Delineating disorder-general and disorder-specific dimensions of psychopathology from functional brain networks in a clinical sample of children and adolescents

Authors:
Irene Voldsbekk¹,², Rikka Kjelkenes¹,², Andreas Dahl¹,², Madelene C. Holm¹,², Martina J. Lund¹, Tobias Kaufmann¹,³, Christian K. Tamnes¹,⁴,⁵, Ole A. Andreassen¹,⁶, Lars T. Westlye¹,²,⁶, Dag Alnæs¹,⁷

¹ Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
² Department of Psychology, University of Oslo, Oslo, Norway
³ Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
⁴ Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
⁵ PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
⁶ KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, & Department of Neurology, Oslo University Hospital, Oslo, Norway
⁷ Kristiania University College, Oslo, Norway

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background. The complex interplay between functional brain network maturation and psychopathology during development remains elusive. In pursuit of the structure of psychopathology and its underlying neurobiological mechanisms, mapping of both shared and unique functional connectivity patterns in developmental clinical populations is needed.

Methods. We investigated shared associations between resting-state functional brain network patterns and psychopathology in children and adolescents aged 5-21 from the Healthy Brain Network study (n = 1880, 62% male). Specifically, we used partial least squares (PLS) to identify latent variables (LV) between functional connectivity and a) symptom scores, and b) diagnostic information. In addition, we investigated associations between functional connectivity and each diagnosis specifically, controlling for other diagnosis categories.

Results. PLS identified several statistically significant LVs between functional brain networks and symptoms, mapping onto the psychopathology hierarchy. The first LV, explaining most covariance in functional connectivity, resembled a general psychopathology factor (r=.69, p=.01). This LV implicated weaker connectivity between the salience network and limbic and visual network. The next four LVs entailed externalisation-internalisation, neurodevelopmental, somatoform, and detachment (r=.69, p=.038; r=.70, p=.012; r=.69, p=.031; r=.68, p=.012, r=.65, p=.005, respectively), all associated with distinct patterns of functional connectivity. Another PLS with diagnostic data revealed one significant LV (r=.69, p=.009), resembling a cross-diagnostic case-control pattern. This diagnostic LV entailed stronger connectivity between the limbic and visual network, in addition to weaker connectivity within the somatomotor network. The disorder-specific PLS identified a unique connectivity pattern for autism spectrum disorder (ASD) (r=.67, p=.012), implicating weaker connectivity within the somatomotor network and salience network.

Conclusions. Transdiagnostic and symptom-based dimensions of psychopathology map onto to the functional networks of the brain during childhood and adolescence, while ASD was the only diagnostic category to exhibit a specific connectivity pattern. This finding supports dimensional and transdiagnostic classifications of psychopathology.

Keywords. Multivariate, transdiagnostic, psychopathology, functional connectivity
Establishing the structure of psychopathology and its underlying neurobiological mechanisms is a critical step towards personalised approaches in mental health research and care. The high rate of comorbidity between diagnoses challenges the utility of traditional case-control designs and motivates novel strategies for clinical phenotyping such as transdiagnostic assessment of psychopathology dimensions (Caspi et al., 2014; Insel et al., 2010). Existing diagnostic categories do not map onto disease-specific neurobiological substrates (Insel & Cuthbert, 2015), and many of the detected abnormalities in both genetics (Hindley et al., 2022; Lahey et al., 2011; Pettersson et al., 2016; Roelfs et al., 2021), brain structure (Goodkind et al., 2015; Opel et al., 2020a) and brain function (Elliott et al., 2018; McTeague et al., 2017; McTeague et al., 2020; Sha et al., 2019) are shared across disorders. Investigation into the neurobiological substrates of distinct symptom dimensions may therefore elucidate the brain-based underpinnings of mental disorders.

Childhood and adolescence is characterised by large scale reorganisation and maturation of the brain and its functional networks (Paus et al., 2008; Power et al., 2010). Given that mental disorders often first manifest during this time (Caspi et al., 2020; Kessler et al., 2007), aberrant functional network development may represent a key aetiological component in mental disorders (Casey et al., 2014; Paus et al., 2008). Indeed, while sensory and motor regions and their associated functional networks typically are fully developed by late childhood, the association cortex, and implicated functional networks such as the default mode network (DMN), take longer to mature. This might leave these brain regions vulnerable to emerging psychopathology during neurodevelopment (Sydnor et al., 2021). To identify biologically informed dimensions of psychopathology, investigating associations between functional brain networks and psychopathology during childhood and adolescence is imperative.

Psychopathology is increasingly conceptualised as a hierarchical structure (Caspi et al., 2014; Kotov et al., 2017; Lahey et al., 2017). This hierarchy consists of a general psychopathology factor as the highest order, reflecting a general vulnerability to psychopathology, followed by increasingly narrow dimensions, such as internalising and externalising. These reflect anxious and depressive symptoms, and aggressive, rule-breaking, and hyperactive symptoms, respectively. A neurodevelopmental factor is also often included to reflect autistic-like traits and symptoms of attention deficit hyperactivity disorder (ADHD). For example, recent work in the Adolescent Brain Cognitive Development (ABCD) cohort (Casey et al., 2018) derived five dimensions of psychopathology (i.e. internalizing, externalizing, neurodevelopmental, detachment, and somatoform) using exploratory factor
analysis on symptom data (Michelini et al., 2019). Similar psychopathology dimensions have been derived from both symptom data (Karcher et al., 2021) and diagnostic data (Lees et al., 2021) and then associated with patterns of functional connectivity obtained from resting-state functional magnetic resonance imaging (rs-fMRI). However, these studies derived dimensions of psychopathology from symptom data or diagnostic information in isolation, and only afterwards associated them with functional connectivity. To identify brain-based dimensions of psychopathology, the functional brain networks should inform the estimation of psychopathology dimensions per se.

Doing exactly this, studies have identified symptom dimensions by finding their maximal correlation with functional connectivity in youth aged 8-22 (Xia et al., 2018) and preadolescents aged 9-11 (i.e. the ABCD cohort) (Kebets et al., 2023). In youth, dimensions of mood, psychosis, fear, and externalisation symptoms exhibited both unique and a shared pattern of connectivity. In ABCD, dimensions derived from structural and functional brain patterns simultaneously resembled a general psychopathology factor along with internalising-externalising, neurodevelopmental, somatoform, and detachment dimensions. Although this work is promising with respect to identifying biologically informed dimensions of psychopathology, the investigation of mental health symptoms in population-based studies may not generalise to clinical populations (Vanes & Dolan, 2021). While investigation in young, representative cohorts is essential to understand putative developmental mechanisms relevant for psychopathological vulnerability, it is equally important to map the relevance of these findings to individuals already diagnosed with a mental disorder. Mapping of disorder-general and disorder-specific patterns in clinical populations is needed to elucidate the underlying neurobiological mechanisms of psychopathology.

Patterns of connectivity related to symptoms of anxiety, irritability, and ADHD were replicated across two independent clinical samples of children and adolescents (Linke et al., 2021). Specifically, this study identified one dimension consisting of all three domains, while the second dimension captured shared aspects of irritability and ADHD, and the third was specific to anxiety. This indicates clinically relevant disorder-general (i.e. shared across disorders) and disorder-specific effects in functional networks of children and adolescents. Moreover, it points to the possibility of decomposing irritability, a symptom shared between anxiety and ADHD, into disorder-specific and common components based on patterns of brain connectivity. However, this study did not investigate connectivity patterns related to broad transdiagnostic symptom dimensions but maintained a focus limited to anxiety, irritability, and attention problems. Moreover, the degree of overlap between functional
networks linked to symptom dimensions and those related to diagnosis remain to be determined.

In the current study, we aimed to investigate dimensions linking functional connectivity and psychopathology in a clinical sample of children and adolescents. We used partial least squares (PLS) (Krishnan et al., 2011), a multivariate technique that identifies shared associations across two high-dimensional matrices. This enables identification of dimensions of psychopathology derived from connectivity patterns in functional brain networks. Specifically, we wanted to highlight similarities and differences across dimensions derived from symptom data vs diagnostic classifications in the same sample. To do this, we investigated associations between functional connectivity and a) symptom scores, and b) diagnostic information. In addition, we investigated associations between functional connectivity and each diagnosis specifically, controlling for other diagnosis categories.

Methods

Sample. The sample was recruited from New York City, USA to participate in the Healthy Brain Network (HBN) (Alexander et al., 2017), a cohort consisting of children and adolescents aged 5-21. Participants were recruited through community sampling where children with clinical concerns were encouraged to participate. The participants underwent a comprehensive assessment of biological and socio-environmental factors, in addition to diagnostic evaluation by qualified health personnel. After quality control and data cleaning (see below), the final sample for our analyses consisted of 1880 participants (721 females). Sample demographics are provided in Figure 1.

Clinical measures. Symptom scores were obtained from the Child Behaviour Checklist (CBCL) (Achenbach & Rescorla, 2001), which assesses emotional, behavioural, and social problems in children by parent report. Parents scored their children on 113 items as either 0 (“Not true”), 1 (“Somewhat or sometimes true”) or 2 (“Very true or often true”). The responses to these items result in eight syndrome measures, previously found to be the best-fitting model for data obtained from both general and clinical populations (Achenbach & Rescorla, 2001; Ivanova et al., 2007): Anxious/Depressed, Withdrawn/Depressed, Somatic Complaints, Social Problems, Thought Problems, Attention Problems, Rule-Breaking Behaviour, and Aggressive Behaviour.
Diagnostic information was obtained by a computerised version of the Schedule for Affective Disorders and Schizophrenia – Children’s version (KSADS) (Kaufman et al., 1997), which is a clinician-administered semi-structured psychiatric interview based on DSM-5. Based on this interview and revision of all other collected materials, a consensus regarding clinical diagnosis was made by a team of licensed clinicians. We then categorised diagnoses as either “ADHD”, “ASD”, “anxiety disorders”, “mood disorders”, “other neurodevelopmental disorders”, “other disorders” or “no diagnosis”. Most participants had more than one diagnosis. Of those with complete MRI data (see below), 1992 participants had available both diagnostic data and symptom data. Participants with more than 10% missing symptom data were excluded (n=112). For the remaining participants (n=1880), missing values were imputed with knnimpute in MATLAB (MathWorks, 2020).

Figure 1. Sample distributions. A. Diagnosis categories (more than one per individual possible). B. Clinical symptoms. C. Comorbidity. D. Age and sex. The lines indicate mean age for each sex. CBCL; child behaviour checklist. ADHD; attention-deficit hyperactivity disorder. ASD; autism spectrum disorder. ND; neurodevelopmental.

MRI pre-processing. We accessed rs-fMRI and T1-weighted structural MRI for the current study. MRI data were acquired at four different sites: a mobile scanner at Staten Island (SI), Rutgers University Brain Imaging Centre, Citigroup Biomedical Imaging Centre (CBIC) and Harlem CUNY Advanced Science Research Centre. A detailed overview of the
MRI protocol is available elsewhere (http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/MRI%20Protocol.html). T1-weighted MRI data (n=3334) were processed using FreeSurfer v. 7.1.0 (Fischl, 2012) and quality controlled using the MRIQC classifier (Esteban et al., 2017). For participants with more than one T1-weighted scan, we selected the sequence with the best estimated quality, as previously described (Voldsbekk et al., 2023).

For individuals with sufficient structural MRI image quality (n=3213), we submitted rs-fMRI images for pre-processing along the following pipeline. We applied FSL MCFLIRT (Jenkinson et al., 2002) for motion correction, high-pass temporal filtering (cut-off: 100), spatial smoothing (FWHM: 6) and distortion correction as part of FEAT (Woolrich et al., 2001). The rs-fMRI images were also registered to the structural image using FLIRT (Jenkinson et al., 2002) and boundary-based registration (Greve & Fischl, 2009). Next, for additional removal of artefacts and noise, we performed non-aggressive ICA-AROMA (Pruim, Mennes, Buitelaar, et al., 2015; Pruim, Mennes, van Rooij, et al., 2015) and FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) with a threshold of 20. During this procedure, 595 participants were excluded due to missing data or insufficient image quality. As an additional step, quality control of the raw rs-fMRI images was performed using MRIQC. Estimations of temporal signal-to-noise ratio (tSNR) and mean framewise displacement (FD), as calculated by MRIQC, were used as covariates in subsequent analyses.

Network analysis. To increase reproducibility, nodes were estimated from the Schaefer parcellation with 100 parcels and 7 networks (Schaefer et al., 2018). These networks include visual A, visual B, visual C, auditory, somatomotor A, somatomotor B, language, salience A, salience B, control A, control B, control C, default A, default B, default C, dorsal attention A and dorsal attention B. As an additional quality check of the estimated parcels, participants with data in less than 60% of voxels for each parcel were excluded (n=290). An overview of percentage missing data in each parcel is shown in Figure S1. To check that 60% is a reasonable threshold, balancing exclusion of participants vs completeness of voxel data, time series correlations were computed in the subset of participants with no missing data between the full parcel time series (i.e., from 100% of voxels) and parcel time series based on 60% of the voxels of that parcel (removing those voxels most frequently missing). The correlation between the full 100% parcel and the 60% parcel time series was high for every parcel (all higher than .87, see Figure S2). Parcel timeseries were then imported to FSLNets (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets), as implemented in MATLAB (MathWorks, 2020), for estimation of edges (n=2328). In this step, we calculated
the partial correlations between nodes using L2-norm ridge regression, as these are considered a better measure of direct connectivity strength (Marrelec et al., 2006). Finally, edges were z-transformed using Fisher’s transformation and we extracted the upper triangle of the correlation matrix for further analysis, yielding 4,950 unique edges reflecting the connection strength between nodes for each participant.

Partial-least squares. To assess shared associations between edges (i.e. functional connectivity strength between two brain regions) and symptom data, we used rotated behavioural PLS in PLS Application (Krishnan et al., 2011), entering z-transformed symptom data as behavioural variables. This approach yields latent variables (LV) reflecting maximal covariance across both matrices. The significance of LVs was assessed using permutation testing (n=5000). Then, the stability of edges for each significant LV was estimated using bootstrapping with replacement (n=1000), thresholding at |pseudo-z|>3 (McIntosh & Lobaugh, 2004) for significance. Symptom loadings onto each LV was extracted as the correlation between weights on each LV and the original symptom data.

Next, entering diagnostic information (one column for each diagnosis: 1 as having the diagnosis, 0 as not – more than one possible per participant) as behavioural variables, we then used rotated behavioural PLS to decompose data into putative specific and shared disorder dimensions (i.e. diagnosis-based patterns). Then, to test for diagnosis-specific patterns explicitly, we ran non-rotated behavioural PLS, in which associations between edges and each diagnostic category was tested. This test was run for each diagnosis category separately, while controlling for all other diagnosis categories (see Table S1 for an overview of contrasts).

Prior to running PLS, edges were adjusted for sex, age, tSNR, FD, and scanner site. PLS was run using Spearman’s rank correlation. Significant LVs were then plotted using R version 4.1.2 (https://cran.r-project.org). To aid in the visualisation and interpretation of the high dimensional connectivity patterns, edges were summarised across networks for significant LVs. To investigate the loading of nodes, we also estimated the nodal loading strength across the connectivity matrix for each connectivity pattern identified by PLS using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010) in MATLAB. To obtain a more detailed overview of each connectivity pattern, we plotted nodal strength and edge strength using BrainNet Viewer (Xia et al., 2013).

Consistency across age, sex, ethnicity, socio-economic status, and intelligence. Given that aberrant brain development may represent a key aetiological component in mental disorders (Casey et al., 2014; Paus et al., 2008), we assessed whether the shared associations
between edges and symptom data differed as a function of age or sex. To do this, we reran the symptom-based PLS without adjusting edges for age and sex. These results revealed similar patterns of covariation (Figure S3), with highly correlated feature weights across overlapping dimensions for all LVs (Table S2). To examine whether the shared associations identified were generalisable across ethnic groups, we plotted the correlations between edges and symptoms by ethnic group (Figure S4). Similarly, to examine whether the shared associations identified were generalisable across levels of socioeconomic status (SES), we plotted the correlations by median-split of household income, as a proxy for SES (Figure S5). To examine whether the shared associations identified were generalisable across levels of intelligence, we plotted the correlations by full scale IQ split into ±70 (Figure S6). Finally, symptom loadings and connectivity loadings from the symptom-based PLS were regressed against each diagnosis category separately, with “no diagnosis” as a reference group. We also regressed loadings against number of diagnoses, interpreting the latter as a proxy of cross-diagnostic vulnerability. All associations were adjusted for age, age², and sex.

Results

Symptom-based dimensions. Based on the scree plot of percent cross-block covariance explained (Figure S7), we selected the first six LVs in the symptom-based PLS for further analysis. Of these, five were significant (r=.69, p=.01; r=.69, p=.038; r=.70, p=.012; r=.69, p=.031; r=.68, p=.012, respectively; Figure S8). Each LV represents a distinct pattern that relates a weighted set of symptoms to a weighted set of functional brain network connections. Inspection of the most heavily weighted symptoms for each LV revealed that they resemble the psychopathology hierarchy: the first LV resembled a general psychopathology factor (see Figure 2A), while the remaining four represented increasingly narrow dimensions (see Figure 3). Specifically, LV2 was related to externalising-internalising, LV3 to neurodevelopment, LV4 to somatic complaints, and LV6 to thought problems.

These psychopathology dimensions were identified by their shared associations with specific patterns of connectivity. For each dimension, these patterns were widely distributed across functional networks (see Figure 2 and S9). LV1 was related to weaker connectivity between the salience network and limbic and visual network (Figure 2B-C). In addition, LV1 was related to stronger connectivity between the limbic and visual network and between the...
The nodes with strongest loading on this pattern implicated the control network, DMN, and salience network. LV2 was related to stronger within- and between-network connectivity in the visual network and between the salience network and DMN, with the strongest nodes in the DMN and visual network (Figure S9). LV3 was related

Figure 2. The first dimension of shared associations between functional connectivity and clinical symptoms resembled a general psychopathology factor. **A.** The highest loading symptoms of this dimension. Loadings reflect correlations between LV weights and original data. **B.** Strength of edges and nodes that contributed to this dimension. Edges are coloured red for higher connectivity and blue for lower connectivity. Nodes are coloured based on network membership. **C.** Both increased and reduced connectivity in specific edges contributed. Magnitude in this plot reflects summarised edge strength across each network. **E-F.** Connectivity and symptom loadings across diagnostic categories (left) and number of comorbidities (right). In these plots, the data is centred around the mean of no diagnosis. LV; latent variable. ADHD; attention-deficit hyperactivity disorder. ASD; autism spectrum disorder. ND; neurodevelopmental. Vis; visual network. SomMot; somatomotor network. SalVentAttn; salience network. Cont; control network. Default; default mode network. DorsAttn; dorsal attention network.
Figure 3. Dimensions of shared associations between functional connectivity and clinical symptoms map onto the hierarchical structure of psychopathology. A. LV2 map onto symptoms of higher externalisation and lower internalisation. B. LV3 map onto symptoms of neurodevelopmental problems. C. LV4 map onto symptoms of higher somatic complaints and lower withdrawn/depressive symptoms. D. LV6 map onto symptoms of higher thought problems. LV; latent variable.

to stronger connectivity between the DA and limbic network and between the DMN and visual network. The strongest nodes were distributed across the DMN, DA, control, and visual network. LV4 was related to weaker connectivity between the DA and control network, stronger connectivity between the visual and limbic network, and within the control network. The strongest nodes were in the control network. LV6 was related to weaker connectivity between the limbic and DA and control network, as well as within the DMN. The strongest nodes were in the somatomotor network and the limbic network.

Diagnosis-based dimensions. The rotated diagnosis-based PLS identified one significant LV (r=.69, p=.009). As shown in Figure 4A, this pattern resembled a general case vs control pattern across all diagnoses. Partly consistent with the general psychopathology pattern of the symptom-based LV1, a higher loading on this LV (i.e. having a diagnosis) entailed stronger connectivity between the limbic and visual network, in addition to weaker connectivity within the somatomotor network and between this network and the salience.
network and DMN (Figure 4B-C). The strongest nodes were distributed across all these networks, as well as the DA network.

Diagnosis-specific patterns. The non-rotated diagnosis-specific PLS, which tested each diagnosis category separately while controlling for all other diagnosis categories, identified a unique connectivity pattern for ASD ($r=.67, p=.012$). As shown in Figure 5, the ASD-specific pattern was widely distributed, including weaker connectivity within the somatomotor network and between the DA network and visual network. The strongest nodes implicated the salience, visual, and control network. In addition, the non-rotated diagnosis-specific PLS identified a unique pattern of no diagnosis vs all diagnoses (Figure S10). This pattern implicated increased connectivity between the somatomotor, and salience and DMN, in addition to lower connectivity between the visual and limbic network, as well as between the DMN and DA network. The strongest nodes implicated in this pattern were in the DA network. The remaining diagnosis categories did not show disorder-specific patterns of functional connectivity.

![A diagnosis-based analysis revealed a case-control pattern](image)

Figure 4. One dimension of shared associations between functional connectivity and diagnosis categories, resembling a cross-diagnostic case-control difference. A. The diagnosis dimension reflected a pattern across all diagnostic categories vs no diagnosis. B. Strength of edges and nodes that contributed to this dimension. Edges are coloured red for higher connectivity and blue for lower connectivity. Nodes are coloured based on network membership. C. Both increased and reduced connectivity in specific edges contributed. Magnitude in this plot reflects summarised edge strength across each network. ADHD; attention-deficit hyperactivity disorder. ND; neurodevelopmental. ASD; autism spectrum disorder. Vis; visual network. SomMot; somatomotor network. SalVentAttn; salience network. Cont; control network. Default; default mode network. DorsAttn; dorsal attention network.
Figure 5. ASD was the only diagnosis category exhibiting a unique pattern of connectivity A. Strength of edges and nodes specific to ASD. Edges are coloured red for higher connectivity and blue for lower connectivity. Nodes are coloured based on network membership. B. Both increased and reduced connectivity in specific edges contributed. Magnitude in this plot reflects summarised edge strength across each network. ASD; autism spectrum disorder. Vis; visual network. SomMot; somatomotor network. SalVentAttn; salience network. Cont; control network. Default; default mode network. DorsAttn; dorsal attention network.

Symptom-based pattern evident across diagnostic boundaries. To understand the distribution of symptom dimensions in more detail, we plotted them against diagnosis categories (Figure S11). As shown in Figure 2E and 2F, there was a consistency between a higher degree of comorbidity and higher loading on LV1. We also observed some expected variation in symptom loading with respect to specific diagnoses, such as patients with ADHD and ASD loading more highly on the neurodevelopmental dimension (LV3; Figure S11). On the externalising-internalising dimension (LV2), mood disorder, ASD, and anxiety disorder loaded more negatively, consistent with increasing symptoms of internalising being typical for these diagnosis categories. In addition, linear models revealed that all diagnosis categories showed higher symptom and connectivity loadings on LV1 compared to having no diagnosis (Table S3). There was also a significant linear association with the number of diagnoses for both symptom and connectivity loadings on LV1 (Table S4 and S5). This was true when including “no diagnosis” in the model or not, suggesting that this effect was not driven by case-control effects.
Discussion

Through shared associations between mental health data and functional connectivity, the current study delineated shared and unique patterns in child and adolescent functional brain networks. We found that dimensions of clinical symptoms map onto specific patterns of brain connectivity, implicating both a general psychopathology factor and dimensions overlapping with subscale syndromes of CBCL. The rotated decomposition of diagnostic data (i.e. the diagnosis-based PLS) revealed one significant dimension, implicating a cross-diagnostic pattern only. The disorder-specific tests revealed specific patterns of connectivity related to ASD and no diagnosis (i.e., a disorder-general effect), but not for any other diagnosis. For the symptom-based dimensions, we found that increased comorbidity was consistently related to both increased symptom burden and increased connectivity aberrations. Taken together, these results indicate that compared to diagnostic classifications in isolation, transdiagnostic and symptom-based dimensions of psychopathology are more closely mapped to the functional networks of the brain during the formative years of childhood and adolescence.

The clinical dimensions revealed by shared associations between functional connectivity and symptoms in the current study adhere to the hierarchical structure of psychopathology, implicating a general psychopathology factor, followed by dimensions of externalising-internalising, neurodevelopment, somatic complaints, and thought problems. PLS derives orthogonal LVs, leaving dimensions independent. Capturing externalisation-internalisation as the second latent pattern is consistent with previous work (Kebets et al., 2023; Linke et al., 2021). Next, we identified a neurodevelopmental dimension, which was also captured in Kebets and colleagues (Kebets et al., 2023). In fact, the dimensions this study detected in the ABCD sample were the same as the symptom-based dimensions we captured here in a clinical sample. This degree of overlap across samples is striking, suggesting generalisable patterns of functional connectivity-psychopathology associations, and strongly supporting the conceptualisation of general population vs clinical population as existing on a continuum. Interestingly, given the overlap between the current functional connectivity-derived symptom dimensions and CBCL subscale syndromes derived from symptom data alone, it also appears that the psychopathology hierarchy is represented in functional networks during development.

In contrast to our findings, Linke and colleagues (Linke et al., 2021) identified a dimension specific to anxiety symptoms, which did not emerge in the current study. Neither did we detect a pattern specific to having an anxiety diagnosis. This discrepancy may reflect
diversity in the range of symptoms and diagnostic groups included. Indeed, in the current study, the diagnostic range was broader than in the study by Linke and colleagues (Linke et al., 2021), while the symptom domains assessed by Xia and colleagues (Xia et al., 2018) were more closely mapped to adult psychopathology than to child and adolescent symptomology, which may explain their differences.

Alterations in functional connectivity of the DMN have previously been implicated in several neurological and mental disorders (van den Heuvel & Sporns, 2019). In addition, DMN connectivity has been linked to general psychopathology (Elliott et al., 2018; Karcher et al., 2021; Kebets et al., 2023; Sato et al., 2018). In line with this, DMN nodes were some of the strongest loading nodes of the general psychopathology factor (i.e. symptom-based LV1) in the current study. This factor was further characterised by a distributed pattern involving weaker connectivity between the salience network and limbic and visual network. It also implicated stronger connectivity between DMN and salience network, and between the control network and somatomotor network. In line with this, the limbic, salience, fronto-parietal and sensorimotor networks are also implicated in general psychopathology (Vanes & Dolan, 2021).

The connectivity pattern related to a general psychopathology factor in the ABCD sample (Kebets et al., 2023) was only weakly consistent with current findings, implicating increased connectivity between the DMN and salience network. Partly consistent with a general psychopathology dimension derived from diagnostic data (Lees et al., 2021) and symptom scores (Karcher et al., 2021) also in ABCD, the current study identified hypoconnectivity within the DA network. Importantly, the methodology used to derive a general psychopathology factor in these studies differed from the approach used here, which may explain the observed variation in detected connectivity patterns across studies. This may also explain the weak overlap between other symptom-based psychopathology dimensions between current and previous work (Karcher et al., 2021; Kebets et al., 2023). In addition, previous work has shown that while connectivity-informed clinical dimensions were replicable across two samples, the connectivity patterns themselves were less so (Linke et al., 2021). The authors attributed this to a “many-to-one” mapping between neural and clinical variables, which may also explain the lack of overlap in specific connectivity patterns identified in the current work compared to previous work.

The diagnosis-based analysis revealed only one significant dimension, resembling a cross-diagnostic case-control pattern. This pattern was characterised by no diagnosis exhibiting the highest loading, with all the other diagnosis categories exhibiting smaller
associations in the opposite direction. If, instead, connectivity patterns specific to each diagnosis were detectable, we would have expected this test to reveal several dimensions (i.e., LVs), each consisting of loadings from one (or a few) diagnoses. In addition, we identified a no diagnosis vs all diagnoses specific pattern, representing an inverse cross-diagnostic case-control pattern. Although the weighting of each diagnosis category differed between these two analyses, the overarching connectivity patterns for these dimensions revealed inverse overlap. Indeed, although the symptom-based general psychopathology dimension exhibited a more distributed connectivity pattern, there was also some overlap between this pattern and cross-diagnostic case-control pattern. Together, these patterns implicate connectivity between the visual and limbic networks in separating no diagnosis from having a diagnosis.

ASD was the only diagnosis category exhibiting a detectable unique pattern of connectivity. This pattern was widely distributed, implicating altered connectivity within several brain networks. Hyperconnectivity within several large-scale brain networks has previously been implicated in ASD (Uddin et al., 2019). The distributed nature of the ASD-specific pattern identified in the current study, including both increased and reduced connectivity within and between several networks, is in line with the notion that both hyperconnectivity and hypoconnectivity may underlie ASD (Kana et al., 2011). Importantly, the finding that ASD was the only diagnosis group exhibiting a unique connectivity pattern has implications for our understanding of the neurobiological substrates of ASD, but also for our understanding of psychopathology and ASD in this landscape more broadly. The current work supports the understanding that rather than belonging in the general psychopathology domain, ASD likely represent a separate neurodevelopmental dimension (Opel et al., 2020b; Ronald, 2019).

Although our findings provide several new insights into the link between functional brain connectivity and the structure of childhood psychopathology, some limitations should be noted. First, functional connectivity results are known to be influenced by methodological choices (Sala-Llonch et al., 2019; Shirer et al., 2015), complicating the identification of robust and replicable results. To increase replicability of the current work, we relied on an established parcellation scheme (Schaefer et al., 2018). Second, several functional connectivity patterns identified implicated the limbic network, a network known to be sensitive to susceptibility artefacts and reduced signal (Khatamian et al., 2016). Although we did additional measures to reduce the influence of reduced signal on our analysis, we cannot completely rule out that our results are influenced by this confound. Third, as the sample
consisted of mainly children, and most of them with at least one mental disorder, motion was an issue. To ameliorate this influence, we used the MRIQC classifier to exclude participants with insufficient image quality, cleaned data using FIX and AROMA, and regressed out measures of image quality and motion from the data. Fourth, the cross-sectional nature of the study design prohibits any conclusion to be drawn with respect to the within-person temporal dynamics of any identified pattern. Fifth, given that the symptom data was continuous and the diagnostic analysis separated the sample into groups, the power to extract maximal covariance between symptoms and functional connectivity was better than that for the diagnostic analysis. As such, these results cannot be directly compared. Finally, the sample was enriched with children diagnosed with ADHD and other neurodevelopmental conditions. Although this may be representative of a developmental clinical sample, it may not generalise to other clinical populations. For example, this has implications for the comparison of the current results to other studies investigating a derived general psychopathology factor. However, given that we do see a great degree of overlap between the current results and other studies, our findings may translate to other populations.

Conclusion

The current work found that dimensions of psychopathology derived from clinical symptoms were associated with specific patterns of functional connectivity in the developing brain, while ASD was the only diagnostic category to exhibit such a specific pattern. This contributes to a growing body of evidence in favour of dimensional and transdiagnostic classifications of psychopathology (Vanes & Dolan, 2021). In this classification, neurodevelopmental conditions such as ASD may possess specific abnormalities in functional connectivity networks above and beyond those related to general psychopathology. This has implications for the pursuit of individualised brain-based surrogate markers in mental health research and care, which in turn may lead to improved prevention and intervention of mental disorders.
Acknowledgements

This project was funded by research grants from the Research Council of Norway (Grant Nos. L.T.W: 249795, T.K: 276082, 323961. C.K.T: 288083, 323951), the South-Eastern Norway Regional Health Authority (Grant Nos. L.T.W: 2014097, 2015073, 2016083, 2018076, 2019101. C.K.T: 2019069, 2021070, 2023012, 500189. D.A: 2019107, 2020086. O.A.A: 223273), the Norwegian ExtraFoundation for Health and Rehabilitation (L.T.W: Grant No. 2015/FO5146), KG Jebsen Stiftelsen, ERA-Net Cofund through the ERA PerMed project IMPLEMENT, and the European Research Council under the European Union’s Horizon 2020 research and Innovation program (L.T.W: ERC StG Grant No. 802998. O.A.A: H2020 RIA grant # 847776).

The work was performed on the Service for Sensitive Data (TSD) platform, owned by the University of Oslo, operated, and developed by the TSD service group at the University of Oslo IT-Department (USIT). Computations were also performed using resources provided by UNINETT Sigma2—the National Infrastructure for High Performance Computing and Data Storage in Norway.
Declaration of Interest

O.A.A. is a consultant to cortechs.ai and has received speaker’s honorarium from Janssen, Lundbeck, Sunovion.
Correspondence to

Full name: Irene Voldsbekk
Address: NORMENT, Oslo universitetssykehus HF
Klinikk psykisk helse og avhengighet
Seksjon for psykoseforskning/TOP
Ullevål sykehus, bygg 49
Postboks 4956 Nydalen
0424 Oslo
Phone: +47 41495202
Email: irene.voldsbekk@psykologi.uio.no
References

[Record #1022 is using a reference type undefined in this output style.]

MathWorks. (2020). MATLAB. In

Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? *Nat Rev Neurosci, 9*(12), 947-957. https://doi.org/10.1038/nrn2513

