An Opportunity to Standardize and Enhance Intelligent Virtual Assistant-Delivered Layperson Cardiopulmonary Resuscitation Instructions

William Murk, MD, PhD, MPH, MS1, Eric Goralnick, MD, MS2-3, John S. Brownstein, PhD3,4, and Adam B. Landman, MD, MS, MIS, MHS2,3

1Albert Einstein College of Medicine, The Bronx, NY
2Brigham and Women’s Hospital, Boston, MA
3Harvard Medical School, Boston, MA
4Boston Children’s Hospital, Boston MA

Corresponding author: Adam B. Landman, MD, MS, MIS, MHS. Chief Information Officer, Mass General Brigham; Associate Professor of Emergency Medicine, Harvard Medical School; 75 Francis St, Boston MA 02115. Phone: 617-732-5640. Email: alandman@bwh.harvard.edu

Word count: 1,199

Data Availability Statement: The authors declare that all relevant data supporting the findings of this study are available in the paper and its supplemental files.

Acknowledgements: We thank the late Walter L. Rosenzweig for inspiring the idea that virtual assistants could deliver real-time CPR instruction to bystanders and help save lives. We also thank Melissa Landman for her thoughtful review of the manuscript draft.

Conflicts of Interest Disclosures: ABL is a consultant for the Abbott Medical Device Cybersecurity Council.

Funding/Support: None.

Role of the Funder/Sponsor: N/A.

Author Contributions: Dr. Murk had full access to all of the data in the study and takes responsibility for the integrity of the data and accuracy of the data analysis. Concept and design: Landman. Acquisition, analysis, or interpretation of data: All authors. Drafting of the manuscript: All authors. Critical revision of the manuscript for important intellectual content: All authors. Statistical analysis: Murk and Landman. Administrative, technical, or material support: Landman. Supervision: Landman.
Key points

Question: What is the quality of cardiopulmonary resuscitation (CPR) instruction provided by intelligent virtual assistants (IVAs) including Amazon Alexa, Apple Siri, Google Assistant, and Microsoft Cortana?

Findings: When asked questions related to CPR, IVAs frequently did not provide relevant information. Moreover, even when the information provided was relevant, actual CPR instruction was not given in most cases.

Meaning: These results highlight the need to standardize bystander CPR instruction provided by IVAs.
Abstract

Importance: Intelligent virtual assistants (IVAs) are ubiquitous and hold the potential to provide bystander cardiopulmonary resuscitation (CPR) instructions during an emergency.

Objective: To evaluate the quality of CPR instructions provided by IVAs.

Design: We evaluated the appropriateness of responses of four IVAs (Amazon Alexa, Apple Siri, Google Assistant, and Microsoft Cortana) to eight CPR-related questions. We also evaluated text-based responses provided by OpenAI ChatGPT, a recently developed artificial intelligence large language model.

Results: Out of 32 responses provided by IVAs, only 19 (59%) were related to CPR, 9 (28%) suggested calling emergency services, and 4 (12%) provided verbal CPR instructions. All responses provided by ChatGPT were related to CPR and suggested calling emergency services. Among responses related to CPR, the answers provided varied significantly in the utility of information provided.

Conclusions and Relevance: These results highlight the need for the technology industry to partner with the medical community to improve and standardize bystander CPR instruction provided by IVAs.
Introduction

More than 23.8 million viewers watched Damar Hamlin’s cardiac arrest and resuscitation live on “Monday Night Football”, providing an unprecedented opportunity for engaging the public on cardiopulmonary resuscitation (CPR) and automated external defibrillator (AED) use. \(^1\) Despite widespread CPR courses and public campaigns, only 46% of out of hospital cardiac arrest (OHCA) cases have layperson CPR performed. \(^2\) Each minute a patient is in OHCA without cardiopulmonary resuscitation (CPR) or defibrillation decreases survival by 7-10%. \(^3\) Layperson CPR can increase survival by 2-4 fold. \(^3\)

Intelligent virtual assistants (IVAs) are becoming ubiquitous and may be a novel method to provide CPR instructions to bystanders during an emergency. IVAs respond to verbal queries using speech recognition and other forms of artificial intelligence. These technologies are used by nearly half of US adults \(^4\) and are available on standalone smart speakers, like Amazon Echo or Google Nest, or integrated into smartphones and computers, such as Apple Siri on iOS/Mac devices. IVAs are increasingly being used for healthcare needs, with 8% and 21% of US adults reporting such use in 2019 and 2021, respectively. \(^5\)

Although bystanders may obtain CPR instructions from emergency dispatchers, such services are not universally available, and their use may be limited or delayed by language barriers, poor audio quality, call disconnection, fear of law enforcement, and perceived costs of using emergency services. \(^6\) IVAs may therefore serve as the primary source of readily accessible hands free CPR instruction in the bystander’s preferred language when it otherwise may not be promptly accessed.
Given their potential to improve public health, we tested common IVAs for their out-of-the-box ability to provide appropriate CPR instruction. Four IVAs were tested, including Amazon Alexa, Apple Siri, Google Assistant, and Microsoft Cortana, and their responses to eight CPR-related questions were evaluated. To assess whether responses improved over time, we compared the quality of responses between 2022 and 2023. In addition, as a secondary objective, we tested the ability of ChatGPT, a recently developed artificial intelligence large language model, for its ability to provide CPR instruction. Although ChatGPT, in its native format, only responds to text-based queries and provides text-based answers and is therefore not an IVA, we sought to evaluate its performance as it may be indicative of future IVA capabilities.

Methods

We tested several ways people might ask about CPR on four popular IVAs (Amazon Alexa on Echo Show 5, Apple Siri on iPhone X [iOS 15.3.1] in Feb. 2022 and iPhone 14 Pro [iOS 16.2] in Mar. 2023, Google Assistant on Nest Mini, and Microsoft Cortana on a Windows 10 [version 21H2] laptop). Testing was conducted in March 2022 and February 2023, and the results were compared across time periods. Eight verbal queries that could indicate a need for CPR instruction were asked of each IVA. To ensure that responses were not dependent on accuracy of voice recognition, text-based transcriptions of interactions (as provided by all four IVAs) were reviewed to verify that verbal queries were accurately captured. Only responses immediately provided by the IVA (whether verbal or textual) were evaluated; if a response included a link to a website providing further information, that website was not included for evaluation. In addition, we also asked the eight queries to ChatGPT (OpenAI, Feb 13 Version). Since ChatGPT, in its native format, does not provide verbal interaction, these queries and
responses were text-based. For ChatGPT, queries were assessed in February 2023, and a new chat was started for each query to prevent prior queries affecting the responses provided.

All queries were made while geolocated in the United States. Two board-certified emergency medicine physicians (EG and ABL) rated whether each response was related to CPR, whether emergency medical services (EMS) were recommended, whether any CPR instructions were provided (verbal or textual), and whether verbal CPR instructions were provided. There are no human subjects involved in this work and therefore we did not pursue Institutional Review Board review or informed consent.

Results

Figure 1 illustrates responses to CPR queries by IVA in 2023. Out of 32 responses, 19 (59%) were related to CPR, 7 (22%) were unrelated, and 6 (19%) acknowledged that the answer was not known. Only 9 (28%) suggested calling emergency services, 11 (34%) provided any (verbal or textual) CPR instructions, and 4 (12%) provided verbal CPR instructions (Figure 2). These responses were only modestly improved compared to responses from the previous year (Figure 2). Differences in appropriateness of responses were noted across IVA products. For example, while Microsoft Cortana more frequently provided CPR instructions than other IVAs, these instructions were textual only, and it did not provide any verbal instructions (Figure 3). Full transcriptions of responses are provided in eTable 1 - 4.

ChatGPT provided relevant CPR information and recommended emergency services for 100% of queries asked of it, and provided textual CPR instructions for 75% of queries (Figure 3 and eTable 5).
Among the 17 responses from the IVAs or ChatGPT that provided any CPR instruction, there was considerable variability in the content of instruction provided. For example, only 12 (71%) described hand positioning, 8 (47%) described compression depth, 6 (35%) described compression rate, and 2 (12%) mentioned use of an AED (eTable 6). While most descriptions of compression depth recommended a depth of 2 inches, one response recommended a depth of 0.5 to 1 inch, suggesting that this may have been intended for infant CPR (eTable 1A).

Among responses recommending calling emergency services, some suggested calling 911, while others suggested calling 999 or 112, indicating that these products do not necessarily take geographic context into consideration when providing responses.

Discussion

Among IVAs, nearly half of queries were answered with information unrelated to CPR, often leading to grossly inappropriate responses, such as recommending a radio station. Among CPR-related responses, the content of answers varied considerably, and in many cases the user must take an extra step of visiting a website to obtain CPR instructions. A well-intentioned layperson seeking to use an IVA for real-time CPR guidance may experience delays or not find appropriate content, which could worsen the patient’s condition. IVA performance has not substantially improved over time. Although ChatGPT had significantly improved performance compared to the IVAs, its responses nonetheless were inconsistent.

IVAs need to better support CPR by: 1) Building CPR instructions into core functionality (without requiring supplemental downloads); 2) Designating common phrases to activate CPR instructions; and 3) Establishing a single set of evidence-based content across devices. Interactivity
may be required to provide suitable CPR instruction, such as prompting the user for the age category of the patient.

A 2020 study similarly found that IVAs provided generally poor first aid advice, suggesting that there has been little progress to take advantage of these technologies for empowering bystanders to provide medical care. There is ample opportunity for the technology industry to partner with the medical community and professional societies to improve public health. Standardizing and improving IVA support for bystander CPR instruction has the potential to improve OHCA survival. Furthermore, IVAs may be able to support layperson empowerment to perform key skills in other time-sensitive medical conditions including, for example, bleeding control, opiate overdose reversal, or use of AEDs.
References

Figures legends

Figure 1. Responses to CPR questions, by intelligent virtual assistant (IVA) in February 2023.

Responses are colored according to whether the response was determined to be related to CPR (providing information pertaining to CPR or recommending the use of emergency services), unrelated, or the IVA acknowledged that it did not know the answer. Responses shown here are abbreviated versions of the full response transcriptions provided in eTables 1-4.

Figure 2. Summary of responses to CPR questions, across all four IVAs, in March 2022 and February 2023. N = 32 questions. ChatGPT results not included.

Figure 3. Summary of responses to CPR questions, by product, in February 2023. N = 8 questions.
<table>
<thead>
<tr>
<th>Question</th>
<th>Amazon Alexa on Echo Show</th>
<th>Apple Siri on iPhone</th>
<th>Google Assistant on Nest Mini</th>
<th>Microsoft Cortana on a Windows laptop</th>
</tr>
</thead>
<tbody>
<tr>
<td>“How do I perform CPR?”</td>
<td>“According to wikiHow, to perform hands-only CPR, turn the victim on their back and kneel next to...”</td>
<td>“… from kidshealth.org. CPR, or cardiopulmonary resuscitation, combines chest compressions...”</td>
<td>“Sorry, I don’t understand.”</td>
<td>“I’ve got this for you on how do I perform CPR.” Provides textual CPR instructions.</td>
</tr>
<tr>
<td>“Help me with CPR”</td>
<td>“Here’s an answer… that I translated: The Indian Penal Code.”</td>
<td>“Here’s some information.” Provides a textual description of CPR.</td>
<td>“(Local CPR training business) is on (street address) and is (distance) miles away.”</td>
<td>“I’ve got this for help me with CPR.” Provides textual CPR instructions.</td>
</tr>
<tr>
<td>“CPR”</td>
<td>“CPR news from (user’s) iheart radio.”</td>
<td>Displays information related to an Apple TV movie titled ‘CPR’.</td>
<td>“I found a few places near you. The first one is (address for a local CPR training business)...”</td>
<td>“Sorry, I don’t know...”</td>
</tr>
<tr>
<td>“How do I perform chest compressions?”</td>
<td>“From tpub.com: Perform chest compressions by using two fingers to depress the middle of...”</td>
<td>“Okay, I found this on the web...” Provides textual information related to CPR.</td>
<td>“Sorry, I don’t know...”</td>
<td>“I’ve got this for you...” Provides textual CPR instructions.</td>
</tr>
<tr>
<td>“Chest compressions”</td>
<td>“Hmm, I don’t know that one.”</td>
<td>“Cardiopulmonary resuscitation is an emergency procedure consisting of chest compressions...”</td>
<td>“According to Wikipedia: Cardiopulmonary resuscitation is an emergency procedure consisting of...”</td>
<td>“Sorry, I don’t know...”</td>
</tr>
<tr>
<td>“Help, not breathing”</td>
<td>No response</td>
<td>“Okay, I found this on the website dedcross.org.uk. Learn first aid for someone who is unresponsive...”</td>
<td>“I found three on the website dedcross.org.uk. Learn first aid for someone who is unresponsive...”</td>
<td>“I’ve got this for you...” Provides textual CPR instructions.</td>
</tr>
<tr>
<td>“What do you do if someone is not breathing?”</td>
<td>“... From www.nhs.uk: If the casualty isn’t breathing, call 999 or 112 for an ambulance...”</td>
<td>“Okay, I found this on the web...” Provides textual information related to CPR.</td>
<td>“… from the website redcross.org.uk. Learn first aid for someone who is unresponsive...”</td>
<td>“Words fail me.”</td>
</tr>
<tr>
<td>“What do you do if someone does not have a pulse?”</td>
<td>“From mountsinai.org: If the person is not breathing or has no pulse, begin CPR.”</td>
<td>“Okay, I found this on the web...” Provides textual information related to CPR.</td>
<td>“Sorry, I don’t know...”</td>
<td>“Words fail me.”</td>
</tr>
</tbody>
</table>
Fig. 2

Percentage of queries

<table>
<thead>
<tr>
<th>Category</th>
<th>Mar. 2022</th>
<th>Feb. 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related to CPR</td>
<td>50</td>
<td>59</td>
</tr>
<tr>
<td>Recommends EMS</td>
<td>19</td>
<td>28</td>
</tr>
<tr>
<td>Provides any CPR instruction</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>Provides verbal CPR instruction</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

Note: Data reflects comparisons between March 2022 and February 2023.
Fig. 3

Percentage of queries

- **Amazon Alexa on Echo Show**: Related to CPR 25%, Recommends EMS 25%, Provides any CPR instruction 25%
- **Apple Siri on iPhone**: Related to CPR 25%, Recommends EMS 0%, Provides any CPR instruction 0%
- **Google Assistant on Nest Mini**: Related to CPR 25%, Recommends EMS 25%, Provides any CPR instruction 25%
- **Microsoft Cortana on a Windows laptop**: Related to CPR 50%, Recommends EMS 50%, Provides any CPR instruction 0%
- **OpenAI ChatGPT**: Related to CPR 100%, Recommends EMS 100%, Provides any CPR instruction 75%, Provides verbal CPR instruction 0%