Pharmacogenetics of SGLT2 Inhibitors: Validation of a sex-agnostic pharmacodynamic biomarker

Simeon I. Taylor1*, Hua-Ren Cherng2, Zhinous Shahidzadeh Yazdi1, May E. Montasser1, Hilary B. Whittach1, Braxton D. Mitchell1, Alan R. Shuldiner1, Elizabeth A. Streeter1, and Amber L. Beitelshees1

1 Department of Medicine
Division of Endocrinology, Diabetes, and Nutrition
University of Maryland School of Medicine
Baltimore, MD 20201
USA

2 Department of Radiation Oncology
University of Maryland School of Medicine
Baltimore, MD 20201
USA

* Correspondence: sitaylormd@aol.com

Key words: canagliflozin, diabetes, kidney, pharmacogenomics, precision medicine, sex as a biological variable, sodium-glucose transporter-2, type 2 diabetes, uric acid

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background: SGLT2 inhibitors provide multiple benefits to patients with type 2 diabetes – including improved glycemic control and decreased risks of cardiorenal disease. Because drug responses vary among individuals, we initiated investigations to identify genetic variants associated with the magnitude of drug responses.

Methods: Canagliflozin (300 mg) was administered to 30 healthy volunteers. Several endpoints were measured to assess clinically relevant responses – including drug-induced increases in urinary excretion of glucose, sodium, and uric acid.

Results: This pilot study confirmed that canagliflozin (300 mg) triggered acute changes in mean levels of several biomarkers: fasting plasma glucose (-4.1 mg/dL; p=6x10^-5), serum creatinine (+0.05 mg/dL; p=8x10^-4), and serum uric acid (-0.90 mg/dL; p=5x10^-10). The effects of sex on glucosuria depended upon how data were normalized. Whereas males’ responses were ~60% greater when data were normalized to body surface area, males and females exhibited similar responses when glucosuria was expressed as grams of urinary glucose per gram-creatinine. The magnitude of glucosuria was not significantly correlated with fasting plasma glucose, estimated GFR, or age in these healthy non-diabetic individuals with estimated GFR>60 mL/min/1.73m^2.

Conclusions: Normalizing data relative to creatinine excretion will facilitate including data from males and females in a single analysis. Furthermore, because our ongoing pharmacogenomic study (NCT02891954) is conducted in healthy individuals, this will facilitate detection of genetic associations with limited confounding by other factors such as age and renal function.

Registration: NCT02462421 (clinicaltrials.gov)

Funding: Research grants from the National Institute of Diabetes and Digestive and Kidney Diseases: R21DK105401, R01DK108942, T32DK098107, and P30DK072488.
INTRODUCTION

As emphasized by the American Diabetes Association (ADA) and the European Association for Study of Diabetes (EASD) (Inzucchi et al., 2012), head-to-head comparative effectiveness studies demonstrate that diabetes drugs are not strongly differentiated with respect to mean HbA1c-lowering. In contrast to small differences for mean effects of different therapies, there is wide variation in responses of individual patients to the same therapy. For example, a recent head-to-head study reported HbA1c-lowering efficacies (mean ± SEM) of 0.89% ± 0.24% for canagliflozin and 1.44% ± 0.39% for liraglutide (Ali et al., 2020). This corresponds to standard deviations of ~0.9% and ~1.5%, respectively – suggesting that some patients experienced little if any decrease in HbA1c while others experienced >2.5% HbA1c-lowering. This inter-individual variation may result from genetics, environment, or interplay between both factors. Furthermore, the American Diabetes Association and the European Association (ADA) for the Study of Diabetes (EASD) have proposed that “pharmacogenetics may … inform treatment decisions in the future, guiding clinicians to recommend a therapy for an individual patient based on predictors of response and susceptibility to adverse effects” (Inzucchi et al., 2012).

Pharmacogenomic studies have identified genetic variants contributing to inter-individual variation in responses to diabetes drugs, including metformin, sulfonylureas, and GLP1 receptor agonists (Pawlyk et al., 2014; Chedid et al., 2018; Mashayekhi et al., 2021; Pearson, 2021; Rathmann & Bongaerts, 2021). Some genetic variants alter pharmacokinetics by altering the function of drug transporters or drug metabolizing enzymes (Pawlyk et al., 2014; Francke et al., 2015). Other genetic variants alter pharmacodynamics by altering functions of proteins that mediate drug responses – for example, SUR1 sulfonylurea receptors (ABCC8) (Pearson, 2021), GLP1 receptors (GLP1R) (Chedid et al., 2018), or GLUT2 glucose transporters (SLC2A2) (Zhou et al., 2016). This pilot study represents one step toward identifying genetic variants contributing to inter-individual variation in responses to SGLT2 inhibitors – an increasingly important class of
diabetes drugs (Beitelshees et al., 2019; Taylor et al., 2021). Glucuronidation is the principal pathway whereby these drugs are metabolized. Although loss-of-function variants in glucuronidation enzymes alter the pharmacokinetics of SGLT2 inhibitors by increasing drug exposure (Francke et al., 2015), these variants are unlikely to cause major alterations in drug responses in routine clinical use because SGLT2 inhibitors are usually administered at maximally effective doses. Increasing exposure to a drug may not alter drug response if that drug is already being administered at a maximally effective dose.

Pharmacogenomic research has utilized varied approaches – for example, (a) acute studies in healthy volunteers assessing acute pharmacodynamic endpoints (Shuldiner et al., 2009; Pawlyk et al., 2014); or (b) chronic studies in disease patients assessing routine clinical endpoints such as HbA1c or cardiovascular outcomes (Shuldiner et al., 2009; Zhou et al., 2016). Short-term studies in healthy volunteers offer several methodological advantages – including minimization of confounding factors caused by co-existing diseases and effects of changing co-medications during the study. This pilot study provided an opportunity to validate pharmacodynamic endpoints for our currently ongoing GWAS of the genetics of pharmacodynamic responses to canagliflozin (NCT02891954). Our approach was inspired by several high priority NIH initiatives: (a) a focus on scientific rigor and reproducibility (Collins & Tabak, 2014); (b) investigation of sex as a biological variable (Rich-Edwards et al., 2018); and (c) precision medicine (Denny & Collins, 2021).

Research participants collected two separate 24-hour urine collections. We confirmed the reproducibility of these collections as indicated by the absence of a statistically significant difference in creatinine content of the two separate urine collections. Reproducibility of urine collections is a critical prerequisite for our twin objectives of minimizing the impact of random variation and maximizing the impact of genetically determined inter-individual variation. This pilot study also investigated the impact of a participant’s self-designated sex on
pharmacodynamic responses. Following NIH’s guidance, we conducted an exploratory data analysis investigating sex as a biological variable. Mean canagliflozin-induced glucosuria was substantially greater in males than females when expressed in units of grams of glucose per 1.73 m² of body surface area. In contrast, mean magnitudes of canagliflozin-induced glucosuria were similar in men and women when expressed as grams of glucose per gram of creatinine. Based on these observations, our ongoing pharmacogenomic study will normalize drug-induced glucosuria data relative to grams of urinary creatinine so that the mean magnitudes of canagliflozin-induced glucosuria would be relatively independent of the sex of the participant (“sex-agnostic”). Furthermore, when normalized relative to body weight, mean urinary glucose excretion is ~37% higher in males – suggesting that canagliflozin would trigger ~37% more caloric loss on average in males as compared to females of the same body weight. These data are consistent with a report that canagliflozin induced more weight loss in males than in females (2.76 kg versus 1.22 kg) (FDA, 2011).
METHODS

Study population

The Old Order Amish population of Lancaster County, PA immigrated to the Colonies from Central Europe in the early 1700's. There are currently ~40,000 Old Order Amish individuals living in Lancaster County, PA – nearly all of whom trace their ancestry back about 15 generations to approximately 750 founders (Agarwala et al., 1999; Hsueh et al., 2000; Agarwala et al., 2001). Investigators at the University of Maryland Baltimore have been studying the genetic determinants of cardiometabolic health in this population since 1993. To date, about 10,000 Amish adults have participated in one or more of our studies as part of the Amish Complex Disease Research Program (http://www.medschool.umaryland.edu/endocrinology/Amish-Research-Program/). These studies generated a genotype database used to compile a list of individuals to be invited to participate in this clinical trial. Individuals with any of four genotypes were eligible to participate: (a) homozygotes for a nonsense mutation in SLC5A4 (rs62239058); (b) homozygotes for a nonsense mutation in SLC5A9 (rs850763); (c) homozygotes for a missense variant in SLC2A9 (rs1689079); and (d) individuals who were homozygous for the “wild type” major alleles of SLC5A4, SLC5A9, and SLC2A9.

Power calculations. We based our recruitment target of 110 individuals on power calculations to provide 80% power (\(\alpha=0.05\)) to detect a 25% difference (~1.0 S.D.) in canagliflozin-induced glucosuria or a 55% (~0.85 S.D.) difference with respect to the magnitude of the canagliflozin-induced decrease in serum uric acid levels.

- 20 homozygotes for the nonsense mutation in SLC5A4 (rs62239058; p.E139X)
- 20 homozygotes for the nonsense mutation in SLC5A9 (rs850763; p.E593X)
- 25 homozygotes for the missense variant in SLC2A9 (rs1689079; p.V253I)
45 “control” individuals who were homozygous for the major alleles of all three genes.

Conduct of clinical trial (NCT02462421). This clinical trial was reviewed and approved by the University of Maryland Baltimore’s Institutional Review Board. A research nurse accompanied by a liaison (a member of the Amish community) made home visits to invite selected individuals to participate in the study. If they expressed interest, the study was explained in detail and potential participants were invited to sign an informed consent form. Thereafter, the research nurse (a) obtained a detailed medical history; (b) measured height, weight, and blood pressure; and (c) obtained blood samples for screening laboratory tests (hematocrit, fasting plasma glucose, serum creatinine, serum sodium, plasma TSH, and HbA1c). The actual clinical trial included two home visits conducted by a research nurse and an Amish liaison:

1. **Visit #1.** At the first study visit, the nurse explained the process. Women of reproductive age underwent home testing to exclude the possibility that they were pregnant. The research nurse obtained baseline blood samples and provided supplies needed for the study including a single canagliflozin tablet (300 mg) and supplies necessary for collection of two 24-hour urine samples. Research participants were instructed to take the canagliflozin tablet exactly 24 hours after initiating the first 24-hour urine collection. Participants initiated the second 24-hour urine collection immediately after completing the first and immediately after taking the canagliflozin tablet.

2. **Visit #2.** The second home visit took place two days after the first visit and 24 hours after the participant had taken the canagliflozin tablet. The research nurse obtained blood samples to assess pharmacodynamic responses to canagliflozin and collected the two 24-hour urine collections. The nurses also obtained information to confirm whether the participant followed the instructions and to elicit information about possible adverse events.

Disposition and adverse events
Forty individuals were enrolled in this clinical trial between the dates of July 13, 2015 – April 13, 2016 (Fig. 1). To be eligible to participate in the clinical trial, individuals were required to be of Amish descent, at least 18 years old, and have BMI between 18-40 kg/m². We established the following exclusion criteria:

- Known allergy to canagliflozin
- History of diabetes, random glucose >200 mg/dL, or HbA1c >6.5%
- Taking any of the following medications: diuretics, antihypertensive medications, uric acid lowering medications, or other medications judged to interfere with interpretation of results obtained in the clinical trial.
- Diagnosis of significant chronic diseases affecting cardiovascular, gastrointestinal, pulmonary, or renal systems or other diseases judged to interfere with interpretation of results obtained in the clinical trial.
- Seizure disorder.
- Pregnancy (self-reported) or breast-feeding within the past three months.
- Estimated glomerular filtration rate < 60 mL/min/1.73 m²
- Hematocrit <35%
- Liver function tests (ALT or AST) greater than two times the upper limit of normal
- TSH outside the normal reference range for the assay.
- Current symptoms of genitourinary infection or two or more genitourinary infections during the prior 12 months.
- History of osteoporosis-associated bone fracture
- History of unhealed foot ulcer

Ten potential enrollees were excluded for the following reasons (Fig. 2): low hematocrit (1), low TSH levels (2), frequent genital infections (1), pregnancy (1), history of myocardial infarction (1), giant platelets (1), shortness of breath (1), diabetes (1), or antihypertensive medications (1). The
remaining 30 participants completed the study. There were two adverse events of mild to moderate severity (Fig. 1). Prior to taking the study medication, one participant experienced an accident while driving a horse and buggy. Another participant experienced loose stools two days after having received a single dose of canagliflozin (300 mg). Both adverse events were judged as unlikely to have been related to participation in the clinical trial (Fig. 1).

Clinical chemistry

Blood samples were obtained by a research nurse at home visits and collected in test tubes as appropriate for each assay: EDTA anticoagulant (purple top tube) for measurement of hematocrit and HbA1c; heparin anticoagulant (green top tube) for measurement of TSH; gray top tubes containing sodium fluoride and potassium oxalate for measurement of fasting plasma glucose; red top tube for collecting serum samples. After placing gray, purple, and green top tubes on ice, blood samples were transported to the clinical laboratory at the Amish Research Clinic (maximum transport time, 2 hours). After centrifugation (3300 rpm for 10 min), plasma/serum was sent on the same day to Quest Diagnostics for assay. Participants were provided with “pee-splitter” containers, which were used for 24-hour urine collections. A boric acid tablet (1 gram; Sigma Aldrich, PN#B2625) was added to one bottle for collecting urine destined for glucose assays; urine collected in the other bottle was used for measurement of uric acid, sodium, and creatinine. Urine samples were placed on ice or in a refrigerator prior to being picked up by a research nurse for transport to the clinical laboratory at the Amish Research Clinic. Urinary creatinine, sodium, glucose, and uric acid were measured at Labcorp.

Statistical analyses

Student’s t-tests as implemented in Microsoft Excel and GraphPad Prism software were used to assess treatment effects (paired t-test) and differences between groups (unpaired t-tests).
Nominal p-values are presented without correcting for multiple comparisons. A nominal p-value of <0.05 was taken as the threshold for statistical significance.
RESULTS

Disposition and baseline characteristics of participants

This clinical trial assessed pharmacodynamic responses of thirty healthy Old Order Amish participants to a single dose of canagliflozin (300 mg). Disposition of the participants is summarized in Fig. 1. The study population (17 females/13 males) had a mean age of 57.8 ± 2.5 years and a mean BMI of 28.0 ± 0.9 kg/m² (Table 1). Baseline laboratory data are summarized in Table 1.

Responses to canagliflozin: ↓ fasting plasma glucose, ↓ serum uric acid, and ↑ serum creatinine

Canagliflozin inhibits SGLT2, thereby decreasing proximal tubular reabsorption of glucose and sodium (Beitelshees et al., 2019). The decrease in glucose reabsorption triggered a small decrease in circulating glucose levels as reflected in the ~4-5% decrease in mean levels of fasting plasma glucose (p=0.00006; Fig. 2A). The decrease in proximal tubular sodium reabsorption induced natriuresis, which in turn triggers a modest volume contraction as reflected by an ~8% increase in serum creatinine (p=0.0008; Fig. 2B). SGLT2 inhibitors are also known to increase urinary excretion of uric acid, as reflected in the ~21% decrease in mean levels of serum uric acid (p=5x10⁻¹⁰; Fig. 2C) (Chino et al., 2014; Beitelshees et al., 2019; Novikov et al., 2019; Suijk et al., 2022). These pharmacodynamic effects were highly consistent in each participant as reflected in the high levels of statistical significance despite the small magnitudes of mean changes observed in healthy volunteers in this pilot study. These observations confirm that administration of a single dose of canagliflozin exerted the expected pharmacodynamic effects on circulating biomarkers in healthy volunteers – thereby serving as positive controls for our clinical trials (NCT02462421 and NCT02891954).

Our primary efficacy endpoints are based on measurements of biomarkers in 24-hour urine collections. We, therefore, investigated the reproducibility of 24-hour urine collections by
comparing creatinine contents in the two 24-hour urine collections. On average, participants excreted 1286 ± 81 mg of creatinine during the 24 hours before canagliflozin administration as compared to 1252 ± 74 mg of creatinine during the 24 hours after canagliflozin administration (Fig. 3A). Furthermore, the quantities of 24-hour urinary creatinine before and after canagliflozin administration were highly correlated with one another (r=0.95; p=10\(^{-15}\)). When we compared creatinine contents of the two specimens collected by each individual participant, differences were <5% for ~75% of individual participants’ urine collections (Fig. 3B). Taken together, these data demonstrate that participants were successful in their efforts to obtain complete collections of urine produced during a 24-hour time period.

Development of a sex-agnostic approach to normalization of urinary biomarker data.

Urinary excretion of glucose provides a quantitative biomarker to assess efficacy of a single dose of canagliflozin (Komoroski et al., 2009; Sha et al., 2015; Blau et al., 2018; Blau & Taylor, 2018; Busse et al., 2019; Sokolov et al., 2020). Glucosuria is a direct consequence of SGLT2 inhibition. Furthermore, enhanced urinary glucose excretion plays a critical role in mediating two clinically relevant benefits provided by SGLT2 inhibitors: improved glycemic control in diabetic patients and weight loss in overweight/obese patients (Beitelshees et al., 2019). In the context of our pharmacogenomic investigation, it is critical to establish the optimal approach to normalize data in order to compare glucosuric responses among individual patients. We considered two approaches: (a) normalizing the quantity of urinary glucose excretion relative to some measure of body size – e.g., body weight or body surface area (c.f., the convention of expressing glomerular filtration rate per 1.73 m\(^2\) body surface area); and (b) normalizing glucose concentrations relative to creatinine concentrations in 24-hour urine collections (c.f., the convention for quantitating urinary excretion of albumin as an albumin/creatinine ratio). Inasmuch as body weight was tightly correlated with body surface area (r=0.99) in both males and females (Fig. 4A), we assigned priority to one of these two parameters (i.e., body surface.
area) as an index for body size. 24-hour urinary creatinine was correlated with body surface area (r=0.68 for males and r=0.65 for females). However, if compared at the same body surface areas, males excrete ~60% more creatinine than females (Fig. 4B). Creatinine is produced by a non-enzymatic chemical reaction – i.e., the conversion of phosphocreatine to creatinine (Iyengar et al., 1985). Because phosphocreatine is located primarily in lean tissues (e.g., muscle), the rate of creatinine production implicitly reflects lean tissue mass. When glucosuria is expressed relative to urinary excretion of creatinine, this implicitly indexes glucosuria relative to lean body mass. We observed that glucosuria was correlated with urinary excretion of creatinine with correlation coefficients of 0.65 in males and 0.86 in females (Figs. 5A and 5C, respectively). Glucosuria was also correlated with body surface area – albeit with lower values for correlation coefficients: 0.33 in males and 0.55 in females (Figs. 5B and 5D, respectively). The closer correlations with urinary creatinine excretion tends to favor the approach of normalizing glucosuria relative to urinary creatinine excretion. Furthermore, this approach yielded similar mean values for glucosuria in both sexes: 35.4 ± 2.0 in males versus 39.4 ± 1.4 g-glucose per g-creatinine in females (p=0.12; Fig. 6B). In contrast, mean values for glucosuria were strikingly different in males versus females when expressed as a function of body surface areas: 51.4 ± 3.4 versus 37.2 ± 2.3 g-glucose per 1.73 m² of body surface area in males and females, respectively (p=0.002; Fig. 6A). In other words, because mean values of glucosuria are similar in both sexes when expressed on a per g-creatinine basis, this will greatly facilitate including data from both sexes in the same analysis.

We also explored the impact of normalizing glucosuria data relative to body weight. When glucosuria was expressed as mg of glucose per kg of body weight, canagliflozin induced 37% more glucosuria in males than in females (p=0.005; Fig. 7A). The total quantity of canagliflozin-induced 24-hour urinary glucose excretion was correlated with body weight in both males and females; furthermore, linear regression lines suggest that the magnitude of canagliflozin-
induced glucosuria tended to be greater in males than in females when comparisons were conducted at the same levels of body weight (Fig. 7B).

Inter-individual variation in canagliflozin-induced glucosuria.

We observed substantial inter-individual variation in the magnitude of canagliflozin-induced increases in urinary glucose excretion (Fig. 8). Indeed, the magnitude of glucosuria varied over an approximately twofold range: from ~25 to ~50 g-glucose/g-creatinine (Fig. 8). Two critical factors contribute to determining the quantity of glucose filtered at the glomerulus (the “filtered glucose load”): (a) plasma glucose levels and (b) glomerular filtration rates. Thus, we investigated correlations of glucosuria with fasting plasma glucose levels (FPG) and creatinine clearance rates (Fig. 9). This clinical trial focused on healthy volunteers – excluding patients with HbA1c ≥ 6.5% or eGFR < 60 mL/min/1.73 m². In this population of healthy volunteers, we did not observe statistically significant correlations of 24-hour urinary excretion of glucose with fasting plasma glucose, measured creatinine clearance rates, or age (Fig. 9). In addition to being statistically insignificant, the correlation coefficients were quite small; variances in fasting plasma glucose, creatinine clearance, and age accounted for only ~1.4%, 0.5%, and 4.8% of the total variance in canagliflozin-induced glucosuria, respectively.

Canagliflozin-induced natriuresis

Because SGLT2 functions as a co-transporter for glucose plus Na⁺, SGLT2 inhibitors inhibit renal tubular reabsorption of both glucose and Na⁺ (Beitelshees et al., 2019). Drug-induced natriuresis was calculated by subtracting 24-hour urinary Na⁺ excretion observed at baseline from 24-hour urinary Na⁺ excretion observed in the 24 hours after administration of canagliflozin. Canagliflozin increased mean urinary Na⁺ excretion by ~25% in the total population (N=30; p=0.007) (Table 2). Research participants were free to eat *ad libitum* and to engage in their usual daily activities. As no effort was made to specify or control their sodium
intake, it is possible that there could have been substantial day-to-day variation in the sodium
content of participants’ diets. Similarly, there could have been substantial day-to-day variation in
the quantity of sodium lost through sweating – for example, based on the ambient temperature
and the level of physical activity. These sources of day-to-day variation represent probable
sources of unmeasured confounders with respect to our estimates of drug-induced natriuresis.
Subject to these caveats, our numerical point estimates of drug-induced natriuresis appeared to
be larger for females than for males – regardless of whether the magnitude of 24-hour Na+
urinary excretion was normalized relative to urinary creatinine excretion, body surface area, or
body weight (Table 2).

Canagliflozin-induced uricosuria

SGLT2 inhibitors are reported to enhance urinary excretion of uric acid and decrease serum
levels of uric acid (Chino et al., 2014; Beitelshees et al., 2019; Novikov et al., 2019; Suijk et al.,
2022). Consistent with these previous publications, we observed that canagliflozin induced a 2-
to 10-fold increase in fractional excretion of uric acid. The magnitude of the increase in
fractional excretion of uric acid was correlated with the magnitude of the decrease in serum uric
acid levels (r=0.48; p=0.006) (Fig. 10A). Although the mechanisms mediating the uricosuric
effect of SGLT2 inhibitors have not been established, it has been suggested that the effect may
be an indirect consequence of the increase in glucose concentrations in the renal tubular fluid
(Chino et al., 2014). Accordingly, we investigated whether the increase in fractional excretion of
uric acid was correlated with direct pharmacodynamic actions of canagliflozin. However, we did
not detect statistically significant correlations between the magnitude of the drug-induced
increase in fractional excretion of uric acid and the magnitude of canagliflozin-induced
glucosuria or natriuresis (Fig. 10BC).

Pilot pharmacogenomic investigation of genetic variants in three candidate genes (SLC2A9,
SLC5A4, and SLC5A9).
This pilot study was designed to investigate possible association of three candidate genetic variants with pharmacodynamic responses to an SGLT2 inhibitor: nonsense variants in SLC5A4 (rs62239058; p.E139X) and SLC5A9 (rs850763; p.E593X) and a missense variant in SLC2A9 (rs1689079; p.V253I). SLC5A4 and SLC5A9 encode two homologs of SGLT2 (SGLT3 and SGLT4, respectively) (Tazawa et al., 2005; Bianchi & Diez-Sampedro, 2010). SLC2A9 encodes GLUT9, a transporter reported to exchange glucose for uric acid (Witkowska et al., 2012).

The clinical trial was terminated early when it became apparent that we would not meet our recruitment targets within the available time and budget. Nevertheless, we analyzed data to explore whether there might be preliminary trends suggesting possible association of pharmacodynamic responses with any of the three genetic variants. Our primary outcome was glucosuria – a pharmacodynamic biomarker for glycemic efficacy and weight loss. The four genotype groups exhibited mean rates of urinary glucose excretion in the range from 36.9-39.1 g-glucose per g-creatinine (Table 3). None of the three genetic variants was associated with a statistically significant difference when compared to the control group.

We confirmed previously published observations (Li et al., 2007; McArdle et al., 2008) that the p.V253I variant in SLC2A9 (rs1689079) was associated with decreased mean levels of serum uric acid levels (3.7 ± 0.27 versus 4.6 ± 0.20 mg/dL in the present study; p=0.02). A previous analysis in the Old Order Amish (McArdle et al., 2008) estimated an effect size of 0.44 ± 0.06 mg/dL per variant allele, which is similar to the magnitude of the difference observed in the present study (0.9 mg/dL) for homozygotes carrying two variant alleles. Thus, our current observations appear to have reproduced previously published data. We did not, however, detect statistically significant association of any of the genotypes with alterations in fractional excretion of uric acid – either at baseline or in response to canagliflozin (Table 3). It is likely that our clinical trial lacked the statistical power to detect genetic associations unless effect sizes were quite large.
DISCUSSION

Scientific rigor and reproducibility.

Consistent with NIH's initiative to improve scientific rigor and reproducibility (Collins & Tabak, 2014), we leveraged this pilot study to validate the experimental protocol supporting our ongoing genome-wide association study (GWAS) to identify genetic variants associated with pharmacodynamic responses to SGLT2 inhibitors (NCT02891954). Based on quantitative comparisons of creatinine contents in independent 24-hour urine collections, we confirmed that research participants recruited from the Lancaster Old Order Amish community successfully provided highly reproducible 24-hour urine collections. We did, nevertheless, observe a statistically insignificant trend toward a decreased mean creatinine content (-2.6%) in the second 24-hour urine collection (Fig. 3). Although not statistically significant, we suspect that this small difference may turn out to be real and reproducible. Canagliflozin-induced natriuresis leads to a modest volume contraction as reflected in the 6.4% increase in serum creatinine levels (Fig. 2). The modestly decreased creatinine excretion during the second urine collection is consistent with the expected transient decrease in urinary creatinine excretion characterizing the transition between two steady-states (before and after administration of canagliflozin). Thus, even the small, statistically insignificant difference between the two 24-hour urine collections probably reflects the known pharmacological effects of canagliflozin rather than experimental variation.

Furthermore, we confirmed that canagliflozin exerted the expected pharmacodynamic effects in healthy volunteers and obtained information on the magnitude of inter-individual variation, which informed power calculations for our ongoing GWAS. As expected, a single dose of canagliflozin triggered several statistically significant responses: decreases in fasting plasma glucose and serum uric acid, and increases in serum creatinine, urinary excretion of sodium, and urinary
excretion of uric acid (Figs. 2 and 3). Taken together, these data are reassuring with respect to the feasibility of our ongoing GWAS for pharmacodynamic responses to canagliflozin.

Sex as a biological variable

The NIH established an expectation for NIH-supported research to include investigations of sex as a biological variable in 2016 (Clayton & Collins, 2014; Legato et al., 2016; Rich-Edwards et al., 2018; Woitowich et al., 2020). While there has been some debate about the optimal approach to implement this requirement, there appears to be agreement that sex-related variables may emerge as relevant within the context of a specific research program (DiMarco et al., 2022). Although the majority of individuals may be assigned to one of two categories for some traits (e.g., karyotype sex), there are many biological traits (e.g., height) that represent continuous variables with considerable overlap between sexes (DiMarco et al., 2022). We have used participants’ self-reported sex as a proxy for karyotype sex. This assumption is likely to be correct in a traditional society such as the Old Order Amish. We applied this binary classification as the basis to conduct an exploratory investigation of whether an individual’s sex was associated with pharmacodynamic responses to canagliflozin. In parallel, we compared three approaches to normalizing our data – i.e., expressing drug-induced glucosuria relative to body surface area, body weight, or urinary excretion of creatinine. When expressed as grams of glucose per grams of creatinine, the mean data were very similar in both males and females (Fig. 6B). In contrast, our data revealed interesting sex differences in the mean quantities of canagliflozin-induced glucosuria when expressed relative to body surface area (Fig. 6A) or body weight (Fig. 7A). For example, canagliflozin induced on average 37% more glucosuria when expressed on the basis of grams of glucose per kg of body weight (Fig. 7). These data are consistent with weight loss data reported by the sponsors of dapagliflozin at the FDA’s Advisory Committee meeting on July 19, 2011 (FDA, 2011). Specifically, 24 weeks of therapy with dapagliflozin induced greater placebo-subtracted weight loss in males than in females (2.76 kg
versus 1.22 kg); the FDA’s analysis concluded that the differential effect of gender was statistically significant (p=0.048) – albeit there was considerable overlap between males and females with respect to the magnitude of weight loss even though the mean weight loss was greater in males than in females (FDA, 2011). Also, many factors contribute to determining the magnitude of weight loss in individual patients – including, for example, the magnitude of SGLT2 inhibitor-induced compensatory increase in food intake (Ferrannini et al., 2015).

Nevertheless, taken together, these data with dapagliflozin are consistent with the hypothesis that the larger magnitude of SGLT2 inhibitor-induced glucosuria in men (expressed per gram body weight) contributes to a larger magnitude of drug-induced weight loss.

This case study exemplifies how routine study of sex as a biological variable does not necessarily conflict with the aims of precision medicine as suggested by DiMarco et al. (DiMarco et al., 2022), but rather enabled us to create an inclusive database containing data obtained in all participants – regardless of their self-reported sex. Although we do not know how frequently preliminary studies of sex as a biological variable will prove to be useful in the context of precision medicine, our experience demonstrates that it may be valuable to keep an open mind. Investigations of sex as a biological variable may offer opportunities for investigators to learn whether sex-related variables emerge as being relevant in the context of their particular research programs.

Impact of non-genetic factors on pharmacodynamic responses.

Our data demonstrate that acute glucosuric responses to canagliflozin vary over almost a twofold range (from ~25 to ~50 g-glucose/g-creatinine) (Fig. 6). By conducting the study in healthy volunteers, we hoped to minimize contributions from non-genetic factors – thereby increasing our statistical power to identify contributions from genetic variation. As recognized in the FDA-approved prescribing information, impaired renal function decreases the amount of glucose filtered at the glomerulus and also diminishes the glycemic efficacy of SGLT2 inhibitors.
Nevertheless, possibly as a result of our decision to exclude individuals with eGFR < 60 mL/min/1.73 m², variation in creatinine clearance rates accounted for only ~0.5% of the observed variance in canagliflozin-induced glucosuria in this population (Fig. 7B). Similarly, hyperglycemia increases the magnitude of SGLT2 inhibitor-induced glucosuria. By excluding diabetic individuals, we minimized the impact of variation in fasting plasma glucose. Indeed, variation in fasting plasma glucose accounted for only ~1.4% of the observed variance in glucosuria (Fig. 7A). Finally, there was a statistically insignificant trend toward the magnitude of canagliflozin-induced glucosuria to decrease as a function of age (Fig. 7C) – accounting for ~5% of the observed variance in glucosuria. In short, none of these factors (glomerular filtration rate, fasting plasma glucose, or age) demonstrated statistically significant correlation with the magnitude of glucosuria in our relatively small pilot study (Fig. 7) and the point estimates for the correlation coefficients were relatively modest. These considerations suggest that there will be minimal confounding by non-genetic factors, which has favorable implications with respect to the statistical power of our pharmacodynamic approach to detect genetic associations with our primary outcome (canagliflozin-induced glucosuria) in healthy volunteers.

In contrast, we did not control the sodium content of the diet. Participants consumed ad lib diets with sodium content with both intra-individual day-to-day variation and inter-individual variation. Notwithstanding this limitation, canagliflozin induced a 25% increase in mean urinary sodium excretion. However, day-to-day variation in an individual’s sodium intake prevent us from analyzing sodium excretion data at the level of individual participants. Previously, Blau et al. (Blau et al., 2018) conducted a clinical trial in which hospitalized participants were maintained on metabolic diets with constant sodium content. In that small clinical trial, evidence was obtained suggesting that the magnitude of an individual’s baseline urinary sodium excretion was correlated with the magnitude of canagliflozin-induced increase in renal tubular phosphate excretion.
reabsorption. In contrast, that study did not observe significant correlation between the magnitude of canagliflozin-induced glucosuria and urinary sodium excretion.

Impact of genetic variants in candidate genes.

Renal tubular epithelial cells contain a sufficient number of glucose transporters to accomplish near-complete reabsorption of all the glucose molecules filtered in the glomerulus under normal physiological conditions. SGLT2 is located in the most proximal S1 segment of the proximal tubule and mediates reabsorption of ~90% of the filtered glucose load under normal physiological conditions (Beitelshees et al., 2019). SGLT1 is located downstream in the S3 segment of the proximal tubule and mediates reabsorption of the ~10% of the filtered glucose load that escapes SGLT2-mediated reabsorption under normal physiological conditions. In SGLT2 inhibitor-treated patients, SGLT1 has sufficient capacity to compensate partially for the impact of SGLT2 blockade. As a result, the usual doses of SGLT2 inhibitors induce urinary excretion of only 30-50% of the filtered glucose load (Beitelshees et al., 2019; Wright, 2021), albeit there is substantial variation among individual patients with respect to the magnitude of urinary glucose excretion in response to SGLT2 inhibitors.

In designing this clinical trial, we considered the possibility that two other renal tubular transporters (in addition to SGLT1) might also contribute to reabsorbing glucose when SGLT2 is inhibited by a drug: SGLT4 and GLUT9. These transporters were selected as candidates in our pilot study because of the existence of relatively common, functionally significant genetic variants in the genes encoding the two transporters: a nonsense mutation in *SLC5A9* (encoding SGLT4) and a missense variant in *SLC2A9* (encoding GLUT9) (Li et al., 2007; McArdle et al., 2008). SGLT4 is a homolog of SGLT2 (encoded by *SLC5A2*) that cotransports sodium along with several hexoses including fructose, mannose, glucose, or 1,5-anhydroglucitol (Tazawa et al., 2005). Among other locations, SGLT4 is reported to be expressed in the S1 and S2 segments of the proximal tubule (Lee et al., 2015). We hypothesized that the loss-of-function
mutation in SLC5A9 (rs850763; p.E593X; minor allele frequency = 0.15) might promote canagliflozin-induced glucosuria by diminishing SGLT4-mediated glucose reabsorption. GLUT9 (encoded by SLC2A9) is a member of the SLC2-family of glucose transporters that also includes GLUT1, GLUT2, and GLUT4 among others. GLUT9 is reported to mediate exchange of glucose for uric acid (Witkowska et al., 2012). A missense variant (rs1689079; p.V253I; minor allele frequency = 0.16) has been identified, which is associated with increased urinary excretion of uric acid and decreased levels of uric acid in serum (Li et al., 2007; McArdle et al., 2008). Some publications have proposed that GLUT9 may mediate the uricosuric effect of SGLT2 inhibitors with the increased concentration of glucose in renal tubular fluid driving counter-transport of uric acid (Chino et al., 2014; Beitelshees et al., 2019; Novikov et al., 2019).

We hypothesized that the p.V253I variant might be associated with an alteration in canagliflozin-induced uricosuria and/or canagliflozin-induced glucosuria. We were forced to terminate the study early because of unexpectedly large challenges in recruitment – as a result of which we lacked the statistical power to achieve rigorous tests of our pharmacogenomic hypotheses. Nevertheless, our data did not reveal numerical trends toward alterations of the magnitude of pharmacodynamic responses to canagliflozin (Table 2) in homozygotes for the variants in either SLC2A9 or SLC5A9.

SLC5A4 encodes SGLT3, a homolog of SGLT2 that has lost the ability to transport glucose but has retained the ability to transport sodium (You et al., 1995; Clancey & Lever, 2000; Diez-Samperio et al., 2003). SGLT3 is expressed in the small intestine, where it has been hypothesized to function as a glucose sensor by virtue of its activity as a glucose-regulated sodium transporter (Freeman et al., 2006; Sotak et al., 2017). Because SGLT3 has also been reported to be expressed in kidney (Kothini et al., 2012; Sotak et al., 2017), we hypothesized that a loss of function mutation in SLC5A4 might enhance canagliflozin-induced natriuresis and/or diminish canagliflozin-induced glucosuria by diminishing SGLT3-mediated sodium
reabsorption. We did not observe any trends suggesting that homozygosity for this nonsense mutation in SLC5A4 (rs62239058; p. E139X; minor allele frequency = 0.08) is associated with an alteration in pharmacodynamic responses to canagliflozin.

CONCLUSIONS

This pilot study confirms the feasibility of conducting a pharmacogenomic study focused on pharmacodynamic effects of canagliflozin in healthy volunteers. Based on assessment of creatinine content of 24-hour urine collections, we conclude that participants in our study provided complete collections of the urine produced during a 24-hour time period. Reproducibility and completeness of urine collections are critical elements of a scientifically rigorous clinical trial. We observed substantial inter-individual variation of our primary outcome (i.e., canagliflozin-induced glucosuria) – varying over a twofold range from ~25 to ~50 grams of glucose per gram of creatinine. By restricting our study to non-diabetic individuals with relatively normal estimated glomerular filtration rates, we limited the contributions of two important potential confounders. Inter-individual variation in fasting plasma glucose and estimated GFR accounted for ~1.4% and 0.5% of the observed variance in canagliflozin-induced glucosuria. Although our participants spanned a wide range of ages (35-82 years old), the variation in age accounted for only ~5% of the variance in canagliflozin-induced glucosuria. Finally, our studies of sex as a biological variable demonstrated that the magnitudes of canagliflozin-induced glucosuria were similar in males and females when expressed on a per gram-creatinine basis. Based on our observations, we conclude that >90% of the observed variance in our primary endpoint is unexplained after accounting for contributions of age, sex, renal function, and fasting plasma glucose. Accordingly, our ongoing pharmacogenomic study (NCT02891954) is well positioned to define the contribution of genetic factors to the relatively large residual variation in the pharmacodynamic effect of canagliflozin.
ACKNOWLEDGEMENTS

We gratefully acknowledge the National Institute of Diabetes and Digestive and Kidney Disease for the following research grants: R21DK105401, R01DK108942, T32DK098107, and P30DK072488. We also gratefully acknowledge contributions of the research participants and the skilled staff at the Amish Research Clinic for their critical roles in making this study possible. We are grateful to Mary Pavlovich, Melanie Daue, and Kathy Ryan for their help with database management. Dr. Laura Yerges-Armstrong provided genotype data enabling us to identify individuals to be invited to participate in this genotype-guided recruitment study.
AUTHORS’ CONTRIBUTIONS

Conception of the clinical trial and PI for NIH grant (R21DK105401): SIT

Acquisition and analysis of data: ALB, H-RC, MEM, EAS, SIT, HBW, ZSY

Establishment of Old Order Amish genotypedatabase: BDM, ARS

Preparation of first draft of manuscript: SIT

Revising and approving final version of manuscript: all authors

Accountability for all aspects of work: SIT
Competing Interests

SIT serves as a consultant for Ionis Pharmaceuticals and receives an inventor’s share of royalties from NIDDK for metreleptin as a treatment for generalized lipodystrophy. ARS is an employee of Regeneron Genetics Center. BDM and MEM receive grant support from Regeneron Genetics Center. BDM, MEM, EAS, and HBW have received partial salary support from funds provided by RGC. ALB, ZSY, and HRC declare no competing interests.
TABLES

Table 1. Demographics and baseline characteristics of study population.

<table>
<thead>
<tr>
<th>Mean ± SEM (range)</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (sample size)</td>
<td>13</td>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>Age (years)</td>
<td>51.6 ± 3.3</td>
<td>62.5 ± 3.4</td>
<td>57.8 ± 2.5</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.5 ± 0.8</td>
<td>29.1 ± 1.4</td>
<td>28.0 ± 0.9</td>
</tr>
<tr>
<td>Fasting plasma glucose (mg/dL)</td>
<td>93.5 ± 2.5</td>
<td>92.0 ± 1.8</td>
<td>92.6 ± 1.5</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.56 ± 0.08</td>
<td>5.81 ± 0.05</td>
<td>5.70 ± 0.05</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)</td>
<td>0.80 ± 0.03</td>
<td>0.68 ± 0.02</td>
<td>0.73 ± 0.02</td>
</tr>
<tr>
<td>Serum uric acid (mg/dL)</td>
<td>4.78 ± 0.28</td>
<td>4.06 ± 0.18</td>
<td>4.38 ± 0.17</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73 m²)</td>
<td>102 ± 4</td>
<td>92 ± 3</td>
<td>96 ± 3</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>44.4 ± 0.6</td>
<td>40.2 ± 0.7</td>
<td>42.0 ± 0.6</td>
</tr>
</tbody>
</table>
Table 2. Canagliflozin increases urinary sodium excretion (U$_{Na}$).

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SEM (range)</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (sample size)</td>
<td>13</td>
<td>17</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Baseline U$_{Na}$</td>
<td>252 ± 19</td>
<td>175 ± 11</td>
<td>208 ± 12</td>
<td></td>
</tr>
<tr>
<td>(total mEq per 24 hrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-cana U$_{Na}$</td>
<td>293 ± 191</td>
<td>239 ± 291</td>
<td>263 ± 191</td>
<td></td>
</tr>
<tr>
<td>(total mEq per 24 hrs)</td>
<td>(p=0.13)</td>
<td>(p=0.03)</td>
<td>(p=0.007)</td>
<td></td>
</tr>
<tr>
<td>Δ U$_{Na}$</td>
<td>31 ± 14</td>
<td>55 ± 22</td>
<td>45 ± 14</td>
<td></td>
</tr>
<tr>
<td>(mEq per g-creatinine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ U$_{Na}$</td>
<td>19 ± 12</td>
<td>35 ± 15</td>
<td>28 ± 10</td>
<td></td>
</tr>
<tr>
<td>(mEq per m2 body surface area)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ U$_{Na}$</td>
<td>0.46 ± 0.28</td>
<td>0.87 ± 0.36</td>
<td>0.68 ± 0.24</td>
<td></td>
</tr>
<tr>
<td>(mEq per kg body weight)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 p-values calculated using Student’s t-test for paired data in comparison to baseline values for U$_{Na}$.
Table 3. Selected data stratified according to genotype. Data are presented as means ±SEM. P-values were calculated relative to the control group using t-tests for unpaired data without correction of multiple comparisons.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Control</th>
<th>SLC2A9 (p.V253I; rs1689079)</th>
<th>SLC5A4 (p.E139X; rs62239058)</th>
<th>SLC5A9 (p.E593X; rs850763)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>13</td>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Male/Female</td>
<td>4M/9F</td>
<td>4M/3F</td>
<td>3M/1F</td>
<td>2M/4F</td>
</tr>
<tr>
<td>Glucosuria (g-glucose/ g-creatinine)</td>
<td>37.6 ± 2.1 (p=0.86)</td>
<td>36.9 ± 2.5 (p=0.92)</td>
<td>37.1 ± 3.3 (p=0.92)</td>
<td>39.1 ± 2.5 (p=0.63)</td>
</tr>
<tr>
<td>Serum uric acid (mg/dL)</td>
<td>4.6 ± 0.20 (p=0.02)</td>
<td>3.7 ± 0.27 (p=0.02)</td>
<td>5.25 ± 0.76 (p=0.47)</td>
<td>4.05 ± 0.23 (p=0.09)</td>
</tr>
<tr>
<td>Uric acid fractional excretion (pre-dose)</td>
<td>0.08 ± 0.0036 (p=0.17)</td>
<td>0.10 ± 0.011 (p=0.17)</td>
<td>0.06 ± 0.019 (p=0.42)</td>
<td>0.09 ± 0.006 (p=0.09)</td>
</tr>
<tr>
<td>Uric acid fractional excretion (post-dose)</td>
<td>0.15 ± 0.0068 (p=0.39)</td>
<td>0.14 ± 0.0058 (p=0.39)</td>
<td>0.16 ± 0.021 (p=0.48)</td>
<td>0.15 ± 0.011 (p=0.99)</td>
</tr>
</tbody>
</table>
LEGENDS TO FIGURES

Figure 1. Disposition of research participants. Based on our genotype database, 40 individuals from the Lancaster Old Order Amish population were enrolled in the clinical trial and further evaluated for eligibility. Ten individuals were excluded based on either abnormal laboratory tests or aspects of the medical history. Thirty participants completed the clinical trial. Details are provided in the Figure.

Figure 2. Acute effects of canagliflozin on circulating biomarkers. Baseline blood samples were obtained for measurement of fasting plasma glucose (panel A), serum creatinine (panel B), and serum uric acid (panel C). Canagliflozin (300 mg, p.o.) was administered 24 hours later to each of the participants. Twenty-four hours after administration of canagliflozin, fasting blood samples were obtained to assess the impact of canagliflozin on fasting plasma glucose, serum creatinine, and serum uric acid. Data are presented as mean ± SEM (N=30).

Figure 3. Reproducibility of 24-hour urine collections. After participants collected the first 24-hour urine collection, they received one tablet of canagliflozin (300 mg, p.o.). Immediately thereafter participants collected a second 24-hour urine collection. Data are presented as mean ± SEM (N=30).

Figure 4. Correlations among indices of body size (body weight, body surface area, and daily creatinine production): impact of sex as a biological variable. Panel A: Individual participants’ body weights (kg) are plotted as a function of body surface area (sq. meters) with males indicated by blue circles and females by red square symbols. Data are presented as mean ± SEM (N=30). Panel B: Individual participants’ 24-hour urinary creatinine excretion values are plotted as a function of body surface area (sq. meters) with males indicated by blue circles and females by red square symbols. Linear regression yielded equations of Y=939X-118 (males) and Y=686X-250 (females) where Y represents 24-hour urinary creatinine (mg/day) and X represents body surface area (sq. meters). For a body surface area of 1.8 m², the equations
predict 24-hour urinary creatinine excretion rates of 1572 mg/day (males) and 985 mg/day (females) – i.e., ~60% higher for males.

Figure 5. Correlations of glucosuria with urinary creatinine excretion and body surface area. Glucosuria (expressed as mg/day) is plotted as a function of either 24-hour urinary creatinine excretion (mg/day) (panels A and C) or body surface area (m²) (panels B and D). Data are presented separately for males (panels A and B) and females (panels C and D). Using data analysis programs provided in Excel, we estimated slopes for the least-square lines and correlation coefficients. P-values were calculated using GraphPad Prism software.

Figure 6. Sex differences with respect to the magnitude of canagliflozin-induced glucosuria. Using data presented in Figure 3, we calculated mean ± SEM for canagliflozin-induced 24-hour urinary glucose excretion normalized in one of two ways: grams of glucose per 1.73 m² body surface area (Panel A) or grams of glucose per gram of creatinine (Panel B). Data for male and female participants are represented as either blue or red columns, respectively.

Figure 7. Sex differences with respect to the magnitude of canagliflozin-induced glucosuria when normalized relative to body weight. Panel A. We calculated mean ± SEM for canagliflozin-induced 24-hour urinary glucose excretion expressed as mg glucose per kg of body weight per day (males, blue columns; females, red columns). Panel B. Canagliflozin-induced glucosuria (mg/kg/d) was plotted separately for males (in blue) and females (in red) as a function of body weight (kg).

Figure 8. Inter-individual variation in 24-hour urinary glucose excretion. Using data from Figs. 5 and 6, we constructed a histogram depicting the number of individuals (y-axis) with various levels of 24-hour urinary glucose excretion (grams of glucose per grams of creatinine). The observed data ranged between 26.5 to 48.5 g-glucose/g-creatinine.

Figure 9. Correlation of urinary glucose:creatinine ratios in 24-hour urine collections with selected parameters. Data from Figs. 5 and 6 were analyzed to assess correlation of 24-hour
urinary glucose excretion rates with fasting plasma glucose (panel A), creatinine clearance rates (panel B), and age (panel C). We estimated slopes for the least-square lines and correlation coefficients using data analysis programs provided in Excel. P-values were calculated using GraphPad Prism software.

Figure 10. Canagliflozin-induced changes in serum uric acid and fractional excretion of uric acid. Panel A represents a plot of the effect of canagliflozin on serum uric acid level as a function of the canagliflozin-induced increase in fractional excretion of uric acid. Both parameters are presented as ratios of post-canagliflozin levels divided by pre-canagliflozin levels. Panels B and C represents a plot of the effect of canagliflozin-induced change in fractional change in fractional excretion of uric acid as a function of canagliflozin-induced glucosuria (grams of glucose per gram of creatinine; panel B) or canagliflozin-induced natriuresis (expressed as a ratio of post-canagliflozin values divided by pre-canagliflozin values; panel C). We estimated slopes for the least-square lines and correlation coefficients using data analysis programs provided in Excel. P-values were calculated using GraphPad Prism software.
REFERENCES

Enrolled in clinical trial:

40 Healthy Volunteers

Completed clinical trial:

30 Healthy Volunteers

Exclusions

- Abnormal lab tests:
 - ↓ hematocrit (N=1)
 - ↓ TSH (N=2)
 - Diabetes (N=1)
 - Giant platelets (N=1)

- Medical history:
 - Pregnancy (N=1)
 - History of MI (N=1)
 - Dyspnea (N=1)
 - BP medications (N=1)

Adverse Events

- Accident while driving horse and buggy\(^1\) (N=1)
- Loose stools\(^2\) (N=1)

\(^1\) Prior to taking canagliflozin

\(^2\) Two days after discontinuation of canagliflozin
Figure 2

A) Canagliflozin Decreases FPG

B) Canagliflozin Increases Serum Creatinine

C) Canagliflozin Decreases Serum Uric Acid
Figure 3

A

24 hr urinary creatinine collection

<table>
<thead>
<tr>
<th></th>
<th>Pre-Dose</th>
<th>Post-Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary Creatinine (mg/day)</td>
<td>1286 ± 81</td>
<td>1252 ± 74</td>
</tr>
</tbody>
</table>

p = 0.19

B

24 hr urinary creatinine: canagliflozin response

r = 0.95
p = 10^{-15}
Figure 4

A Weight vs. BSA (males and females)

B Association of sex with creatinine excretion
Figure 6

A Per 1.73 sq.m. body surface area

<table>
<thead>
<tr>
<th></th>
<th>Glucosuria (g/1.73 sq.m./d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>51.4±3.4</td>
</tr>
<tr>
<td>Females</td>
<td>37.1±2.3</td>
</tr>
</tbody>
</table>

p=0.002

B Per Gram Creatinine

<table>
<thead>
<tr>
<th></th>
<th>Glucosuria (g/g-creatin/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>35.3±2.0</td>
</tr>
<tr>
<td>Females</td>
<td>39.4±1.4</td>
</tr>
</tbody>
</table>

p=0.12
Figure 7

A. Glucosuria per kg (by sex)

- Males: Slope = 738±53, p = 0.0005
- Females: Slope = 537±35

B. Glucosuria vs. weight (kg)

- Males: Slope = 327, r = 0.29; p = 0.33
- Females: Slope = 376, r = 0.54; p = 0.03
Figure 8

Range: 26.5-48.5
Figure 9

A Urinary Gluc/Creat Ratio vs. FPG

B Urinary Gluc/Cr vs. Creat CL

C Urinary Gluc/Cr vs. Age
Figure 10

A. SerumUA vs. UA-FE (post:pre)

- Slope: \(-0.027 \pm 0.009\)
- Correlation: \(r = 0.49; p = 0.006\)

B. UA-FE vs. Glucosuria

- Slope: \(-0.058 \pm 0.004\)
- Correlation: \(r = 0.24; p = 0.20\)

C. UA-FE vs. Natriuresis

- Slope: \(0.057 \pm 0.55\)
- Correlation: \(r = 0.19; p = 0.31\)