td>24.1±2.2</td>
<td>0.89</td>
</tr>
<tr>
<td>TIS</td>
<td>11.29±2.53</td>
<td>11.53±2.4</td>
<td>0.3</td>
</tr>
<tr>
<td>MIP</td>
<td>31.36±8.95</td>
<td>30.87±9.01</td>
<td>0.62</td>
</tr>
<tr>
<td>calf circumference</td>
<td>31.99±4.37</td>
<td>31.92±4.19</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; CHD, coronary heart disease; RBC, Red blood count; NIHSS, National Institute of Health stroke scale; mRS, modified Rankin scale;
After eight weeks of intervention, the incidence of post-stroke sarcopenia in the experimental group was 22%, which was significantly lower than the 36.4% observed in the control group ($P < 0.05$, Fig 2).

Fig 2 Comparison of Incidence of Post-stroke Sarcopenia.

During the eight weeks of intervention, the pneumonia incidence in the experimental group was 7%, which was significantly less than that found in the control group (15.8%)($P < 0.05$, Fig 3).

Fig 3 Comparison of pneumonia incidence.

At the end of the treatment, both groups showed increased MIP values although the MIP values in the experimental group were significantly higher than those in the control group ($P < 0.05$). The difference in the MIP values before and after the intervention also differed significantly between the two groups ($P < 0.05$, Table 2).
Table 2. Intra-group and Inter-group Comparisons of Two Groups of Secondary Outcomes.

<table>
<thead>
<tr>
<th></th>
<th>experimental group</th>
<th>Control Group</th>
<th>95%CI</th>
<th>t (P)</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>44.09±11.76</td>
<td>44.18±11.05</td>
<td>(-2.56,2.38)</td>
<td>-0.07(0.94)</td>
<td>0.3</td>
</tr>
<tr>
<td>T1</td>
<td>65.27±11.31★</td>
<td>62.33±9.28★</td>
<td>(0.75,1.19)</td>
<td>2.58(0.01)</td>
<td>0.3</td>
</tr>
<tr>
<td>T1-T0</td>
<td>21.18±9.77</td>
<td>18.15±8.03</td>
<td>(1.09,4.97)</td>
<td>3.08(0.002)</td>
<td>0.34</td>
</tr>
<tr>
<td>TIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>11.29±2.53</td>
<td>11.53±2.4</td>
<td>(-0.78,0.28)</td>
<td>-1.04(0.3)</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>17.59±5.06★</td>
<td>15.07±4.8★</td>
<td>(1.44,3.58)</td>
<td>-4.17(<0.001)</td>
<td>0.52</td>
</tr>
<tr>
<td>T1-T0</td>
<td>6.29±2.53</td>
<td>3.54±2.4</td>
<td>(2.22,3.29)</td>
<td>-8.75(<0.001)</td>
<td>1.12</td>
</tr>
<tr>
<td>MIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>31.36±8.95</td>
<td>30.87±9.01</td>
<td>(-1.64,2.06)</td>
<td>0.49(0.62)</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>47.99±9.21★</td>
<td>43.97±9.14★</td>
<td>(1.85,5.66)</td>
<td>3.97(<0.001)</td>
<td>0.44</td>
</tr>
<tr>
<td>T1-T0</td>
<td>16.63±8.57</td>
<td>13.09±9.2</td>
<td>(1.70,5.39)</td>
<td>3.61(<0.001)</td>
<td>0.4</td>
</tr>
<tr>
<td>mRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>3.48±0.63</td>
<td>3.44±0.61</td>
<td>(-0.09,0.18)</td>
<td>-0.85(0.4)</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>2.53±0.79★</td>
<td>2.72±0.63★</td>
<td>(-0.35,-0.04)</td>
<td>-2.54(0.01)</td>
<td>0.3</td>
</tr>
<tr>
<td>T1-T0</td>
<td>0.95±0.65</td>
<td>0.72±0.56</td>
<td>(0.1,0.37)</td>
<td>-3.42(0.001)</td>
<td>0.4</td>
</tr>
<tr>
<td>CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>31.99±4.37</td>
<td>31.92±4.19</td>
<td>(0.86,0.99)</td>
<td>-0.24(0.81)</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>33.26±3.39</td>
<td>31.59±3.22</td>
<td>(0.95,2.39)</td>
<td>-5.01(<0.001)</td>
<td>0.5</td>
</tr>
<tr>
<td>T1-T0</td>
<td>1.27±2.36</td>
<td>-0.33±2.71</td>
<td>(1.06,2.16)</td>
<td>-4.79(<0.001)</td>
<td>0.37</td>
</tr>
<tr>
<td>grip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>33.5±8.89</td>
<td>29.26±7.49</td>
<td>(-2.45,6.02)</td>
<td>-4.6(<0.001)</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Abbreviations: mRS, modified Rankin scale; MBI, modified barthel index; TIS, trunk impact scale; MIP, maximum inspiratory pressure. CC: calf circumference.
Comparisons of daily living activity (ADL)

At the completion of the intervention, the MBI scores were increased in both groups with the scores in the experimental group being significantly higher than those of the control group \((P<0.05) \). The difference in the MBI scores before and after the intervention also differed significantly between the two groups \((P<0.05, \text{ Table 2}) \).

Comparison of social regression

The mRS scores in both groups after the intervention were observed to be lower than those before the intervention, with the mRS scores of patients in the experimental group being significantly better than those of patients in the control group \((P<0.05) \). The differences in the mRS scores also differed significantly before and after the intervention between the two groups \((P<0.05, \text{ Table 2}) \).

Comparison of balancing function

After completion of the intervention, the TIS scores were observed to have increased in both groups, with the scores of patients in the experimental group being significantly higher than those in the control group \((P<0.05) \). The difference in the TIS scores before and after the intervention also differed significantly between the two groups \((P<0.05, \text{ Table 2}) \).

Discussion
Stroke can lead to respiratory dysfunction such as respiratory muscle weakness and abnormal respiratory patterns resulting from both central and peripheral factors. Respiratory function plays an important role in motor ability and the response to most cardiopulmonary exercises. Decreased respiratory function is one of the main causes of non-vascular death after stroke [12]. Training of the respiratory muscles can improve the motor abilities of stroke patients and reduce the likelihood of stroke-related complications and mortality [12]. However, respiratory training for stroke patients has not been widely used in China, and there are few relevant studies either in China or abroad. The present study conducted a randomized controlled trial of the efficacy of inspiratory muscle training in patients after a first stroke. The results showed that the incidence of post-stroke sarcopenia and pneumonia in patients who received early inspiratory muscle training was lower than that in the control group. In addition, the treated patients performed better than those in the control group in their daily living activities, social regression, balance functions, and inspiratory muscle strength. Therefore, our study demonstrated that inspiratory muscle training is a simple, effective training method that helps to mitigate the incidence of post-stroke sarcopenia and promote functional recovery from stroke.

Inspiratory muscle training and post-stroke sarcopenia

To date, there are many studies on the association of chronic respiratory diseases with sarcopenia showing that reductions in respiratory muscle strength are associated with a high probability of sarcopenia as a complication of COPD [24]. Inspiratory muscle training has been found to help reduce the incidence of sarcopenia related to
Therefore, in addition to exercise and nutritional support, respiratory training is effective for reducing sarcopenia and its effects [25], possibly because respiratory training can improve the inspiratory muscle "blood steal" phenomenon and reduce limb skeletal muscle fatigue, thus improving exercise tolerance and reducing the risk of sarcopenia. Reduced activity, malnutrition, and other causes after stroke promote the occurrence of post-stroke sarcopenia. At present, there are few studies related to the treatment options for post-stroke sarcopenia. The present study showed that both the grip strength and calf circumference in the inspiratory muscle training group were markedly better than those in the control group, and the incidence of post-stroke sarcopenia in the experimental group was significantly lower than that in the control group. Previous studies have shown that the grip strength on the non-hemiplegic side is an independent predictor of the short-term functional prognosis after stroke [9], while atrophy of lower-limb muscles on the non-hemiplegic side is independently associated with an inability to walk independently after the stroke and is a factor influencing post-stroke limb disability [26], suggesting that limb strength on the non-hemiplegic side is related to the stroke prognosis. Relevant studies in healthy young people and the elderly have found that compared with non-sarcopenia patients, the average maximum respiratory pressure in sarcopenia patients is significantly reduced and negatively correlated with the incidence of sarcopenia [13,27]. Respiratory muscle strength, especially inspiratory muscle strength, has been used as a screening index for elderly sarcopenia in the community. Similar to the conclusions of the present study, the maximum inspiratory muscle strength of elderly male cardiovascular patients with
sarcopenia was found to be positively correlated with such sarcopenia indicators as grip strength, skeletal muscle mass index, and pace. The inspiratory muscle strength has been used as a diagnostic indicator of sarcopenia in elderly male cardiovascular patients [28–29], reflecting the close relationship between respiratory muscle strength and sarcopenia. The active prevention and treatment of the decline in respiratory muscle strength thus contribute to the prevention of sarcopenia.

Inspiratory muscle training and MBI and mRS

Dyskinesia represents the principal pathology seen after stroke and includes reduced respiratory muscle function, decreased thoracic expansion and limb mobility, and balance dysfunction. These dysfunctions affect the patients' activities of daily living and increase the risk of pneumonia. Lower limb strength in stroke patients is associated with poor muscle control and reduced activation of the primary motor cortex, both reducing function and inducing greater dependence. Recent studies have confirmed that pre-stroke sarcopenia is a predictor of poor mRS in stroke patients three months after the stroke [30], and post-stroke sarcopenia is related to poor prognosis, specifically in the ability to perform daily activities, overall improvement, and the possibility of hospital discharge [31]. This study showed that both social regression and the ability to perform daily living activities were improved to a greater extent in the experimental group than in the control group. On the one hand, this result may be attributed to the lower incidence of post-stroke sarcopenia. A cross-sectional study showed that improvements in post-stroke sarcopenia were related to a higher discharge rate and better functional independence rating scale (FIM) scores [32–33], suggesting that
sarcopenia treatment in stroke patients formed the basis of the improvements in performing daily activities. On the other hand, the impact of stroke on the cardiovascular, respiratory, and neuromuscular systems may affect cardiopulmonary health after stroke, and the cardiopulmonary function of stroke patients can remain reduced for several years [34]; inspiratory muscle training can effectively improve respiratory function, cardiopulmonary endurance, and reduce the incidence of pneumonia incidence after stroke [35–37]. Respiratory muscle training involves long and repeated resistance training of the respiratory muscles, which is conducive to improving respiratory endurance and allowing patients to make more effective use of the respiratory muscles in daily life [38]. Previous studies have shown that inspiratory muscle training can fully utilize the diaphragm and sternocleidomastoid muscle [39] while reducing sympathetic nervous activity [40] and promoting the development of a deep and slow breathing pattern beneficial to exercise in patients with COPD [41], as well as improving lung disease [42–43], asthma [44], chronic heart failure [40], chronic kidney disease [45], and spinal cord injury [46], as well as enhancing the inspiratory muscle strength, improving dyspnea, and thus the overall daily living and quality of life of patients. The present study found that the use of inspiratory muscle training combined with traditional physical therapy can accelerate recovery from stroke, the strengthening of the diaphragm and intercostal muscles allows patients to recover their respiratory function effectively, increasing their scores on the Functional Independence Rating Scale (FIM), the 6-minute walk test, the amount of fatigue severity, and the cognitive function score [47–48].
Inspiratory muscle training and balance

Our study found that the balance function of patients in the experimental group was superior to that of the control group, and the sarcopenia incidence in the experimental group was less than that in the control group. Sarcopenia has been shown to have a negative effect on balance, mobility, and overall function [9] and older individuals with sarcopenia are three times more likely to fall than non-sarcopenia patients [49]. Most stroke patients have decreased respiratory muscle strength. The decline in respiratory muscle strength usually affects the trunk stability of stroke patients. Asymmetric movements of the trunk, in turn, may impact respiratory muscle function. If not corrected in time, the reduced respiratory muscle function and trunk dysfunction will interact [50]. It has been demonstrated that respiratory training can be used as a trunk control training method in stroke patients [51]. Bosnak et al reported that inspiratory muscle training could increase both the quadriceps strength and balance function in patients with heart failure [52]. Inspiratory muscle training has also been widely applied to enhance the mobility and balance of the trunk core muscles in patients with COPD. A randomized controlled trial on 21 stroke patients examined the effects of inspiratory muscle training on the respiratory function, respiratory muscle strength, trunk control, balance, and overall function of stroke patients. The results showed a strong association between the trunk balance scale (TIS) and maximum inspiratory pressure (MIP) in the experimental group, and their effect size was higher [53]. The improvement in balance function induced by IMT might be attributable to two reasons. On the one hand, the inspiratory muscles belong to the core muscle group, and their
training helps to improve the thoracic movement of the trunk and the oxygen supply to the four limbs, thereby improving the balance of the trunk, transfer ability, and motor coordination of the limbs. On the other hand, inspiratory muscle training helps to prevent post-stroke sarcopenia, thereby indirectly preventing the reduction in balance function and the falls caused by post-stroke sarcopenia. However, a study found no relationship between respiratory muscle strength and functional ability, trunk control, and functional independence, and observed that the TIS score correlated only with the FEV1(%) [54]. Similarly, another study reported that inspiratory muscle training had no obvious beneficial effect on the balance of stroke patients, which might be related to bias induced by the small sample size (16 patients) in the study [55].

Inspiratory muscle training and respiratory muscle strength

The respiratory muscle strength of stroke patients is only about half of that expected for healthy adults [56], and the average maximum inspiratory pressure (MIP) is 17-57 cmH$_2$O [12], which is lower than the threshold of 60 cmH$_2$O for inspiratory muscle weakness in patients with nervous system diseases [57]. The decrease in respiratory muscle strength is closely related to reduced cardiopulmonary endurance in stroke patients who have an approximately 40% lower motor capacity than people who are sedentary. The decline in MIP is an independent risk factor for heart failure, myocardial infarction, and cardiovascular death, and may increase the risk of stroke [58]. MIP is an indicator for the evaluation of inspiratory muscle strength. The inspiratory muscle training carries out threshold training by the repeated application of appropriate resistance to the inspiratory muscle, and the respiratory muscle will respond
adaptively like any other skeletal muscle to improve respiratory muscle strength [38].

Early respiratory muscle training contributes to the improvement of pulmonary function after stroke [59]. Without respiratory training, the respiratory function in stroke patients fails to return to normal within a recovery period of up to 9 months [60]. Inspiratory muscle training is currently mainly used for the rehabilitation of patients with COPD, heart failure, and myasthenia gravis. In this study, the inspiratory muscle strength stroke after IMT was significantly improved in the experimental group compared with that of the control group, and the pneumonia incidence was less than that of the control group. This is consistent with the results of randomized controlled studies of subacute stroke patients [34]. Their research confirmed that six weeks of comprehensive respiratory training resulted in significant improvements in respiratory muscle strength, cardiopulmonary endurance, motor ability, and the dyspnea index, and it was possible to reduce the risk of stroke recurrence and mortality associated with various cardiovascular and cerebrovascular diseases by improving the maximum oxygen uptake. Research on inspiratory muscle training shows that inspiratory muscle training can significantly improve the thickness of the diaphragm, the MIP, and inspiratory muscle endurance after stroke [61]. Respiratory training resulted in an increase in the MIP of 7 cmH$_2$O, which was conducive to improving cardiopulmonary endurance and reducing the incidence of pneumonia [12,36,37,57].

Limitations

There were some limitations in this study. First, the grip strength was not measured at baseline to diagnose post-stroke sarcopenia; this was mainly because acute stroke
patients are in a weak state and it is difficult to accurately assess their grip strength. However, grip strength is still one of the important indicators for the diagnosis of sarcopenia. Second, the results of the study only showed the difference between the two groups after intervention. Therefore, further studies are required to observe its long-term rehabilitation value.

Conclusion

Early inspiratory muscle training as used with neural rehabilitation in patients after a first stroke can reduce the incidence of post-stroke sarcopenia and pneumonia, improve the inspiratory muscle strength and balance functions, and improve both daily living and social regression. Early inspiratory muscle training can not only improve respiratory muscle function but also provide stable trunk support for the recovery of limb function; this recovery process is in accordance with the law of neurophysiological development from the central area to the limbs. These findings will enhance our understanding of the integration of inspiratory muscle training into routine neurological rehabilitation programs for stroke.

Acknowledge

We would like to express sincere thanks to all the physiotherapists who participated in this research and Deyang People's Hospital for their support.

References

1. Smith Hammond CA, Goldstein LB, Zajac DJ, Gray L, Davenport PW, Bosler DC.
Assessment of aspiration risk in stroke patients with quantification of voluntary

in motor activation of voluntary and reflex cough in humans. Thorax 2006;61:
699–705.

3. Scherbakov N, von Haehling S, Anker SD, Dirnagl U, Doehner W. Stroke induced
94.

5. Su Y, Yuki M, Otsuki M. Prevalence of stroke-related sarcopenia: A systematic

stroke-related sarcopenia at the subacute stage: A case control study. Front Neurol.
2022;13: 899658.

7. Li W, Yue T, Liu Y. New understanding of the pathogenesis and treatment of

Association between sarcopenia and higher-level functional capacity in daily living
e9–13.

9. Yi Y, Shim JS, Oh BM, Seo HG. Grip Strength on the Unaffected Side as an

factors of stroke-related sarcopenia at the subacute stage: A case control study.

Front Neurol. 2022;13: 899658.

38. Menezes KK, Nascimento LR, Avelino PR, Alvarenga MTM, Teixeira-Salmela
LF. Efficacy of Interventions to Improve Respiratory Function After Stroke. Respir Care 2018;63: 920–933.

Enrollment

Eligible patients (n=700)

Excluded (n=333)
- not meet inclusion criteria (n=172)
- refused to participate (n=14)
- other reasons (n=47)

Randomized patients (n=367)

Allocation

Experimental group (n=184)

Withdrawal from Study (n=20)

Complete study (n=164)

Control Group (n=183)

Withdrawal from Study (n=18)

Complete study (n=165)

Follow-Up

Analysis
Figure

- Experimental Group: 22%
- Control Group: 36.40%

Significant difference indicated by ** stars.
Figure

- Experimental group: 7%
- Control group: 15.80%

Significance: ** **