Repurposing chlorpromazine as add-on in the adjuvant phase of first-line glioblastoma therapeutic protocol in patients carrying hypo-/un-methylated MGMT gene promoter: RACTAC, a Phase II multicenter single-arm clinical trial

Andrea Pace, Giuseppe Lombardi, Veronica Villani, Dario Benincasa, Claudia Abbruzzese, Ilaria Cestonaro, Martina Corrà, Giulia Cerretti, Mario Caccese, Antonio Silvani, Paola Gaviani, Diana Giannarelli and Marco G. Paggi

1 IRCCS - Regina Elena National Cancer Institute, Rome, Italy
2 Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
3 IRCCS Besta Neurological Institute, Milan, Italy
4 Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
5 Corresponding author:

Abstract

Background. Glioblastoma (GBM) is a devastating brain tumor with poor prognosis, characterized by rapid growth and invasion into surrounding brain tissue. It is a hard-to-treat cancer and represents an unmet medical need. In recent years, there has been a growing interest in developing novel approaches to improve the outcomes of GBM patients; among these, drug repurposing. Our preclinical studies identified the antipsychotic chlorpromazine (CPZ) as an important modulator of signal transduction and energy metabolism in GBM cells, so we embarked on a Phase II clinical trial in which CPZ has been added to temozolomide (TMZ) in the adjuvant phase of the standard first-line therapeutic protocol RACTAC schedule. Primary endpoints: Progression-Free Survival (PFS) and Combination treatment toxicity. Secondary endpoints: Overall Survival (OS) and Quality of Life (QoL).

Methods. With these assumptions, we started a multicenter phase II clinical trial on newly diagnosed GBM patients carrying hypo-/un-methylated MGMT gene promoter by adding CPZ to temozolomide (TMZ) in the adjuvant phase of the standard first-line therapeutic protocol RACTAC schedule. Primary endpoints: Progression-Free Survival (PFS) and Combination treatment toxicity. Secondary endpoints: Overall Survival (OS) and Quality of Life (QoL).

Results. The RACTAC schedule showed an overall clinical benefit in GBM patients carrying hypo-/un-methylated MGMT gene promoter. When compared with historical cohorts, these patients displayed longer PFS, with toxicity described as a dose-dependent sedation and liver toxicity, both expected. One case of severe liver toxicity has been reported. OS and QoL are still under evaluation.

Conclusions. This clinical trial confirms the anticancer properties of CPZ, as described in several preclinical studies. In addition, the RACTAC study can be considered at least as a proof-of-concept in demonstrating the effectiveness of interfering with the well-described oncogenic monoamine signaling between neurons and GBM.

Keywords: Glioblastoma; Drug repurposing; Chlorpromazine; Phase II multicenter single-arm clinical trial.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction

Glioblastoma (GBM) is the most frequent and severe brain tumor, characterized by poor response to treatment and an almost certainty of relapse and thus by bad prognosis. First-line GBM treatment, regardless its molecular classification (1), consists in maximal surgical resection followed by radiotherapy with concomitant temozolomide (TMZ) treatment, followed by adjuvant TMZ administration. This scheme, although considered the best one available, is associated with a median overall survival of 14.6 months and a 5-year survival <5% (2), a clinical course that clearly denotes an unmet medical need.

GBM peculiar biological characteristics confer it high invasive and infiltrative properties (3), mainly connected with a distinctive cellular heterogeneity, a prerequisite for a swift adaptation under therapeutic pressure (4-7). A key role in GBM therapeutic resistance is played by its ability to recover from genetic damages induced by radiotherapy and TMZ, due to an efficient DNA repair system, especially in tumors characterized by hypo- or unmethylated O6-methylguanine methyltransferase (MGMT) gene promoter (8). Of note, GBM is among the few tumors in which a mono-pharmacological treatment is still in use, in contrast with most therapeutic approaches in oncology and with its intratumor heterogeneity.

An interesting characteristic of GBM cells is their responsiveness to neurotransmitters, as monoamines, physiologically involved in neuron-neuron crosstalk (9, 10). The recent discovery of a synaptic GBM-neuron connectivity confirms that neuron-secreted mediators are taken up by GBM cells and utilized as oncogenic stimuli (11). These findings paved the way for considering the addition of selected neuroleptic drugs as potentially effective in GBM treatment (12). With these assumptions, we chose to assay the effects of one of the
progenitors of neuroleptic medications, i.e., the antipsychotic and anti-dopaminergic drug chlorpromazine (CPZ), in use since almost 70 years for the therapy of several psychiatric disorders, a compound listed in the 2021 WHO Model List of Essential Medicines (current version) (13). Our in vitro assays on established and primary human GBM cells allowed us to confirm and define the role of this drug in hindering GBM cell growth by acting at different levels, e.g., induction of cytotoxic autophagy, nuclear catastrophe, oxidative stress, in a context where non-cancer neuroepithelial cells appeared safeguarded (14, 15). Our further data (unpublished) also defined the role of CPZ in hindering GBM bioenergetics and anabolic pathways. These results paved the way for repurposing CPZ as an add-on drug in GBM therapy. To this end, we planned the RACTAC (Repurposing the Antipsychotic drug Chlorpromazine as a Therapeutic Agent in the Combined treatment of newly diagnosed glioblastoma) Phase II multicenter single-arm protocol, in which CPZ has been added to the adjuvant TMZ therapy in the first-line therapeutic approach towards GBM patients whose tumor was characterized by hypo-/un-methylated MGMT gene promoter, i.e., those characterized by resistance to TMZ and overall worse prognosis. The aim of this report is to describe the intervention, design, endpoints, power calculations and clinical results of this study.
Materials and Methods

Study design

The experimental procedure involves the combination of CPZ with standard treatment with TMZ in the adjuvant phase of the Stupp protocol (2). CPZ has been administered orally at a dose of 25-50 mg/day, day 1-28 of every cycle of the adjuvant treatment with TMZ (Figure 1). A complete protocol description is available at

https://clinicaltrials.gov/ct2/show/NCT04224441

Participants, intervention and outcomes

Patients with confirmed histological diagnosis of GBM carrying a hypo-/un-methylated MGMT gene promoter have been recruited. The experimental treatment involves the association of CPZ with the standard TMZ chemotherapeutic regimen during the Stupp adjuvant phase. Power calculation indicates to recruit ≥41 patients.

PRIMARY ENDPOINTS: Progression-Free Survival (PFS); Combination treatment toxicity. PFS is defined as the time from the beginning of radiotherapy to the earliest documented date of disease progression, based on Response Assessment in Neuro-Oncology (RANO) criteria (16), as determined by the investigator, or death due to any cause. Evaluating a meta-analysis performed on 91 GBM trials, the choice of PFS as an endpoint can be considered appropriate as surrogate endpoint for earlier evaluation. The 6-mosPFS is highly correlated with 1 year OS and median OS (17).

SECONDARY ENDPOINTS: Overall Survival (OS); Quality of Life (QoL) will be assessed by means of the EORTC QLA C30+BM20 questionnaire at baseline and every 3 cycles.

Data collection, management and analysis

Inclusion criteria:
1. Patients with newly diagnosed GBM carrying a non-methylated MGMT gene, with confirmed diagnosis after surgical excision or biopsy, and after the combined radio-chemotherapy treatment.

2. Age between 18 and 70 years; Karnofsky Performance Status (KPS) above 70; normal liver and kidney function.

3. Patients who have signed informed consent before entering the study.

Monitoring

Patients were monitored in accordance with the usual rules for GBM patients (2).

Ethical considerations

This Phase II clinical trial has been approved by our Institutional Ethics Committee (Comitato Etico Centrale IRCCS - Sezione IFO-Fondazione Bietti, Rome, Italy) on September 6, 2019 (EudraCT # 2019-001988-75; ClinicalTrials.gov Identifier: NCT04224441).

Trial status

The recruitment lasted 30 mos and ended on June 30, 2022, after reaching the number of 52 evaluable patients. Follow-up ended on December 31, 2022.

Drug

CPZ was purchased, as “Largactil”, from Teofarma S.R.L., Valle Salimbene (PV), Italy, as 25 mg tablets.

Statistical analysis

The primary objective of the study was to evaluate the proportion of patients free from progression after 6 months (PFS-6). Considering as unacceptable a percentage of PFS-6 (P0) equal or less than 35% and a desirable PFS-6 of 55% (P1), a minimum of 41 patients will be needed to guarantee a power of 80% at a significance level of 5%, according to A'Hern (18).
If at least 20 patients are progression-free after 6 mos, the treatment will be considered sufficiently active. Associations between categorical variables have been evaluated with the Chi Square or Fisher's exact test. In the case of quantitative variables, comparisons will be evaluated by means of Student's t test or Mann-Whitney's non-parametric U test. Comparisons at various times will be evaluated using ANOVA for repeated measurements or Friedman tests. All survivals have been calculated by the Kaplan-Meier method. PFS is calculated from Day 1 of the radiotherapeutic treatment.
Results

Key findings

Patients carrying a GBM with unmethylated MGMT promoter gene, i.e., those with worse prognosis and characterized by an overall resistance toward radio- and chemotherapy, showed an overall good tolerance from the application of the RACTAC schedule.

Median age at enrollment was 59 ± 11.7 (SD) years; 57% of the participants were male, and median initial KPS was 90.

Treatment response

Out of the 52 evaluated patients, 21 received 6 cycles of chemotherapy plus CPZ (42%) (mean number of cycles administered = 4.5). Adherence to the study medication was high, with only 4 patients interrupting early CPZ assumption (3 cases) or reducing the dosage due to sedation (1 case).

At the time of analysis, the median follow-up was 15 mos. Forty-four patients underwent disease progression, with a median PFS of 7.3 mos (95% CI: 6.7-7.9) (Figure 2). Reference PSF (historical median) is reported as 4.9 mos (19).

PFS at different times is reported in Table 1.

Adverse events

The RACTAC clinical experimentation has been correlated with the onset of an expected dose-dependent sedation, especially at the beginning of the CPZ administration, and liver toxicity (1 serious case), however expected for both CPZ and TMZ.
Discussion

Considering the plasticity of GBM and its ability to remodelulate its cell population based on the selective pressure generated by therapies, we can state that this tumor cannot be defined as a "single-path disease", being therefore very unsatisfying to treat it by means of targeted therapies (20). On these premises, it appears reasonable to consider the opportunity to use "dirty drugs", i.e., drugs that are not too targeted, but are able to hit some generalized vulnerabilities of cancer cells.

CPZ is a well-known DRD2 antagonist and therefore has been successfully used in the treatment of psychiatric disorders (21). We intended to take advantage of its ability to interfere with synaptic neuromediators to turn off the pseudo-synaptic interplay between neurons and GBM, also considering a number of preclinical studies showing the ability of this drug to hinder GBM malignant features (22). In addition, during the course of the RACTAC clinical trial, we refined more accurately the effects of CPZ on GBM cells in preclinical settings, demonstrating the ability of this medication to interfere with GBM growth at multiple levels (14, 15). The RACTAC results reported here can be considered at least as a proof-of-concept in proving the effectiveness of interfering with the oncogenic monoamine signaling between neurons and GBM.

The spiraling costs of new cancer drugs and the long time it takes for them to reach the market require a profoundly different approach to keep life-saving therapies affordable for cancer patients. In such a context, repositioning for the treatment of GBM can be a relatively inexpensive, safe and rapidly implemented approach.
Funding: Work partially financed by Funds Ricerca Corrente 2018-2019, 2020-2021, 2022-2023 from Italian Ministry of Health (MGP) and by the European Union – Next Generation EU – PNRR M4C2 – Investment 1.3 via MUR (MGP).

Conflict of Interest: The authors declare no conflict of interest.
References:

Figure 1

Scheme of the daily addition of chlorpromazine (CPZ) during the adjuvant phase of the Stupp protocol (weeks 1 to 24).
Kaplan-Meier curve describing the PFS trend in GBM patients carrying hypo/un-methylated MGMT gene promoter treated according to the RACTAC protocol.
Table 1 Progression-free survival (PFS) in GBM patients carrying hypo/un-methylated *MGMT* gene promoter treated according to the RACTAC protocol.

<table>
<thead>
<tr>
<th>Time (mos)</th>
<th>PFS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>64.9</td>
</tr>
<tr>
<td>12</td>
<td>24.5</td>
</tr>
<tr>
<td>18</td>
<td>11.5</td>
</tr>
<tr>
<td>24</td>
<td>11.5</td>
</tr>
</tbody>
</table>