Abstract
Ultra-wide-field Fundus Imaging captures the main components of a patient’s eyes such as optic dics, fovea and macula, providing doctors with a profound and precise observation, allowing diagnosis of diseases with appropriate treatment. In this study, we exploit and compare deep learning models to detect eye disease using Ultra-wide-field Fundus Images. To fulfil this, a fully-automated system is brought about which pre-process and amplify 4697 images using cutting-edge computer vision techniques with deep neural networks. These neural networks are state-of-the-art methods in modern artificial intelligence system combined with transfer learning to learn the best representation of medical images. Overall, our system is composed of 3 main steps: data augmentation, data pre-processing and classification. Our system demonstrates that ResNet152 achieved the best results amongst the models, with the area under the curve (AUC) score of 96.47% (95% confidence interval (CI), 0.931-0.974). Furthermore, we visualise the prediction of the model with the corresponding confidence score and provide the heatmaps which show the focal point focused by the models, where the lesion exists in the eye because of damage. In order to help the ophthalmologists in their assessment, our system is an essential tool to speed up the process as it can automate diagnosing procedures and giving detailed predictions without human interference. Through this work, we show that Ultra-wide-field Images are feasible and applicable to be used with deep learning.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work is supported by IITP grant funded by the Korea government (MSIT) under the ICT Creative Consilience program (IITP-2022-2020-0-0182), Artificial Intelligence Graduate School Program (Sungkyunkwan University) (No.2019-0-00421), and Artificial Intelligence Innovation Hub (No.2021-0-02068).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study adhered to the tenets of the Declaration of Helsinki, and the protocol was reviewed and approved by the Institutional Review Boards (IRB) of Kangbuk Samsung Hospital (No. KBSMC 2020-01-031-001). This is a retrospective study of medical records, and our data were fully anonymized. Therefore, the IRB waived the requirement for informed consent.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
* austin47{at}g.skku.edu
Data Availability
Data cannot be shared as it contains sensitive information of the patients. Data are available upon request. (austin47{at}g.skku.edu)