Leisure time sedentary behaviour and risks of breast, colorectal, and prostate cancer: A Mendelian randomization analysis

Nikos Papadimitriou¹, Nabila Kazmi², Niki Dimou¹, Konstantinos K Tsilidis³,⁴, Richard M Martin²,⁵,⁶, Sarah J Lewis⁵, Brigid M Lynch⁷,⁹, Michael Hoffmeister¹⁰, Sun-Seog Kweon¹¹,¹², Li Li¹³, Roger L Milne⁷,⁸,¹⁴, Lori C Sakoda¹⁵,¹⁶, Robert E Schoen¹⁷, Amanda I Phipps¹⁶,¹⁸, Jane C Figueiredo¹⁹,²⁰, Ulrike Peters¹⁶,¹⁸, Suzanne C. Dixon-Suen⁷,²¹, Marc J Gunter¹, Neil Murphy¹

². MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
³. Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
⁴. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
⁵. Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, UK.
⁶. National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK.
⁷. Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.
⁸. Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
9. Physical Activity Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.

10. Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.

11. Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea.

12. Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Korea.

13. Department of Family Medicine, University of Virginia, Charlottesville, Virginia, USA.

14. Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.

15. Division of Research, Kaiser Permanente Northern California, Oakland, California, USA.

16. Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA.

17. Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.

18. Department of Epidemiology, University of Washington, Seattle, Washington, USA.

19. Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

20. Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

21. Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia.
Corresponding author: Dr Nikos Papadimitriou, Branch of Nutrition and Metabolism, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69008 Lyon, France, Tel.: +33 4 72738485, E-mail: papadimitrioun@iarc.who.int

Competing interests:
The authors declare no competing interests.

Disclaimer: Where authors are identified as personnel of the International Agency for Research on Cancer / World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer / World Health Organization.

Availability of data and materials
The summary statistics used in this study are outlined in the supplementary materials.

Funding
This work is supported by a WCRF grant (WCRF_2020_019). RMM is supported by a Cancer Research UK Programme Grant, the Integrative Cancer Epidemiology Programme (C18281/A29019). RMM is a member of the MRC IEU which is supported by the Medical Research Council and the University of Bristol (MC_UU_12013/1-9). RMM is supported by the National Institute for Health Research (NIHR) Bristol Biomedical Research Centre which is funded by the National Institute for Health Research and is a partnership between University Hospitals Bristol NHS Trust, Weston NHS Foundation Trust and the University of Bristol. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care.
BML is supported by the Victorian Cancer Agency (MCRF-18005).

SJL is supported by a WCRF grant (WCRF_2020_019).

Information on consortia funding is included in the supplementary material.

Acknowledgements

The breast cancer genome-wide association analyses for BCAC and CIMBA were supported by Cancer Research UK (PRPGM-Nov20\100002, C1287/A10118, C1287/A16563, C1287/A10710, C12292/A20861, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565) and the Gray Foundation, The National Institutes of Health (CA128978, X01HG007492- the DRIVE consortium), the PERSPECTIVE project supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research (grant GPH-129344) and the Ministère de l’Économie, Science et Innovation du Québec through Genome Québec and the PSRSIIIRI-701 grant, the Quebec Breast Cancer Foundation, the European Community’s Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), the European Union’s Horizon 2020 Research and Innovation Programme (634935 and 633784), the Post-Cancer GWAS initiative (U19 CA148537, CA148065 and CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer (CRN-87521), the Komen Foundation for the Cure, the Breast Cancer Research Foundation and the Ovarian Cancer Research Fund. All studies and funders are listed in Zhang H et al (Nat Genet, 2020).

Additional information on consortia acknowledgements is included in the supplementary material.
Abstract (332 words)

Introduction: Sedentary behaviours have been associated with increased risks of some common cancers in epidemiological studies; however, it is unclear if these associations are causal.

Methods: We used univariable and multivariable two-sample Mendelian randomization (MR) to examine potential causal relationships between sedentary behaviours and risks of breast, colorectal, and prostate cancer. Genetic variants associated with self-reported leisure television watching and computer use were identified from a recent genome-wide association study (GWAS). Data related to cancer risk were obtained from cancer GWAS consortia. A series of sensitivity analyses were applied to examine the robustness of the results to the presence of confounding.

Results:
In the univariable models, a 1-standard deviation (SD:1.5 hours/day) increment in hours of television watching increased risk of breast cancer (OR per 1-SD: 1.15, 95% confidence interval [CI]: 1.05, 1.26) and colorectal cancer (OR per 1-SD: 1.32, 95%CI: 1.16, 1.49) while there was little evidence of an association for prostate cancer risk (OR per 1-SD: 0.94, 95%CI: 0.84, 1.06). In multivariable MR models adjusted for years of education, the effect estimates for television watching were attenuated towards the null (breast cancer, OR per 1-SD: 1.08, 95%CI: 0.92, 1.27; colorectal cancer, OR per 1-SD: 1.08, 95%CI: 0.90, 1.31).

However, in post-hoc analyses we found evidence of years of education having a possible confounding and mediating role in the association between television watching with breast and colorectal cancer. Consistent results were observed for each cancer site according to sex.
(colorectal cancer), anatomical subsites, and cancer subtypes. There was little evidence of associations between genetically predicted computer use and risk of all three cancers.

Conclusion: We found evidence of positive associations between hours of television watching and risks of breast and colorectal cancer. However, these findings should be interpreted cautiously given the complex confounding and mediating role we found for years of education on the television watching and cancer relationship. Future studies using objective measures of exposure (e.g., accelerometers) can provide new insights into the possible role of sedentary behaviour in cancer development.
Abbreviations

BMI: body mass index

IVW: inverse-variance weighted

GWAS: genome-wide association study

LD: linkage disequilibrium

MR: Mendelian randomization

PSA: prostate-specific antigen

OR: odds ratio

RCT: randomised control trial

SNP: single nucleotide polymorphism

SD: Standard deviation
Introduction (3988 words)

Breast, colorectal, and prostate cancer are three of the most common malignancies collectively accounting for an estimated 29% of new cancer cases in 2020 (1). Sedentary behaviour is defined as any waking behaviour characterized by energy expenditure ≤1.5 metabolic equivalents while in a sitting, reclining, or lying posture (2). The most common sedentary activities are television watching and computer use; these are more accurately recalled than total sedentary time and are therefore commonly used as surrogates of sedentary behaviour (3). A recent US study reported that approximately two-thirds of adults spent two or more hours each day watching television and around 50% spend more than one hour using their computer outside work (4). Studies in the UK and in the US estimated that adults on average spend five to six hours per day sitting (4, 5). Given such a high prevalence, sedentary behaviours represent an important public health challenge as they have been linked with multiple adverse health outcomes (6, 7).

Numerous observational studies have examined the associations between sedentary behaviours and the risks of breast, colorectal, and prostate cancer (8). A meta-analysis of case-control and cohort studies reported that sedentary behaviour was not associated with colorectal cancer risk (8). More recently, however, a UK Biobank analysis, found that greater volumes of television watching was associated with elevated colon cancer risk (9). The aforementioned meta-analysis did not observe any significant associations between sedentary behaviour and risk of prostate cancer (8). For breast cancer, when the meta-analysis included cohort studies only, sedentary behaviour was associated with a higher breast cancer risk (8).

Clarifying causal associations from such observational evidence is hampered by inherent biases of the study design, such as residual confounding and reverse causality (10-12). Mendelian randomization (MR) is an alternative way to investigate potential causal associations. MR uses germline genetic variants as proxies (or instrumental variables) for
exposures of interest to make causal inferences between an exposure and an outcome (13).

Unlike traditional observational epidemiology, MR can be largely free of conventional confounding owing to the random independent assignment of alleles during meiosis (14). In addition, multivariable MR methods have been developed to adjust for confounding if found to be present. There should be no reverse causation in MR studies, as germline genetic variants are fixed at conception and are consequently unaffected by the disease process (14).

A recent MR analysis reported a positive effect estimate for television watching with lung cancer risk (15). However, similar analyses investigating possible causal effects of sedentary behaviours for other common cancers have not been conducted.

We used a two-sample MR framework to examine potential causal associations between self-reported sedentary behaviours and risks of breast, colorectal, and prostate cancer. Genetic variants associated with leisure television watching and computer use were identified from a recent genome-wide association study (GWAS) (16) and we then examined how these genetic variants related to risks of breast, colorectal, and prostate cancer using large-scale GWAS consortia data (17-19).

Methods

Data on leisure sedentary behaviours

Summary-level data on duration of leisure sedentary behaviours were obtained from a recently published GWAS conducted in 408,815 participants of European ancestry from the UK Biobank using BOLT-LMM v2.3beta2, using a mixed linear model correcting for population structure and cryptic relatedness (16). To ascertain the duration of the sedentary behaviours, participants within the UK Biobank were asked three questions, “In a typical DAY, how many hours do you spend watching television?”, “In a typical DAY, how many hours do you spend using the computer? (Do not include using a computer at work)” and “In
a typical DAY, how many hours do you spend driving?” (16). This GWAS identified 209 and
52 genome-wide-significant single nucleotide polymorphisms (SNPs) (P-value < 5×10⁻⁸) for
leisure television watching and computer use respectively using a linkage disequilibrium (LD)
of R² < 0.005 within a five megabase window (Supplemental Tables 1-2). The GWAS also
identified five genetic variants associated with driving; however, we did not include these
instruments in our MR analyses due to low statistical power (see Statistical power, below).
The 261 SNPs included in both instruments were identified in 204 loci demonstrating a partial
overlap between the two phenotypes with 22 common loci. The selected SNPs explained
approximately 2% and 0.5% of the variability in television watching and computer use
respectively.

Data on breast, colorectal, and prostate cancer

Summary data for the associations of the above genetic variants with breast cancer
were obtained from a GWAS of 247,173 women (133,384 breast cancer cases and 113,789
controls) of European ancestry from the Breast Cancer Association Consortium (19). We
included six related outcomes in our analyses (overall, luminal A, luminal B, luminal B HER2
negative, HER2 enriched, and triple negative breast cancer).

For colorectal cancer, summary data from 98,715 participants (52,775 colorectal
cancer cases and 45,940 controls) were drawn from a meta-analysis within the ColoRectal
Transdisciplinary Study, the Colon Cancer Family Registry, and the Genetics and
Epidemiology of Colorectal Cancer consortia (17). We included five outcomes in our
analyses (overall colorectal cancer, colorectal cancer for men, colorectal cancer for women,
colon cancer, and rectal cancer). The summary statistics did not include UK Biobank study to
avoid potential overlap with the leisure sedentary behaviours GWAS.
For prostate cancer, summary data from a meta-analysis of 140,254 (79,148 prostate cancer cases and 61,106 controls) men of European ancestry in the Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome and the Genetic Associations and Mechanisms in Oncology/Elucidating Loci Involved in Prostate Cancer Susceptibility consortia (18). The same consortia also conducted a GWAS of aggressive prostate cancer involving 15,167 cases and 58,308 controls, in which cancer cases were defined as aggressive based on the following characteristics: Gleason score ≥8, Prostate-Specific Antigen (PSA)>100 ng/mL, metastatic disease (M1) or death from prostate cancer (18).

All cancer estimates for the two exposures of interest are provided in Supplemental Tables 3-8. All participants provided written informed consent. Ethics were approved by respective institutional review boards.

Statistical power

The statistical power was calculated *a priori* using an online tool at http://cnsgenomics.com/shiny/mRnd/ (20). Under the scenario of a type 1 error of 5%, for leisure television use an expected OR per 1 standard deviation (SD) ≥ 1.09, ≥ 1.14 and ≥ 1.11 was needed to have adequate statistical power (> 80%) for overall breast, colorectal and prostate cancer respectively. Supplemental Table 9 presents the power estimates for the three exposures of interest by subtypes or subsites of breast, colorectal, and prostate cancer.

Statistical analysis

A two-sample MR approach using summary data and the fixed-effect IVW method was implemented. All results correspond to an OR per 1-SD increment in genetically-predicted hours of leisure sedentary behaviour (television watching: 1.5 hours/day; computer...
use: 1.2 hours/day). The heterogeneity of the causal estimates by cancer subtype (breast cancer), subsite (colorectal cancer) and sex (colorectal cancer only) was investigated by calculating the I^2 metric using a fixed effect meta-analysis model (21).

Sensitivity analyses

MR studies have three main assumptions that must be satisfied in order for their causal estimates to be valid, which in the context of this study are: 1) the genetic instrument is strongly associated with the levels of exposure (sedentary behaviour); 2) the genetic instrument is not associated with any potential confounder of the exposure (sedentary behaviour)—outcome (cancer) association; and 3) the genetic instrument does not affect the outcome (cancer) independently of the exposure (sedentary behaviour) (i.e. exclusion of horizontal pleiotropy). The strength of each genetic instrument can be evaluated through the F-statistic (provided by the initial GWAS) (16). Several sensitivity analyses were conducted to identify and correct for the presence of horizontal pleiotropy in the results from the main analysis. Cochran’s Q was computed to quantify heterogeneity across the individual causal effects, with a P-value ≤ 0.05 indicating the presence of pleiotropy, and consequently, a random effects IVW MR analysis was used (21, 22). MR-Egger regression was performed in which the intercept term can deviate from zero allowing estimation of the causal effect even in the presence of invalid genetic variants. Large deviations from zero represent the presence of horizontal pleiotropic effects across the genetic variants. In such a case, the slope of the MR-Egger regression provides valid MR estimates when the pleiotropic effects of the genetic variants are independent from the genetic associations with the exposure (23, 24). Moreover, causal estimates were also computed using the weighted-median method that can give valid MR estimates under the presence of horizontal pleiotropy when up to 50% of the included instruments are invalid (25). The MR pleiotropy residual sum and outlier test (MR-PRESSO)
was also used to assess the presence of pleiotropy. The MR-PRESSO test relies on a regression framework to identify outlying genetic variants which may potentially be pleiotropic, we then reran the analysis after excluding these outlying variants (26). We also examined the selected genetic instruments and their proxies (r² > 0.8) and their associations with secondary phenotypes (P-value < 5 × 10⁻⁸) in populations of European descent in Phenoscanner (http://www.phenoscanner.medschl.cam.ac.uk/) to explore potential pleiotropy of the included SNPs. Since several of the genetic variants were also associated with adiposity or education-related phenotypes - such as body mass index (BMI) and educational attainment - we performed multivariable MR to investigate whether any initial significant associations for sedentary behaviour are confounded by these two traits as well as additional secondary traits such as lifetime smoking and alcohol consumption which have previously been linked with cancer risk (27-29). For BMI, summary data from a GWAS meta-analysis of about 700,000 participants of European descent within the Genetic Investigation of ANthropometric Traits (GIANT) consortium and UK Biobank was obtained (30). For years of educational attainment, we obtained summary level data from a published GWAS of 1.1 million participants of European descent within the Social Science Genetic Association Consortium and which measured the number of completed years of schooling among those individuals (31). Data on alcohol consumption (drinks per week) was drawn from a GWAS of 1.2 million individuals (32). The data for lifetime smoking was obtained from a recent GWAS and MR study on causal effects of lifetime smoking on risk for depression and schizophrenia (33). In the current analysis we used data of 766,345 participants which is publicly available. All relevant summary statistics for the multivariable MR analyses is given in supplemental tables 10-17. For multivariable MR, we also calculated two variables: the conditional \(F_{\text{early life body size}}, F_{\text{adult body size}} \) which can be used to examine how much variance the genetic variants explain on the main (sedentary behaviours) and secondary exposures (e.g.,
years of education); F values over 10 suggest little evidence of weak instrument bias (34).

Finally, as a post-hoc analysis based on the results from the multivariable MR and trying to understand the observed attenuation, we also conducted a bidirectional MR study to examine the associations between sedentary behaviours and the four secondary traits (BMI, years of education, alcohol consumption, and lifetime smoking) (supplemental tables 18-21).

All the analyses were conducted using the MendelianRandomization and TwoSampleMR packages, while the LD clumping (LD < 0.001) in the multivariable MR analyses between SNPs of sedentary behaviour phenotypes with those for the secondary traits was done using the ieugwasr R package (https://mrcieu.github.io/ieugwasr/) and the R programming language (version 4.1.2) (35-37). Reporting guidelines for MR studies were followed (MR STROBE checklist).

Results

MR estimates for leisure television watching

A 1 SD (1.5 hours/day) increment in genetically-predicted duration of leisure television watching increased breast cancer risk (OR per 1 SD: 1.15, 95% confidence interval [CI]: 1.05, 1.26, P-value: 0.002) (Table 1). Similar magnitude positive effect estimates were found for all molecular subtypes of breast cancer ($I^2 = 0\%$, P-heterogeneity=0.98) (Table 1).

A 1 SD increment in genetically-predicted duration of leisure television watching increased colorectal cancer risk (OR per 1 SD: 1.32, 95% CI: 1.16, 1.49, P-value: 2×10^{-5}) with similar significant estimates being observed for men and women ($I^2 = 42\%$, P-heterogeneity=0.19) and by subsite ($I^2 = 45\%$, P-heterogeneity=0.17) (Table 2).

There was little evidence that a 1 SD increment in genetically-predicted duration of leisure television watching was associated with risk of overall (OR per 1 SD: 0.94, 95% CI:
Based on the Cochran’s Q values there was evidence of heterogeneity of SNP effects for most outcomes except for triple negative breast cancer (Tables 1-3). Scatter plots (with coloured lines representing the slopes of the different regression analyses) and funnel plots of the association between leisure television watching and the risk of breast, colorectal and prostate cancer risk are presented in Supplemental Figures 1-6.

The multivariable MR analysis adjusting for years of education led to the attenuation of all effect estimates between genetically-predicted television watching and the risk of breast (OR per 1 SD: 1.08, 95% CI: 0.92, 1.27) and colorectal cancer (OR per 1 SD: 1.08, 95% CI: 0.90, 1.31) (Figure 1, Supplemental Table 22). Additional attenuations were observed for the models adjusting for lifetime smoking. For women, risk estimates for colorectal cancer were attenuated towards the null in all multivariable MR models adjusting for each of the four secondary traits (Figure 1, Supplemental Table 22). Finally, genetically-predicted television watching was associated with HER2 negative, HER2 positive, and triple negative breast cancer after adjusting for BMI in the multivariable MR models with effect sizes ranging from 1.32 to 1.46 per SD (Figure 1).

MR estimates for leisure computer use

There was little evidence of any causal effect of longer duration of genetically predicted leisure computer use with overall breast, colorectal, and prostate cancer (Tables 1-3). Inverse effect-estimates were found for triple negative breast cancer (OR per 1 SD: 0.68, 95% CI: 0.50, 0.93, P-value: 0.02) and rectal cancer (OR per 1 SD: 0.66, 95% CI: 0.49, 0.89, P-value: 6×10⁻³) (Tables 1,2). Despite this, little evidence of heterogeneity was found by breast cancer subtype (I² = 36%, P-heterogeneity=0.17), colorectal cancer subsite (I² = 45%,...
P-heterogeneity=0.15), or by prostate cancer status (overall vs aggressive; $I^2 = 0\%$, P-heterogeneity=0.34), or sex (colorectal cancer: $I^2 = 31\%$, P-heterogeneity=0.23).

Based on Cochran’s Q values, heterogeneity in SNP effects was found for overall breast cancer, luminal A breast cancer, luminal B breast cancer, and colorectal cancer. Scatter plots (with coloured lines representing the slopes of the different regression analyses) and funnel plots of the association between leisure computer use and risks of breast, colorectal and prostate cancer are presented in Supplemental Figures 7-12.

In the multivariable MR analysis for triple negative breast cancer, after adjusting for years of education, alcohol, or BMI the inverse effect estimates for genetically-predicted computer use found in the univariable MR analysis were no longer statistically significant with the new attenuated effect sizes ranging from 0.73 to 1.06 per SD (Figure 1, Supplemental Table 22). Similarly, the inverse effect estimates for rectal cancer observed in the univariable analysis were attenuated after adjusting for years of education or alcohol consumption (Figure 1, Supplemental Table 22).

Evaluation of assumptions and sensitivity analyses

The strength of the genetic instruments according to the F-statistic was ≥ 10 for both exposures of interest and ranged between 23 and 164 (Supplemental Tables 1-3). Little evidence of directional pleiotropy was observed based on the MR-Egger’s test (MR-Egger intercept P-values > 0.05) (Tables 1-3). The effect estimates from MR Egger regression models were generally in the same direction with those from the main analysis but with wider confidence intervals (Tables 1-3). Similarly, the weighted-median approach effect estimates were consistent in direction and magnitude to the IVW models (Tables 1-3). The MR-PRESSO analysis identified several (10 in total) outlying SNPs (Supplemental Table 23); however, no major differences were observed when these outlying genetic variants were
excluded from the analyses (Tables 1-3). After examining Phenoscanner, we found that
several of the genetic variants were also associated with adiposity or education-related
phenotypes, such as BMI and highest qualification (Supplemental Table 24). In the
multivariable MR framework, the conditional F statistics were in general above 10 (indicating
little evidence of weak instrument bias) for both our exposures of interest and the adjusting
factors with a few exceptions. For models including television watching and years of
education, conditional F statistics for both variables were below 10. Also, adjusting for BMI
or years of education resulted in low F statistics (<10) for computer use.

MR estimates for the bidirectional MR

In post-hoc analyses, inverse bidirectional associations were observed between the
genetically-predicted duration of leisure television watching and years of education. A one
SD increase in genetically-predicted duration of leisure television watching reduced years of
education by 0.54 SD (95% CI: -0.58 to -0.49). Similarly, a one SD increase in genetically-
predicted years of education reduced duration of leisure television watching by 0.63 SD (95%
CI: -0.66 to -0.59) (Figure 2, Supplemental Tables 25,26). These observations taken together
with the inverse effect estimate found for years of education with breast and
colorectal cancer (Supplemental Table 27) point to education having a complex dual
confounding and mediating role in the association between television watching with breast
and colorectal cancer risk. Contrary to this, positive bidirectional associations were observed
for genetically-predicted duration of leisure computer use ($\beta_{\text{computer use} \rightarrow \text{education}}$ 0.59;
95% CI: 0.48 to 0.70 and $\beta_{\text{education} \rightarrow \text{computer use}}$ 0.34; 95% CI: 0.30 to 0.37).
Additionally, positive bidirectional associations were observed between the genetically-
predicted duration of leisure television watching with BMI and smoking status while, inverse
bidirectional associations were observed between the genetically-predicted duration of leisure
computer use and smoking status. Finally, alcohol consumption was inversely associated with computer use (Figure 2, Supplemental Tables 25,26).

Discussion

In this MR analysis, a high level of genetically-predicted television watching increased risks of breast and colorectal cancer. The effect estimates for television watching were robust according to most of the univariable sensitivity analyses conducted to assess the influence of pleiotropy. After multivariable MR adjustment for years of education, the positive effects were attenuated; however, our post-hoc analyses suggest that education has a complex dual confounding and mediating role in the association between television watching with these cancers and adjustment for years of education is not appropriate. We found little evidence that genetically-predicted leisure computer use was associated with breast, colorectal, and prostate cancer.

Inconsistent results have been reported in prospective cohort studies that have examined the association between sedentary behaviours and breast cancer risk. A recent meta-analysis reported a statistically significant 10% higher risk for the highest sedentary behaviour group when compared with the lowest group (8). However, a recent study in UK Biobank found little evidence of any association between hours spent watching television and the risk of breast cancer (OR per 1 hour increase: 1.01, 95% CI: 0.99, 1.03) (9). In our analysis we initially observed positive associations between hours of television watching and the risk of breast cancer. However, these positive effect estimates were attenuated towards the null in our multivariable MR models adjusting for other risk factors, particularly years of education.

Numerous observational studies have investigated the associations between sedentary behaviours and colorectal cancer risk. Results from the most recent meta-analysis of case-control and cohort studies reported a non-significant 10% risk increase for colorectal cancer...
for the highest sedentary behaviour group when compared with the lowest group (RR=1.10, 95% CI: 0.96–1.26) (8). Television viewing time has been the most investigated sedentary behaviour trait and positive associations have been found with colon cancer (9, 38). A recent UK Biobank analysis reported that higher levels of television watching time were associated with greater colon cancer risk (HR per 1-hour increase, 1.04, 95% CI: 1.01–1.07; P-value=0.016), but not rectal cancer (9). The same UK Biobank study found no association between leisure computer use and colorectal cancer risk (9). Results from our univariable MR analyses were generally consistent with this prior observational evidence, with positive effect estimates found for television watching, and little evidence of an association between computer use and colorectal cancer risk, except of rectal cancer. However, like our breast results, these associations attenuated towards the null in multivariable MR models adjusted for years of education and smoking (colorectal; television watching) or alcohol (rectal; computer use).

We found little evidence of any associations between sedentary behaviours and prostate cancer risk, consistent with prior observational evidence (9, 38). The null effects we found were similar for overall and aggressive prostate cancer risk.

Strong genetic correlations have been reported between each of television watching (inverse) and computer use (positive) and years of education ($r_g^{TV} = -0.79$ and $r_g^{PC} = 0.53$) (16). The low conditional F statistics in our multivariable models including the sedentary behaviour traits with years of education provided a further indicator of strong correlations. A recent MR study reported an inverse association between years of education and breast (OR, 0.89, 95% CI: 0.83, 0.96; P-value = 0.001) and a positive association for prostate cancer (OR, 1.10, 95% CI: 1.01, 1.21; P-value = 0.035) (39). In agreement with that, we observed inverse effect estimates for years of education in our multivariable models for breast and also for colorectal cancer. An additional MR study found that higher educational attainment levels were further
inversely associated with smoking, BMI, and sedentary behaviours, and positively with vigorous physical activity levels and alcohol consumption (40). Therefore, education may be a proxy for overall lifestyle, with higher educated individuals practising healthier lifestyle behaviours and actively participating in screening programs that lower their risk of developing cancer (39). Additionally, traits like sedentary behaviours, education, smoking, alcohol consumption, and obesity are correlated and it is therefore difficult to disentangle their complex interrelationships. As an example, in our post-hoc analyses we found evidence of education having a dual confounding and mediating role in the association between television watching with breast and colorectal cancers.

The main strength of the current study is the use of large-scale summary genetic data from consortia and the UK Biobank that allowed us to investigate the role of leisure sedentary behaviours on risk of developing breast, colorectal, and prostate cancer. A limitation of our study is that leisure sedentary behaviours were derived from self-reported questionnaires that are prone to measurement error (41, 42). An alternative approach is to use genetic instruments derived from objectively measured levels of physical activity using accelerometer data from the UK Biobank. However, a current limitation is that the number of genetic instruments is small as the GWAS on accelerometer data was analysed in a subset of 90,000 participants. Analysing two highly correlated phenotypes together, like sedentary behaviours and years of education may have introduced collinearity which leads to greater imprecision and possible bias. Furthermore, caution is needed regarding the results from the analyses for leisure computer use as the genetic instruments explained a very small proportion of the phenotypic variance resulting in a low powered analysis. Also, our analyses focused solely on leisure sedentary behaviours. The genetic correlation between television watching and objectively measured sedentary behaviour in UK Biobank was weak while, the correlation for computer use was higher ($r_g^{TV} = 0.14$ and $r_g^{PC} = 0.46$) (16). This can be at least partially explained from
the fact that accelerometers measure total but not domain-specific sedentary time (e.g., television watching) and that has been observed in previous observational studies (3, 43).

Therefore, our results cannot be generalised to overall sedentary behaviour. Finally, the results cannot be generalised to diverse populations due to the lack of ancestral diversity in UK Biobank.

In conclusion, we found that higher genetically predicted television watching time increased risks of breast and colorectal cancer in univariable models. When we adjusted for years of education in multivariable MR models, these positive effect estimates were no longer present. However, these multivariable results should be interpreted cautiously as we detected evidence of education having a dual confounding and mediating role in the associations between television watching with risks of breast and colorectal cancer. Future analyses utilising objective measures of exposure (e.g., accelerometers) and novel analytic frameworks (e.g., target trial emulation) are required to provide new insights into the possible role of sedentary behaviour in cancer development.
References

Figure 1: Associations of leisure time television watching and computer use with breast and colorectal cancer after adjusting for the four secondary traits. The black dot corresponds to the 1-SD odds ratio and the corresponding error bar to the 95% confidence interval. Abbreviations: BMI: Body mass index; IVW: inverse variance weighting; SD: standard deviation.

Figure 2: Bidirectional associations of leisure time television watching and computer use with the four secondary traits: BMI, years of education, smoking, and alcohol. The solid lines correspond to the effects of time television watching and computer use on the four secondary traits while the dashed lines correspond to the effects of the four secondary traits on time television watching and computer use. The black colour corresponds to statistically significant associations and the grey colour to non-significant. All the results, odds ratios and 95% confidence intervals, correspond to a 1-SD change in the levels of the variables. Abbreviations: BMI: Body mass index.
<table>
<thead>
<tr>
<th>Methods</th>
<th>Leisure television watching</th>
<th>Leisure computer use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimates (OR)*</td>
<td>95% CI</td>
</tr>
<tr>
<td>Breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>1.15</td>
<td>1.05, 1.26</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.48</td>
<td>0.98, 2.23</td>
</tr>
<tr>
<td>Weighted median</td>
<td>1.16</td>
<td>1.05, 1.27</td>
</tr>
<tr>
<td>MR-PRESSO</td>
<td>1.12</td>
<td>1.03, 1.20</td>
</tr>
<tr>
<td>Luminal A breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>1.20</td>
<td>1.06, 1.35</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.55</td>
<td>0.90, 2.69</td>
</tr>
<tr>
<td>Weighted median</td>
<td>1.15</td>
<td>1.01, 1.31</td>
</tr>
<tr>
<td>MR-PRESSO</td>
<td>1.14</td>
<td>1.03, 1.26</td>
</tr>
<tr>
<td>Luminal B breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>1.14</td>
<td>0.94, 1.38</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.16</td>
<td>0.47, 2.89</td>
</tr>
<tr>
<td>Weighted median</td>
<td>1.13</td>
<td>0.86, 1.48</td>
</tr>
<tr>
<td>MR-PRESSO</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Luminal B HER2 negative breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>1.14</td>
<td>0.96, 1.36</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.07</td>
<td>0.48, 2.39</td>
</tr>
<tr>
<td>Weighted median</td>
<td>1.30</td>
<td>1.03, 1.63</td>
</tr>
<tr>
<td>MR-PRESSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HER2 enriched breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>1.21</td>
<td>0.91, 1.60</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.31</td>
<td>0.35, 4.95</td>
</tr>
<tr>
<td>Weighted median</td>
<td>1.25</td>
<td>0.84, 1.86</td>
</tr>
<tr>
<td>MR-PRESSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triple negative breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>1.16</td>
<td>0.99, 1.35</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.54</td>
<td>0.72, 3.29</td>
</tr>
<tr>
<td>Weighted median</td>
<td>1.31</td>
<td>1.04, 1.67</td>
</tr>
<tr>
<td>MR-PRESSO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence intervals; MR: Mendelian Randomization; OR: odds ratio; MR-PRESSO: MR pleiotropy residual sum and outlier test

* The estimates correspond to a standard deviation increase in duration of sedentary activity
† P-value or pleiotropy based on MR-Egger intercept
‡ P-value for heterogeneity based on Q statistic
Table 2: Mendelian Randomization estimates for sedentary behaviour and colorectal cancer risk

<table>
<thead>
<tr>
<th>Methods</th>
<th>Leisure television watching</th>
<th>Leisure computer use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimates (OR)* 95% CI P-value</td>
<td>P-value for pleiotropy† or heterogeneity‡</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>1.32</td>
<td>1.16, 1.49</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.35</td>
<td>0.76, 2.39</td>
</tr>
<tr>
<td>Weighted median</td>
<td>1.40</td>
<td>1.20, 1.63</td>
</tr>
<tr>
<td>MR-PRESSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal cancer in men</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>1.45</td>
<td>1.23, 1.67</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.72</td>
<td>0.84, 3.53</td>
</tr>
<tr>
<td>Weighted median</td>
<td>1.52</td>
<td>1.23, 1.88</td>
</tr>
<tr>
<td>MR-PRESSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal cancer in women</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>1.25</td>
<td>1.06, 1.46</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.02</td>
<td>0.50, 2.08</td>
</tr>
<tr>
<td>Weighted median</td>
<td>1.25</td>
<td>1.01, 1.54</td>
</tr>
<tr>
<td>MR-PRESSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colon cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>1.36</td>
<td>1.19, 1.57</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.48</td>
<td>0.78, 2.80</td>
</tr>
<tr>
<td>Weighted median</td>
<td>1.49</td>
<td>1.25, 1.79</td>
</tr>
<tr>
<td>MR-PRESSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectal cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>1.60</td>
<td>1.32, 1.93</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.97</td>
<td>0.82, 4.71</td>
</tr>
<tr>
<td>Weighted median</td>
<td>1.86</td>
<td>1.48, 2.36</td>
</tr>
<tr>
<td>MR-PRESSO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence intervals; MR: Mendelian Randomization; OR: odds ratio; MR-PRESSO: MR pleiotropy residual sum and outlier test
* The estimates correspond to a standard deviation increase in duration of sedentary activity
† P-value or pleiotropy based on MR-Egger intercept
‡ P-value for heterogeneity based on Q statistic
<table>
<thead>
<tr>
<th>Methods</th>
<th>Leisure television watching</th>
<th>Leisure computer use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimates (OR)*</td>
<td>95% CI</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>0.94</td>
<td>0.84, 1.06</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.19</td>
<td>0.71, 1.99</td>
</tr>
<tr>
<td>Weighted median</td>
<td>0.94</td>
<td>0.83, 1.08</td>
</tr>
<tr>
<td>MR-PRESSO</td>
<td>0.92</td>
<td>0.84, 1.02</td>
</tr>
<tr>
<td>Advanced prostate cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse-variance weighted</td>
<td>0.95</td>
<td>0.81, 1.13</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>1.46</td>
<td>0.68, 3.16</td>
</tr>
<tr>
<td>Weighted median</td>
<td>0.82</td>
<td>0.66, 1.02</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence intervals; MR: Mendelian Randomization; OR: odds ratio; MR-PRESSO: MR pleiotropy residual sum and outlier test
* The estimates correspond to a standard deviation increase in duration of sedentary activity
† P-value or pleiotropy based on MR-Egger intercept
‡ P-value for heterogeneity based on Q statistic