Predicting hearing help-seeking: Which features are important for a psychological profiling module of a hearing mHealth application?

Giulia Angonese1,2, Mareike Buhl1,3,5, Inka Kuhlmann1,2, Birger Kollmeier1,3,4 and Andrea Hildebrandt1,2,4

1Cluster of Excellence ‘Hearing4all’, Oldenburg, Germany;
2Department of Psychology, Psychological Methods and Statistics, Carl von Ossietzky Universität Oldenburg, Germany;
3Department of Medical Physics and Acoustics, Carl von Ossietzky Universität Oldenburg, Germany;
4Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany
5Institut Pasteur, Université Paris Cité, Inserm, Institut de l’Audition, F-75012 Paris, France

Corresponding authors:
Giulia Angonese and Andrea Hildebrandt, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
Email: giulia.angonese@uni-oldenburg.de; andrea.hildebrandt@uni-oldenburg.de

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Introduction: Mobile health care solutions such as a Virtual Hearing Clinic (VHC) can improve quality, accessibility and equity of health services, fostering early rehabilitation for hearing loss. A VHC might be the first contact with a hearing diagnostic service and should motivate users with hearing loss to seek professional help. A psychological profiling module would secure more efficient treatment recommendations to promote help-seeking, after the diagnostic use of the VHC.

Methods: N=185 (106 females) non-aided older individuals (M_{age}=63.8, SD_{age}=6.6) with subjective hearing loss participated in a large ecological momentary assessment study. We collected cross-sectional and longitudinal data on several psychological- and hearing-related features that were previously found to predict help-seeking. Readiness to seek help was assessed as outcome variable at study-end and after two months. Participants were classified into help-seekers and non-seekers with supervised machine learning algorithms (Random Forest, Naïve Bayes and Support Vector Machine). The most relevant features for prediction were identified with feature importance analysis.

Results: The algorithms correctly predicted action to seek help at study-end in 66 to 70% of cases, reaching 75% classification accuracy at follow-up. Among the most important features for classifications were the degree of hearing loss and its perceived consequences in daily life, attitude towards hearing aids, personality traits like neuroticism and conscientiousness.

Conclusion: This study contributes to the identification of individual characteristics that predict help-seeking in older individuals with self-perceived hearing loss. Suggestions for the implementation of a psychological profiling algorithm and for targeted recommendations in a VHC are derived.
43 **Keywords:** Hearing loss, mobile health, help-seeking, ecological momentary assessment, supervised classification, feature importance.
Hearing enables people to experience their surroundings and to communicate with others. Thus, hearing difficulties can have a strong impact on individuals’ quality of life. Hearing loss (HL) is one of the most common chronic diseases worldwide and it affects 20.3% of the world’s population. More than 60% of individuals with HL are older than 50 years of age, with the principal cause being age-related HL (1). Untreated hearing difficulties have been associated with lower self-rated health, depression, and anxiety, in addition to physical and cognitive decline, dementia, and hospitalization in the older population (2–4). The primary rehabilitative strategy for individuals with moderate to severe HL is the use of hearing aids (HA), which increases activity levels, general health, quality of life (5) and decreases social isolation and depressive symptoms (6) by supporting hearing ability and communication efficacy. Despite the positive effects of hearing rehabilitation, the prevalence of HA use is still limited to about 25% of the hearing impaired population (2, 4, 7, 8). Moreover, there is an average delay of nine years between the time a person first acknowledges hearing difficulties until the first contact with a hearing-health professional (9).

Developing easily accessible and affordable mobile health solutions in audiology could promote broader and faster access to diagnosis and health services, fostering an early rehabilitation and reducing the impact of HL on the individual. Before such mobile health applications are implemented, there is need for basic research on potential components of a Virtual Hearing Clinic (VHC) that could provide audiological self-test options and HA algorithms for self-fitting. Through a VHC, users could receive specific treatment recommendations depending on their hearing performance, including suggestions to visit a hearing acoustician or ENT (Ear, Nose and Throat) physician, if indicated. In addition, users could be given the possibility to experience listening conditions of a HA and its potential benefits. However, even though professional support might be recommended, a fair amount of
users might still be reluctant to seek help. This would call for a careful characterization of “non-help-seekers”, namely individuals who might need more convincing incentives via a VHC setting in order to take action. A VHC might often represent the first contact with a hearing diagnostic service and should therefore motivate individuals in need (especially non-help-seekers) to pursue elaborate professional help, in order to optimize the impact on the population. It follows that the assessment of an individual with hearing difficulties should go beyond simply quantifying HL and should consider individual characteristics that have been shown to influence the readiness of individuals to seek professional help (4). Moreover, such information collected by a VHC could later help clinicians in performing an adequate and personalized counseling.

Acknowledgement and acceptance of hearing difficulties and their impact on everyday life have been discussed as the most important predictive features of HA uptake (5, 6, 10, 11). HL is frequently perceived as part of the natural ageing process and other health issues are prioritized for treatment (4, 12). Even when HL is identified, individuals might reject the use of a HA due to expected costs, stigma and negative stereotypes (5, 7, 10). However, a positive attitude towards HA (13), high expectations to benefit from them (11) and perceived self-efficacy in their daily management (14, 15) were shown to promote help-seeking, as well as later HA uptake. Further relevant predictors are personal attitudes, beliefs, and personality traits. Individuals who are more prone to seek help and successfully uptake a HA show higher internal locus of control (2, 14) self-efficacy (14, 15), and agreeableness, as well as lower neuroticism and openness (2). Altogether such individual characteristics refer to a general self-confidence in the ability to cope with critical situations, good acceptance of others’ suggestions and recommendations, as well as less susceptibility to shame and embarrassment and less analytical thinking.
The present study aims at identifying the most important predictive features for help-seeking aiming to design a psychological profiling module in a VHC. Such module will categorize help-seekers versus non-seekers and ultimately inform the design of personalized treatment recommendations. For this purpose, data from a large number of questionnaires and tests related to different psychological- and hearing-related individual characteristics, together with multiple assessments of a hearing screening test were collected in a mobile study that simulated a VHC. To target potential users of a future VHC, the study was addressed to individuals with subjectively perceived hearing difficulties who had not yet been compensated with HA. We used machine learning algorithms to predict readiness to seek professional help, as assessed at the end of the study and after two months.

The following research questions guided our study design and analyses:

RQ1. Which machine learning model can best predict help-seeking and categorize individuals into help-seekers versus non-seekers?

RQ2. Which psychological- and hearing-related features are most relevant to profile individuals and tell help-seekers versus non-seekers apart?

RQ3. How can feature importance measures inform the design of targeted recommendations for users of a future VHC?

Methods

Study overview

We used the potential of Ecological Momentary Assessment (EMA, (16)), a measurement approach to collect data in the everyday environment of the individual ("Ecological") and to assess recent or immediate experiences and states ("Momentary"). The study was conducted entirely online on personal mobile phones of the participants to approximate the experience of dealing with a VHC mobile app. Communications with the
participants took place via email and SMS. The total assessment time of eight hours was distributed across the working days of three consecutive weeks, with an overall daily testing time of approximately 30 minutes. The first week (baseline assessment) included one measurement per day, which could be performed at any preferred time. The second and third week (EMA) included two measurement time-points per day (morning and evening) of approximately 15 minutes each. Participants were remunerated with 10 Euros per hour. After two months from the end of the study, participants were invited to complete a voluntary follow-up online questionnaire. The study plan and data management have been approved by the Research Ethics Committee of the Carl von Ossietzky Universität of Oldenburg. We, as single researchers and as a team, are committed to and supporting Open Science practices. We have therefore published a preprint of the manuscript on medrxiv.org in February 2023 and share data analysis scripts via Zenodo (https://doi.org/10.5281/zenodo.7635920). The data will be shared with interested researchers upon request, since the dataset will be used for further projects and cannot be shared at the current time point.

Participants

Older adults above 50 years of age were recruited between September 2021 and August 2022 through the online platform Ebay’s minijob announcements, the university intranet and via mailing list services of several German universities’ Guest-Audience and Senior-University programs. Inclusions criteria were: subjective reports of hearing difficulties in daily life, ownership of and the ability to use a smartphone, and good command of the German language. The exclusion criterion was the use of hearing aids. Prior to enrolment, participants provided written informed consent. The final dataset included $N = 185$ participants, 106 female and 79 male (0 diverse), aged between 47 and 82 years, with $M_{age} = 63.1$ and $SD_{age} = 6.5$ (see Figure 1). One participant was below 50 years of age (47) but was nevertheless included in the final
sample, given that this value only slightly deviated from the planned age threshold. A descriptive summary of participants’ socio-demographic characteristics is provided in Table 1.

Table 1. Main socio-demographic characteristics of the participants.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n (% of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group (years)</td>
<td></td>
</tr>
<tr>
<td>47-60</td>
<td>70 (37.8)</td>
</tr>
<tr>
<td>61-70</td>
<td>83 (44.9)</td>
</tr>
<tr>
<td>70-82</td>
<td>32 (17.3)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>106 (57.3)</td>
</tr>
<tr>
<td>Duration of hearing difficulties (years)</td>
<td></td>
</tr>
<tr>
<td>0 - 1</td>
<td>54 (29.2)</td>
</tr>
<tr>
<td>2 - 5</td>
<td>89 (48.1)</td>
</tr>
<tr>
<td>6 - 10</td>
<td>23 (12.4)</td>
</tr>
<tr>
<td>10 – 21</td>
<td>19 (10.3)</td>
</tr>
<tr>
<td>Presence of Tinnitus</td>
<td>65 (35.1)</td>
</tr>
<tr>
<td>Previous doctor consultation for hearing difficulties</td>
<td>89 (48.1)</td>
</tr>
<tr>
<td>Presence of visual problems</td>
<td>134 (72.4)</td>
</tr>
<tr>
<td>Occupation status</td>
<td></td>
</tr>
<tr>
<td>employed</td>
<td>67 (36.2)</td>
</tr>
<tr>
<td>Monthly income (Euros)</td>
<td></td>
</tr>
<tr>
<td>< 1.500</td>
<td>62 (33.5)</td>
</tr>
<tr>
<td>1.500 - 2.500</td>
<td>65 (35.1)</td>
</tr>
<tr>
<td>2.500 – 4.000</td>
<td>42 (22.7)</td>
</tr>
<tr>
<td>>4.000</td>
<td>16 (8.7)</td>
</tr>
<tr>
<td>Residential environment</td>
<td></td>
</tr>
<tr>
<td>countryside</td>
<td>2 (1.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Noise Level</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>little town</td>
<td>29 (15.7)</td>
<td></td>
</tr>
<tr>
<td>suburbs</td>
<td>48 (25.9)</td>
<td></td>
</tr>
<tr>
<td>city</td>
<td>106 (57.3)</td>
<td></td>
</tr>
</tbody>
</table>

Self-estimated noise level at home:
- low: 67 (36.2)
- moderate: 113 (61.1)
- high: 5 (2.7)

Note: These data were acquired during the baseline assessment through a self-report questionnaire.

Procedure

EMA tools. The data collection was carried out with the online, open-source software formr (17). Here, different questionnaires and tests (see section Assessment) were combined as surveys in a run that reproduced the desired design and could be assessed by users through a specific link. A Customer Communication Platform (www.twilio.com) helped to send the study link to the participants through daily text message reminders. The use of REST API (Representational State Transfer Application Programming Interface) allows for data exchange between platforms in a consistent format and in the respect of privacy and security. With the individualized link received via SMS, participants could perform the study on their own smartphone’s browser. Seven participants performed the study on their computers since they experienced technical difficulties with their smartphones.

During baseline assessment, cross-sectional data from a comprehensive set of 25 questionnaires and tests was collected. The questionnaires and tests were distributed on five consecutive days in order to maximise study compliance and avoid priming effects on different questionnaires. For a detailed list of all assessment tools and their references we refer to the Supplementary Material 1 (Features and assessment tools). The following is a brief overview of the assessed features.

Assessment of hearing-related features. Firstly, the assessment included self-reported hearing difficulties and perceived consequences of HL, such as effects on social life participation. Additionally, attitudes towards HA were evaluated with questionnaires on HA
expectations and stigma. Trait sensitivity to perceived noise was measured as a personality facet which was shown to be related to affect and neurosensory processing (18). We further assessed individuals’ sound preferences profiles (19), aiming to gather more information about sound sensitivity and hearing habits. Finally, hearing health literacy was evaluated, since the ability to search, find and understand information related to hearing health was shown to influence self-management of HL (14).

Assessment of psychological features. As outlined in the introduction, personality traits (the Big Five (20)), locus of control and self-efficacy were shown to be associated with help-seeking and HA use, hence these features were included in the baseline assessment. Anxiety and depression were also measured, given their frequently demonstrated associations with HL (4, 6), together with loneliness, which is seen as consequence of untreated HL (3). We further assessed optimism and sensory processing sensitivity, which refers to an individual’s disposition to perceive and process stimuli (including auditory ones) more intensely than the average population (21). Perceived stress was also measured, since high levels of stress that are related to daily life, work or social situations may boost help-seeking behaviours (3). General health was also assessed given its predictive role for different steps of the HA uptake path (4, 6). The belief that HA are associated with old age and infirmity is often a barrier to HA uptake and use (4), therefore attitude towards ageing was assessed as well. For completeness, we also measured cognitive abilities (crystallized and fluid intelligence), despite discordant findings on associations between cognition and HA uptake (4, 6, 13). Lastly, participants were requested to complete a comprehensive questionnaire on socio-demographics (see Table 1).

Daily assessment of affect and hearing. Participants performed the daily measures in the morning, possibly right after waking up, and in the evening before going to bed. At each time, affect and hearing performance were assessed. This micro-longitudinal assessment
accounts for potential daily fluctuations of hearing performance and affect, which might
depend on particular daily events and states. The affect questionnaire included 14 items in line
with the Circumplex Model of Affect (Russel, 1980 (22)). Eight items were related to negative
affect and six to positive affect (23). The items were displayed in a randomized order at each
presentation and respondents had to indicate on a seven-point scale how much the specified
mood applied to them (1 = does not apply; 7 = applies fully). The items are listed in the
Supplementary Material 2 (Daily assessments). The affect questionnaire was presented before
and after the hearing test in order to assess mood at baseline and after receiving feedback on
the hearing test, respectively.

Hearing performance was assessed with the Digit Triplets Test (DTT) (23, 24) of the
Hörzentrum Oldenburg gGmbH (www.hz-ol.de). This screening instrument was designed to
measure speech intelligibility in noise by means of the Speech Recognition Threshold (SRT),
which indicates the Signal-to-Noise Ratio (SNR, difference between speech and noise level) at
which the participant reaches 50% speech intelligibility. Participants were invited to familiarize
with the test before starting the longitudinal assessment. They were instructed to perform the
test with the use of their personal headphones, but three participants reported technical
difficulties with their headphones and used loudspeakers instead. After completing the hearing
test, participants received a feedback on their performance in the form of a traffic-light colour,
where green indicated good (SRT < -7.1 dB SNR), yellow indicated intermediate (-7.1 >= SRT
< -5.1 dB SNR), and red reflected poor performance (SRT >= -5.1 dB SNR) (25,26). The
supplementary material provides detailed information on the hearing test and its feedback
(Supplementary Material 2 – Daily assessments; Supplementary Material 3 – Hearing test
feedback).

Outcome measures
At the end of the study, participants were asked to report on planned actions to seek professional help for their perceived hearing difficulties, their motivation to seek help and the source of this motivation. This information was also assessed at the beginning of the study. These variables, as retrieved at the end of the study, were chosen as outcome measures for the supervised machine learning (see below). The distribution of participants (N₁ = 185) along the outcome classes considered is summarized in Table 2.

Action to seek help. Intention to seek professional help of was assessed with the question: "Given the feedbacks of this study regarding your hearing performance, have you made an appointment with one of the following doctors or a hearing care professional, or are you planning to do so?" (followed by a list of hearing professionals). This variable was used to create two outcome classes:

- participants ready to take action, who were planning to seek professional help in the near future or had already taken an appointment (action class, n₁₁ = 64);
- participants not ready to take action, who did not plan to consult a hearing health professional in the future (no action class, n₁₂ = 121).

Action and motivation to seek help. A second outcome measure was taken into account to further differentiate the no action class, in order to provide further insight for the design of targeted recommendations in a VHC. Information on readiness to take action was combined with the reported motivation to seek help at the end of the study. Motivation was assessed through the question: "How motivated are you at the moment to seek help regarding your hearing problems?" (1 = not motivated at all, 7 = very strongly motivated). The answer spectrum was binarized by means of median split to create the following outcome classes:

- participants not ready to take action with high motivation (no action & high motivation class, n₁₃ = 47), who might particularly benefit from personalised and tailored recommendations;
participants not ready to take action who reported low motivation to seek help

\(\text{no action & low motivation class, } n_{14} = 74 \);

participants ready to take action, regardless of their motivation level (\textit{action} class, \(n_{15} = 64 \)). This class was not further divided with respect to motivation, since this would not result in different recommendations in a VHC. Moreover, data exploration revealed that only seven individuals out of 64 in this category reported low motivation.

Action to seek help at a follow-up. Two months after the end of the study, participants who agreed to be contacted for a follow-up received a further questionnaire (in form). The short survey consisted of two multiple-choice questions and it was completed by 71% \((N_2 = 131) \) of the participants. Individuals were asked to report again on their action to seek professional help. In addition, they were asked to indicate whether the study participation improved their awareness towards hearing difficulties. Only the first question was considered as further outcome measure. The answers (given as four multiple-choice answers) were binarized to achieve a class allocation comparable to the first outcome measure:

- participants who reported to have completed an appointment with a hearing professional; participants who had an appointment fixed, yet not completed; participants who were planning to seek professional help in the near future \((\text{action at follow-up class, } n_{21} = 52) \);

- participants who did not plan to consult a hearing health professional \((\text{no action at follow-up class, } n_{22} = 79) \).

Table 2. Absolute class-wise frequencies of observations across the three outcomes considered.

<table>
<thead>
<tr>
<th></th>
<th>action at follow-up</th>
<th>no action at follow-up</th>
<th>no follow-up data</th>
</tr>
</thead>
<tbody>
<tr>
<td>action</td>
<td>33</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>no action high motivation</td>
<td>12</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
</tbody>
</table>
low motivation

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>45</td>
<td>22</td>
<td>74</td>
</tr>
<tr>
<td>52</td>
<td>79</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

Note: The three outcomes considered are: action to seek help \((N=185)\); action and motivation to seek help \((N=185)\); action to seek help at follow-up \((N=131)\). Additionally, the table provides an overview of those participants who did not complete the follow-up questionnaire.

Data pre-processing

Data analysis was performed with the R Software for Statistical Computing (27). Raw data from all questionnaires was imported from the online platform formr to R environment using the dedicated package formr (28). For each questionnaire or test presented at baseline, global scores were computed and considered as features. If both global scores and scale scores were available for a given assessment tool, only the scale scores were maintained if considered differentially relevant for the outcome. Hearing test results were received via E-Mail from the Hörzentrum Oldenburg and imported in R as .eml files. The performance feedback category (green, yellow, red) was additionally extracted and stored for each raw SRT result. Due to the particular implementation of the study in formr, participants could perform the hearing-test more than once at each measurement time-point. Whenever this happened, only the last SRT result at a given time-point was kept for analysis. This led to a removal of 3.9% of the raw SRT results. The longitudinal data on daily mood and hearing performance was summarized into the following features: individual mean SRT and its variability across all measurements, percentage of feedback type received -with green feedback (good performance) taken as reference category-, individual mean and variability of positive and negative affect at pre-test and at post-test (after receiving the hearing test feedback). The summarized longitudinal data was merged with the cross-sectional data, resulting in a wide-format data frame including 88 features.

Missing data occurred for the longitudinal measures of hearing performance and affect. A complete set of 20 SRT results were collected for 43.8% of participants, while at least 15
SRT results were obtained in 95.1% of cases. Only three participants provided less than 10 SRT results, with one participant completing only four measurements. Missing hearing data at a specific time-point was considered Not Available (NA). Where an SRT result was missing, the respective feedback and measures of affect at post-test were missing as well (NA). By visual inspection of the individual SRT distributions, some specific outlier patterns were identified. 14 participants showed a much larger SRT result at the first measurement, which qualified as outlier following the interquartile range rule. These large SRT values (indicating poor performance) were considered to be caused by misunderstanding of the hearing test instructions and were therefore set to NA. The respective feedback category and measures of affect where however not set to NA. This is because despite the unreliable SRT value, participant’s mood could still have been affected by the feedback received. With respect to daily affect measures, two participants presented no data at measures of post-test affect, such that summary measures could not be computed. In these cases, mean imputation technique was applied: the sample mean and sample variance for negative and positive affect at post-test were imputed to replace missing values.

Machine learning

The data was fed into three machine learning algorithms for supervised classification along the outcome labels action versus no-action. We chose Naïve Bayes (NB), Random Forests (RF) and Support Vector Machines (SVM) among other classifiers to cover a wide range of model complexity (from simple models like NB, to more complex and non-linear ones like SVM). We used Cross-Validation (CV) to train and subsequently test the model. The algorithms have been implemented on R using the mlr package (29), following the approaches described in (30) and (31). Given the presence of three different outcome measures, the same analysis steps were carried out in parallel for each outcome, with a slight difference in the input features included in the analysis. For the first outcome (action to seek help), data on motivation
at pre-study was kept in the features space, while motivation to seek help at the end of the study was removed. Differently, for the second outcome (action and motivation to seek help), all data on motivation at pre- and post-study was removed from the feature space. Implementation details of the three algorithms are summarized next.

Naïve Bayes classifier (NB). This algorithm uses Bayes' rule to predict the probability of an observation to belong to one of the outcome classes given its discriminant function values. This probabilistic model takes continuous and categorical features into account and assumes that they are independent (30). In the present implementation, after training the algorithm, repeated 10-fold CV was used to evaluate the model’s performance. A step-wise approach was used to select the appropriate number of CV repetitions necessary to achieve accurate and stable performance estimates (50, 100, 150 and 300 CV repetitions).

Random Forest (RF). Tree-based methods use recursive binary splitting to stratify the features' space in smaller, non-overlapping regions used for classification. Trees are easy to interpret but they lack of predictive power, since they tend to overfit the training data. RF can be used to improve prediction accuracy (29, 31). This algorithm requires to tune a set of hyperparameters which control the learning process and are selected (or tuned) by the algorithm to obtain best performance. The following hyperparameters were considered:

- **Ntree**: number of trees to include. This value is usually fixed at a computationally reasonable value rather than tuned (30). Ntree was set to 800.
- **Mtry**: the number of features to randomly sample at each iteration. A popular value is given by \(\sqrt{p} \) (where \(p \) = the number of predictors) (33). Different search spaces were explored, with Mtry ranging between [1, 15].
- **Nodesize**: minimum number of cases to be included in a leaf. Different search spaces were explored, with Nodesize ranging between [1, 20].
Tuning the algorithm and finding the best hyperparameter combination requires to define an optimization algorithm, or search strategy, and evaluation method. We used grid-search with 10-fold CV resampling. To evaluate model performance, nested CV was applied. In this approach, an inner loop tunes the hyperparameters and an outer loop evaluates a wrapped learner, which comprises the classification task, the learner type (RF) and the hyperparameter tuning process. Here a 5-fold CV was applied as outer resample strategy.

Support Vector Machine (SVM). The SVM algorithm iteratively identifies a hyperplane that separates labelled classes also in case of non-linear data distributions. For multiclass problems, several models are built and then summarized for prediction. SVMs are computationally expensive, but tend to perform very well on a variety of tasks conducted on non-linearly separable classes. Additionally, the algorithm has the advantage to make no assumptions on the features’ distributional properties (29, 31). Similarly to RF, SVM requires hyperparameter tuning. The following hyperparameters were considered:

- **Kernel:** the type of the kernel function that the algorithm uses to add further dimensions to the features space and identify the separating hyperplane. Polynomial, radial and sigmoid functions were included in the search space (30).
- **Degree:** the shape of the decision boundary in case of a polynomial kernel. The search space was limited to [1, 5] to avoid the risk of overfitting (30).
- **Cost:** a penalty for having cases fall inside the class-separating margin. It is recommended to tune both cost and gamma (see next point) on the logarithmic scale (34), and a popular search space for cost is $[2^{-5}, 2^{15}]$ (35).
- **Gamma:** the influence of each case on the hyperplane. This hyperparameter search space was set to the popular range $[2^{-15}, 2^3]$ (35).
Nested CV was used as previously described for RF. An inner resampling loop (with 10-fold CV) was applied for hyperparameter tuning and an outer loop (with 5-fold CV) for performance evaluation.

Classification performance measures. The algorithms were evaluated in terms of prediction accuracy on the test set which indicated the overall proportion of cases correctly classified by the model as compared to the observed outcome. However, class imbalance in the sample can negatively impact prediction accuracy, reducing its informativeness as performance measure (35, 36). Matthews Correlation Coefficient (MCC) (yardstick package (38)) was additionally taken into account to evaluate model performance. This coefficient improves over accuracy measures in case of imbalanced datasets (36, 38) and can take values from -1 to 1, with 1 indicating perfect prediction, 0 chance prediction and -1 inverse prediction. In addition we computed the confusion matrix (calculateConfusionMatrix(), mlr package). Its output provides the absolute number and the proportion of correct model predictions and misclassifications for each outcome class. For binary outcomes, the confusion matrix allows to estimate model sensitivity (i.e. accurately identifying seekers) and specificity (i.e. accurately identifying non-seekers). In the present study, obtaining high specificity is of particular interest in the context of a VHC. Indeed, individuals with HL who are not prone to seek help are the main target population for tailored treatment recommendations and counselling.

Feature importance

After identifying the best performing machine learning algorithm, feature importance was considered. Each feature receives a coefficient of importance that indicates its contribution to model performance, regardless of the type of relationship (direction and linearity) between the feature and the outcome. In RF, feature importance is model-dependent and it indicates how much the feature contributes in reducing node impurity. Importance values were retrieved by the function getFeatureImportance() (mlr package) applied on the RF model.
trained with the tuned hyperparameters. These importance results have the advantage of being inherent to the model and closely tied to its performance (40). Conversely, there are no model-specific importance metrics available for NB and SVM. For these algorithms, the importance value assigned to each feature corresponds to the area under the ROC (Receiver Operating Characteristic) curve, which is computed from sensitivity and specificity measures (40). The function `varImp()` from the `caret` package (41) was applied on the model trained with the function `train()` (`caret` package), after ensuring comparable performance with the same model previously trained in the `mlr` package.

Information on feature importance was used to identify which features are mostly relevant for telling apart individuals depending on help-seeking intentions. No statistical criterion exists to determine which importance value threshold should be used to retrieve relevant features. Hence, three threshold values were inspected (the first 10, 15 and 20 features in their importance ranking order) and evaluated in terms of predictive accuracy and interpretability. Classification accuracy of these three feature sets were assessed on the outcome data obtained at follow-up. For this analysis, the dataset was reduced to \(N_2 = 131 \) participants who completed the follow-up questionnaire. The important features were fed into the best performing machine learning algorithm from the previous step.

Results

Classification performance

Predicting the action to seek help. A summary of the model-specific classification accuracy for the first outcome (action to seek help) is provided in Table 3. The three algorithms show similar overall performance accuracy estimates on the test set, correctly classifying about 67% to 70% of the cases in the full dataset \((N_1 = 185) \). RF was the best performing algorithm with an accuracy of 70.3% and an MCC = .282, indicating that the model’s prediction improves
to about 30% over chance. By inspecting the confusion matrix, we observed that RF shows high specificity, correctly classifying 91% of the cases belonging to the no-action class. The NB classifier (10-fold CV repeated 50 times) showed the best sensitivity compared with the competing algorithms, with 51% cases in the action class being correctly classified. RF and NB were selected for feature importance analyses, given the good predictive performance and high specificity of the RF, as well as highest sensitivity of the NB.

Predicting the action and motivation to seek help. The second part of Table 3 summarizes the classification performance with respect to the second outcome (action and motivation to seek help), which contains three classes (see above). RF provided the highest accuracy with 54.6% and MCC=.295, as compared to NB (10-fold CV repeated 100 times) and SVM. However, the confusion matrix revealed that none of the three models was able to adequately tell apart individuals within the no action class who differ with respect to high versus low motivation. All algorithms can only correctly classify 9 to 25% of cases in the no action & high motivation class. Potentially, an improvement in classification accuracy could be achieved with a larger dataset in which the classes are better balanced, and with a more reliable and elaborated measure of the participant’s motivation to seek help. In view of these limitations, the second outcome will not be considered for feature importance analysis.

<table>
<thead>
<tr>
<th>Model</th>
<th>Hyperparameters</th>
<th>Overall performance measures</th>
<th>Class-specific classification accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>space tuned</td>
<td>Test accuracy</td>
<td>MCC</td>
</tr>
<tr>
<td>NB</td>
<td></td>
<td>.66</td>
<td>.26</td>
</tr>
<tr>
<td>RF</td>
<td>ntree [5,15]</td>
<td>.70</td>
<td>.23</td>
</tr>
<tr>
<td></td>
<td>mtry [1,5]</td>
<td>.70</td>
<td>.23</td>
</tr>
<tr>
<td></td>
<td>nodesize 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM</td>
<td>kernel radial</td>
<td>.67</td>
<td>.23</td>
</tr>
<tr>
<td></td>
<td>degree 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cost [1,5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gamma [2^-3, 2^5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Action and motivation to seek help

<table>
<thead>
<tr>
<th>Model</th>
<th>Hyperparameters</th>
<th>Overall performance measures</th>
<th>Class-specific classification accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test accuracy</td>
</tr>
<tr>
<td></td>
<td>space</td>
<td>tuned</td>
<td>(n=64)</td>
</tr>
<tr>
<td>NB</td>
<td></td>
<td></td>
<td>.495</td>
</tr>
<tr>
<td>RF</td>
<td>ntree</td>
<td>mtry</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>mtry</td>
<td></td>
<td>[8,10]</td>
</tr>
<tr>
<td>SVM</td>
<td>kernel</td>
<td>degree</td>
<td>sigmoid</td>
</tr>
<tr>
<td></td>
<td>cost</td>
<td>gamma</td>
<td>[2⁻⁴, 2⁻⁴]</td>
</tr>
</tbody>
</table>

Note: results are based on the full data set (N=185). For RF and SVM the table additionally shows the hyperparameter search space used in the resampling procedure and the tuned values used for model training. The NB models selected were 10-fold CV repeated 50 and 100 times for the first and second outcome, respectively. (NB: Naïve Bayes classifier; RF: Random Forest; SVM: Support Vector Machine; MCC: Matthews Correlation Coefficient)

Feature importance

Feature importance was analysed based on the RF and NB algorithms predicting the first outcome, action to seek help at study-end on the full data set (N = 185). For both models, features were first ranked in decreasing order according to their importance values. Three sets of features among the most important ones were taken into account for subsequent analysis:

- the top-10 features indicated by the two models, resulted in a total of 14 best features;
- the top-15 features indicated by the two models, resulted in a total of 19 best features;
- the top-20 features indicated by the two models, resulted in a total of 28 best features.

Figure 2 shows all 28 features with their importance ranking values originating from the RF and NB models. Next, the three sets of features were evaluated for their predictive performance and classification accuracy on the reduced dataset of N = 131 participants who completed the follow-up questionnaire. NB and RF were trained on the three different feature sets for...
predicting the action to seek help at follow-up. Results are summarized in Table 4. They show that all feature sets provide good predictive performance and that the NB algorithm outperforms RF, with an overall accuracy ranging between 73.2% to 75.0% and an MCC between .426 and .469. Class-specific classification accuracy is comparable between NB and RF, with the action class correctly classified in 52 to 63% of the cases and the no-action class in 82 to 86% of cases. Figure 3 additionally provides an overview of model-specific relative confusion matrices for action to seek help at study end and at follow-up.

Figure 2. Ranking of the most important features to predict action to seek help at study-end. Importance ranking are shown for the 20 most important features for the two models (NB and RF) trained on the full dataset (N=185), as previously summarized in Table 3. A total of 28 features are arranged on the y-axis with respect to their average ranking between the two models. (HL: hearing loss; HA: hearing aids; M: mean; SD: standard deviation; NB: Naïve Bayes; RF: Random Forest)

Table 4. Model-specific overall performance (aggregated accuracy on the test set and MCC) and class specific classification accuracy (proportion of correct classifications) for the outcome measured at follow-up.

<table>
<thead>
<tr>
<th>Model</th>
<th>Hyperparameters</th>
<th>Overall performance measures</th>
<th>Class-specific classification accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>space</td>
<td>Test accuracy</td>
</tr>
<tr>
<td>NB</td>
<td></td>
<td></td>
<td>.74</td>
</tr>
<tr>
<td>RF</td>
<td>ntree 800 [1,4] mtry</td>
<td></td>
<td>.73</td>
</tr>
<tr>
<td>RF</td>
<td>ntree [1,4] mtry nodesize [1,5]</td>
<td></td>
<td>.73</td>
</tr>
</tbody>
</table>
The following is a brief description of 14 features ranked among the most important (previously identified as the top-10 features for the two models) in the prediction of action to seek help at follow-up:
- Motivation to seek help and source of this motivation at the beginning of the study;
- Individual’s attitude and expectations towards HA, including: general attitude towards HA; expectations towards HA, as measured by the global score of the Expected Consequences of Hearing-Aid Ownership (ECHO) questionnaire (42), which assesses positive and negative expectations towards HA, expected services and costs, and assumptions about change in the personal image in case of HA use; and stigma towards HA, as measured by the Denial of Hearing Loss scale of the Attitudes towards Loss of Hearing Questionnaire (ALHQ–3.0) (43), which assesses acceptance of hearing aids and acknowledgement of HL;
- Hearing performance (mean SRT and its variability in the DTT) and percentage of negative feedback received (indicating poor performance);
- Perceived consequences of HL, including: emotional consequences of HL, as measured by the corresponding subscale of the Hearing Handicap Inventory (HHIE/A) questionnaire (40); and self-reported HL, as measured by the Qualities of Hearing subscale of the Speech, Spatial and Qualities of Hearing (SSQ) questionnaire (42), which addresses recognition, perceived clarity and naturalness of everyday sounds, as well as listening effort experienced in different hearing contexts;
- High sensory-sensitivity personality, as assessed through the Ease of Excitation subscale of the High Sensitive Person Scale (HSPS) questionnaire (44), which assesses emotional reactivity to physiological stimuli;
- Reported physical health, measured by the corresponding items of the Short-Form Health Survey-12 (SF-12) questionnaire (45).
Among the top-20 features, further features that were assigned lower importance values but provide further insights toward targeted counselling in a VHC are:

- **Neuroticism**, which refers to a predisposition of experiencing negative emotions, and **conscientiousness**, which relates to being proactive, organized and methodical (2). These personality traits were assessed through the corresponding items of the NEO Five-Factor Inventory (NEO-FFI) questionnaire (46);

- **Monthly income**, which was categorized with three cut-off values (less than 1,500 Euros, between 1,500 and 2,500 Euros, between 2,500 and 4,000 Euros and above 4,000 Euros);

- **Social consequences of HL**, as measured by the corresponding subscale of the Hearing Handicap Inventory (HHIE/A) questionnaire (40); and the number of people included in the individual's **social networks**, measured by the respective index of the Social Network Index (47).

Discussion

The present study contributes to the identification of individuals’ hearing-related and psychological features that predict the readiness to seek professional help for hearing loss (HL). Cross-sectional and longitudinal data have been collected in a large ecological momentary assessment study. Potential users of a future Virtual Hearing Clinic (VHC), namely individuals with subjective hearing difficulties, were classified into help-seekers and non-seekers by means of supervised machine learning algorithms. Feature importance analyses helped to derive relevant individual characteristics to be used in a prospective psychological profiling algorithm of help seeking and support the design of a targeted recommendations module in a VHC.

Which machine learning model can best predict help-seeking?
Three machine learning classifiers correctly predicted *action to seek help* at study-end in 66 to 70% of cases, clearly improving over chance prediction. This is a promising result considering the complexity of the prediction outcome. As discussed earlier, several individual factors can influence the decision to pursue hearing health care services and there can be discrepancy between the intention and the upcoming concrete action. When predicting *action to seek help at follow-up* with the selected important features, the performance of random forest and naïve bayes models improved up to 75%, despite the smaller dataset (*N* = 131). Measuring help-seeking two months after the study-end provided a more valid measure of the participants’ behaviour. For example, among the participants who were categorized as non-seekers at study-end, seven reported at follow-up to have completed an appointment with a hearing professional and 12 were willing to do so in the near future. A more precise and objective outcome measure, along with a larger dataset will contribute to further increase classification accuracy. In this direction, future studies could benefit from the adoption of a theoretical model of health-related behaviour change (48, 49). A theoretical conceptualization of the different stages and factors that lead to behaviour change will help in defining precise outcome measures. Another factor that might have limited overall classification performance is the type of predictive features included, which were mostly self-reports rather than objectively measured traits. Momentary assessments of such traits will need to be considered in the future in order to minimize self-report biases. Note that multicollinearity as a potential statistical limitation was ruled out (the correlation plots are available in the Supplementary Material 4). Random forest revealed high accuracy in identifying *no action* both at study-end and at follow-up. Accurate identification of non-seekers is the most relevant performance outcome in a VHC to design targeted recommendations. Indeed, the envisioned profiling algorithm should be a system with high specificity that motivates and promotes help-seeking, especially in those cases where users would not spontaneously take action.
Which psychological- and hearing-related features are mostly relevant to profile a non-help-seeker?

Hearing performance appears to be one of the most important features to predict help-seeking. The association between degree of hearing loss and help-seeking, as well as with hearing aids (HA) uptake, is well established in literature (4, 9–11). The present results additionally highlight—for the first time in the literature—the predictive role of intra-individual fluctuations of hearing performance, emphasizing the need to move beyond the traditional view of considering hearing a stable neurosensory process (50). The implementation of repeated daily measurements of hearing performance through ecological momentary tests provides further insight on the impact of HL on the individual’s everyday life. In line with this, feature importance findings emphasize the relevance of self-reports on the consequences of HL. The assessment should consider self-reported listening effort in different contexts, as well as perceived handicap and potential socio-emotional consequences of HL. Indeed, individuals who report greater negative impact of HL in their life are more prone to seek help and later uptake HA (9, 13). The individuals’ self-awareness of HL can be validated or improved by providing repeated feedback on hearing performance in a VHC. As occurred at the follow-up survey, 85% of participants (out of $N_2 = 131$) reported increased awareness for their hearing abilities after receiving repeated feedback during the study.

Audiological factors alone are insufficient to predict help-seeking behaviour and the present results highlight the relevance of psychological characteristics. Individuals characterized by high sensitivity to sensory stimuli (21) and emotionally instable personality traits seem to perceive increased psychological discomfort following HL, even in presence of effective HA treatment (2). Furthermore, it appears that individuals who are proactive and methodical (i.e. with high conscientious trait values) are inclined to plan preventive medical consultations and to show more compliance to treatment recommendations. A further important
predictive feature for help-seeking is physical health. Literature suggests that individuals who report poor health are more prone to uptake a HA (6) in order to improve their well-being. However, other findings revealed individuals with better self-reported health as more likely to undertake the first steps towards help-seeking (4, 13). Finally, according to present results and previous findings (11, 13), investigating stigma, attitude and expectations towards HA informs on individuals’ readiness to seek help and to later uptake a HA. Stigma and negative stereotypes related to HA may deter individuals from seeking help and can represent a barrier to HA use (7, 10). An additional negative expectation, and potential obstacle to seeking help, is the anticipated economic burden. Income was one of the most important features predicting help-seeking in the present study. Indeed, individuals with higher socioeconomic status (9) and higher income or pension earnings (3, 13) are more likely to initiate the process towards HA uptake.

How can feature importance measures inform the design of targeted recommendations for users of a future VHC?

Individuals’ attitudes towards HA and self-recognition of HL not only are important predictive features, but could additionally be considered as intervention target to motivate and promote access to hearing care services, where needed. On the one hand, users profiled as decided help-seekers after repeated use of a VHC could receive simple and straightforward indications regarding hearing care needed. Those among them who should uptake a hearing device (given their audiological outcome), could benefit from additional information on available hearing-care services and professionals, in order to facilitate faster HA adoption rates. On the other hand, users in need of HA who are profiled as non-seekers should obtain more elaborated, targeted recommendations, which could act as an intervention on modifiable predictive features like self-recognition of HL and attitude towards HA. Non-seekers could receive a more detailed feedback on their hearing performance to improve awareness on their
hearing deficit. To promote positive attitude towards HA, information on the large range of devices available, as well as example successful peer cases, could be provided. Knowledge on accessible financial support for HA by insurance companies could additionally promote HA uptake, given the predictive role of income and socio-economic status. Furthermore, an implemented HA simulator in the VHC could offer possibilities to experience improved listening conditions and improve positive expectations towards a HA. Elaborated information on HA technologies, like the benefits of noise control and noise reduction algorithms, could promote help-seeking by fostering knowledge in individuals who are more sensitive to environmental noise (high sensory sensitivity trait).

The effectiveness of such recommendations could be increased through targeting or tailoring communication. Targeted messages are designed for a specific population segment, while tailored communication is individualized to the individual and was shown to be the most effective in promoting health behaviour changes (48). Indeed, messages that are congruent to the personality traits of the audience are more positively evaluated, persuasive and interesting (51). The predictive role of personality traits such as neuroticism and conscientiousness for help-seeking behaviour must be considered for efficient communication, both in the context of a VHC and in clinical counselling. Individuals with high neuroticism trait are more susceptible to perceived disease (52) and are drawn to action by motives of safety and security (51). Therefore, they might be more persuaded from recommendations that highlight the positive effects of HA and of an early intervention. Individuals characterized by low conscientious personality require more support to improve adherence to treatment recommendations (53), and would need more guidance in planning the subsequent steps towards help-seeking. For example, a VHC would prompt these individuals regularly and remind them on the next step to be taken.
Conclusion

This research provides initial knowledge towards a selection of tests and questionnaires to be included in a psychological profiling algorithm to predict readiness to seek professional help in individuals with self-reported hearing difficulties, in the context of a VHC. Complementing the audiological assessments with a psychological profiling algorithm will enable a VHC to capture a comprehensive picture of the user and deliver targeted and efficient treatment recommendations depending on those profiles. The benefits of a psychological assessment of the individual with HL might also extend to other applications within a VHC. Future studies might explore potential relationships between psychological traits and, among others HA fitting preferences and endurance in the fine-tuning process towards an optimal aiding solution, openness to try new, elaborated technical solutions, preference for particular VHC usability features. To conclude, a VHC as an easily accessible and affordable mobile diagnostic tool could facilitate faster access to hearing-care services and subsequent earlier intervention, where needed, to pursue the long-term goal of achieving “hearing for all”.

639
Conflicting interests: The Authors declare that there is no conflict of interest.

Funding: This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC 2177/1 - Project ID 390895286.

Ethical approval: The study protocol was approved by the Research Ethics Committee of the Carl von Ossietzky Universität of Oldenburg (08.09.2021, Drs.EK/2020/020-01).

Guarantor: AH.

Contributorship: GA, AH and MB conceptualized the study and were involved in protocol development, study design and data analysis. IK was involved in study design and data analysis. BK contributed to study conceptualization and obtained funding. GA was responsible for participants’ recruitment, data collection and wrote the first draft of the manuscript. All authors reviewed and edited the manuscript and approved the final version of the manuscript.

Acknowledgements: We thank all the participants who took part in this study and the Universities that helped us with recruitment: University of Oldenburg, Gasthörstudium; Goethe-Universität Frankfurt am Main, Universität des 3. Lebensalters; Freie Universität Berlin, GasthörerCard Programm; University of Köln, Gasthörer- und Seniorenstudium; University of Kassel, Gasthörrendenprogramm; University of Bielefeld, Studieren ab 50.

Preliminary results of this research were presented on symposia and conferences of the "Hearing4All" Cluster of Excellence, on the VCCA Conference 2022 and the DGPs Conference 2022. A preprint of the manuscript was published on medrxiv.org in February 2023. Analyses scripts are available at https://doi.org/10.5281/zenodo.7635920. The data is available upon request to the corresponding authors.
References

27. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2019. Available from: https://www.r-project.org/

52. Ferguson E. Personality is of central concern to understand health: towards a theoretical model for health psychology. Health Psychol Rev. 2013 May 1;7(sup1):S32–70.