Title Page

Title: Relationship between adherence to the 2019 Canada’s Food Guide recommendations on healthy food choices and nutrient intakes in older adults

Author names:

Brassard, Didier (1)
Chevalier, Stéphanie (1, 2)

Affiliations:

1) School of Human Nutrition, McGill University, Québec, Canada
2) Research Institute of the McGill University Health Centre, McGill University, Québec, Canada

Sources of support: This research received no external funding.

Conflict of interest and Funding Disclosure: DB was a casual employee of Health Canada (2019-2020), held a doctoral training award from the Fonds de recherche du Québec – Santé (2019-2021) and holds a Canadian Institutes of Health Research (CIHR) Fellowship award (MFE-181852). SC receives research funding from the CIHR, Dairy Farmers of Canada and the Canadian Foundation for Dietetics Research. None of these agencies has funded nor was involved in this work. DB and SC have no conflicts of interest.

Corresponding author:

Stéphanie Chevalier, PhD,
School of Human Nutrition, McGill University
21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, QC H9X 3V9
Tel: 514-398-8603
Email: stephanie.chevalier@mcgill.ca

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Running title: Nutrient adequacy of older adults adhering to CFG

Abbreviations list: CCHS: Canadian Community Health Survey; CFG: Canada’s Food Guide; DRI, Dietary Reference Intake; HEFI-2019: Healthy Eating Food Index-2019; NCI: National Cancer Institute.
Abstract

Background: Following Canada’s food guide (CFG) recommendations should ensure adequate nutrient intakes for persons aged 2 years and more. Older adults have increased needs in certain nutrients and the extent to which adherence to CFG recommendations can help reduce inadequate nutrient intakes is unknown.

Objective: To assess the relationship between adherence to CFG recommendations on healthy food choices and intake of key nutrients in adults 65 years and older from the Canadian Community Health Survey (CCHS) 2015 - Nutrition.

Methods: Secondary analysis of data from 4,093 adults of the CCHS 2015 - Nutrition (mean age, 73.6 y, 54% females). Dietary intakes were measured using an interviewer-administered 24-hour dietary recall including one repeat in a subsample (42%). The National Cancer Institute multivariate method was used to estimate usual (i.e., long-term) dietary intakes. Adherence to CFG recommendations was measured using the Healthy Eating Food Index (HEFI)-2019 score. Simple linear and logistic regression models estimated the effect of increased HEFI-2019 score on usual nutrient intakes and the prevalence of inadequate nutrient intakes (i.e., below the estimated average requirements), respectively.

Results: Compared with the prevalence of inadequate intakes at median HEFI-2019 score (46.4/80 points), a higher HEFI-2019 (+11 points) was associated with reductions in the prevalence of inadequate intakes of magnesium, vitamin B6, and protein (-19.8% [95%CI: -30.8, -8.9], -12.7% [95%CI: -22.5, -3.0], and -4.7% [95%CI: -9.4, -0.1], respectively). In contrast, data for higher HEFI-2019 scores were compatible with increased prevalence of inadequate intakes of folate, vitamin D, and calcium (4.0% [95%CI: -8.4, 16.3], 2.6% [95%CI: 1.1, 4.0], and 2.3% [95%CI: -3.0, 7.5], respectively).

Conclusions: Based on dietary intakes of Canadian older adults in 2015, increasing the degree of adherence to CFG recommendations on healthy food choices may reduce nutrient intake inadequacy for most key nutrients except folate, vitamin D and calcium.

Keywords: older adults, 24-hour dietary recalls; CFG; HEFI-2019; Canada’s Food Guide; dietary guidelines; healthy eating food index; Canadian Community Health Survey; CCHS.
Introduction

Previous editions of the Canada’s Food Guide (CFG) informed on food choices to prevent malnutrition as the primary goal. Recommendations of the CFG-2007 were expressed in terms of number of servings to consume every day for broad categories of foods (Vegetables and fruits, Grains, Dairy and Alternatives, Meat and Alternatives) (1, 2). The CFG-2007 recommended daily servings based on comprehensive diet simulations, thus ensuring that Dietary Reference Intake (DRI) were met (2). The latest CFG (2019) adopted a different approach and primarily aims at chronic disease risk reduction (3-6). In addition, recommendations in CFG-2019 (e.g., “eat more often …”) are more flexible than those of CFG-2007 and rely on proportions of food categories to constitute a healthy plate, without recommended quantitative daily servings. Finally, the revision process of CFG-2019 was more transparent and more evidence-based than that of CFG-2007 (7).

The release of the CFG-2019 elicited positive reactions (8, 9), but also raised concerns on nutrient adequacy. For example, preliminary modeling of eating patterns consistent with the CFG-2019 plate snapshot revealed that adherence may be insufficient to meet calcium and vitamin D requirements (10). The ability of consumers and policymakers to properly implement CFG-2019 recommendations on protein foods was also found unclear (11). In the Canadian Community Health Survey (CCHS) 2015 – Nutrition, animal-based protein foods contributed more than two thirds of total protein intake (12), which contrasts with CFG-2019 recommendations aiming at increasing intake of plant-based foods. Accordingly, an inadequate implementation of CFG-2019 recommendations could lead to the proportion of the population with inadequate nutrient intakes (e.g., substituting animal-based foods rich in protein with plant-based alternatives low in protein), especially for certain age groups at higher risk. In that regard, maintaining adequate nutrient intakes is a challenge for older adults (13, 14). Older adults face social (e.g., loneliness, inability to buy or prepare foods) and physiological (e.g., changes in taste, loss of appetite, malabsorption) barriers to consuming a nutrient-dense diet (14). Notably, calcium, vitamin D, fibers, potassium and protein were identified as nutrients of concern among older adults in the United States 2015 Dietary Guidelines report (15). In sum, the one-size-fits-all recommendations in CFG-2019 may not be adapted for older adults who face unique challenges to healthy eating compared with other strata of the population.

Whether adherence to CFG-2019 recommendations on healthy food choices fulfils nutritional needs of older Canadians is currently unknown; no evidence from contemporary eating patterns exists. The aim of this study was therefore to assess the relationship between adherence to CFG-2019 recommendations, using the Healthy Eating Food Index-2019 (HEFI-2019) (16, 17), and intakes of key nutrients of adults aged ≥65 years from the CCHS 2015 – Nutrition. We hypothesized that higher adherence to CFG-2019 recommendations shows an inverse relationship with intakes of nutrients more commonly found or eaten in animal-based foods (i.e., protein, calcium, vitamin D, iron, zinc, vitamin B6 and B12), and a positive relationship with intakes of nutrients more commonly found in plant-based foods (i.e., fibers, folate, magnesium, potassium, vitamin A).
Methods

Study design and participants

This study is based on a sample of older adults aged 65 years or older from the CCHS 2015 – Nutrition (18). The CCHS 2015 -Nutrition is a nationally representative survey of individuals aged 1 year and older living in private dwellings in the 10 Canadian provinces. Full-time members of the Canadian Forces and individuals living in the Territories, on reserves, in remote areas, and in institutions were not included. Data collection occurred between January 1st to December 31, 2015. Respondents aged less than 65 years (n=16,394) and those reporting zero energy on their first 24-hour dietary recall intake were excluded (n=4), yielding a final sample of 4,089 respondents. The public use microdata file (PUMF) of CCHS 2015 – Nutrition was obtained from Statistics Canada.

Data collection and dietary assessment

Interviewer-administered 24-hour dietary recalls were used to assess dietary intakes. The interviews were mostly (98%) conducted in person for the first 24-hour recall and by telephone for the second 24-hour recall. All 24-hour recall interviews were structured according to the Automated Multiple Pass Method (18). Portion size estimation of foods and beverages in plates, bowls, glasses and mugs was facilitated using a food booklet designed for the survey (18). All respondents completed one 24-hour recall and a subsample of 1,706 respondents (42%) completed a second 24-hour recall. Nutrient intakes were calculated based on the Canadian Nutrient File 2015 (19), except for intakes of free sugars which were recently published by Health Canada (20). Total food intakes expressed in reference amounts (RA) (21) were calculated for each respondent, 24-hour dietary recall and HEFI-2019 food and beverage categories. The interviewers measured body weight of respondents with a standard scale (LifeSource Scales Model US-321).

The Healthy Eating Food Index (HEFI) 2019

The HEFI-2019 is a continuous score which measures the degree of adherence between dietary intakes and Canada’s Food Guide 2019 recommendations on healthy food choices. Complete details about the development and the evaluation of the HEFI-2019 are available elsewhere (16, 17). Briefly, the HEFI-2019 has 10 components including 5 based on intake of foods (Vegetables and fruits, Whole-grain foods, Grain foods ratio, Protein foods, Plant-based protein foods), 1 on beverages (Beverages), and 4 on nutrients (Fatty acids ratio, Saturated fats, Free sugars, and Sodium). The total HEFI-2019 score sums up to 80 points with higher scores indicating greater adherence to recommendations. Details about each component and scoring standards are presented in Supplemental Table 1.

Nutrient intakes

Key nutrients for older adults were selected according to data availability in CCHS 2015 – Nutrition as well as previous literature (13, 22). The nutrients were protein, calcium, vitamin D, iron, zinc, vitamin B6, vitamin B12, dietary folate equivalent (folate hereafter), magnesium, potassium, fibers,
and retinol activity equivalent (vitamin A hereafter). The proportion of respondents with inadequate intakes was estimated using the cut-point method and the Estimated Average Requirements (EAR) of the Dietary Reference Intake (23). The EAR for each nutrient assessed are presented in Supplemental Table 2. Because there is no EAR for potassium and fibers, the prevalence of intake inadequacy cannot be assessed, but only the proportion of respondents with intakes above the adequate intake (AI) value. Recognizing the consensus that recommended protein intakes for older adults should be higher than current recommendations (24-26), we also estimated the proportion of respondents with inadequate protein intakes at cut-offs higher than the current EAR. The hypothetical EAR cut-offs of 0.8 and 1.0 grams of protein per kg of bodyweight were selected to reflect hypothetical higher recommended daily allowance (RDA) of 1.0 and 1.2 g/kg, respectively.

Statistical analyses

Sampling weights provided by Statistics Canada were used in all analyses to reflect the Canadian population of older adults in 2015 as well as bootstrap replicate weights for variance estimation. The sampling weights accounting for missing data on body weight were also used where appropriate. Analyses were performed in SAS Studio v3.8 (SAS Institute) and R v4.2.2 (R Foundation for Statistical Computing).

First, the 24-hour dietary recalls are mainly affected by within-individual random errors, which require correction to estimate distribution of intakes (27, 28). To account for correlated random errors of all dietary constituents of the HEFI-2019 (e.g., vegetables and fruits, free sugars) and those of nutrient intakes (e.g., protein), the NCI multivariate method was used (29, 30). Briefly, the multivariate method uses Monte Carlo simulation to estimate distribution of usual intakes (i.e., long-term average) of multiple dietary constituents correlated with each other. The multivariate methods also accounts for systematic differences due to “nuisance” factors (day of the week, sequence of recall) and considers foods that are episodically consumed (e.g., plant-based protein foods) (29). Nutrients with common food sources were modelled together to have parsimonious measurement error correction models (see Supplemental Methods and Supplemental Table 2). The 15 dietary constituents of the HEFI-2019 were included in each model. Whole-grain foods, refined grain foods, plant-based protein foods, beverages not recommended (i.e., sugary drinks, artificially sweetened beverages, vegetable and fruit juices, sweetened milk and plant-based beverages, alcohol) and unsweetened milk were considered episodically consumed. All the remaining foods and nutrients were considered as consumed daily. The measurement error correction models were stratified by sex to reflect sex-specific random variations in dietary intakes and to derive sex-specific associations (30, 31). The models also included the covariates age (indicator for 71 years or older), sequence of recall (indicator for second recall) and weekend (indicator for a 24-hour recall.
of intakes on Friday, Saturday or Sunday). In addition, the model for protein intake also included body weight (kg) as a covariate to derive protein intake per kg and assess the proportion of individuals below the EAR. A total of 500 pseudo-individuals were generated in the Monte Carlo simulation step of the NCI multivariate method. Simulations from each stratum (i.e., males and females) were pooled together. The HEFI-2019 scoring algorithm was then applied using the modelled dietary constituents among the 500 pseudo-individuals to derive HEFI-2019 scores.

Second, simple linear regression models were used to assess the relationship between the continuous HEFI-2019 score, as the independent variable, and continuous nutrient intakes, as the dependent variable. A restricted cubic spline transformation with 5 knots (percentiles 5, 27, 50, 73 and 95) was applied a priori to the HEFI-2019 score to assess potential non-linearity (32). To estimate change according to feasible increases in adherence, expected nutrient intake differences were calculated according to an increase in HEFI-2019 score from the median score to the 90th percentile of the usual intake distribution. In other words, we estimated nutrient intake difference according to a hypothetical change where respondents would have had high HEFI-2019 scores compared with the HEFI-2019 score respondents had on average, taken as the median of this sample.

Third, logistic regression models were used to assess the odds of having nutrient intake below the age- and sex-specific EAR and the continuous HEFI-2019 score. A restricted cubic spline transformation was also applied to the HEFI-2019 score. Predicted odds of nutrient intake inadequacy were generated for the 90th percentile and the median. Both predicted odds were then re-expressed as risk of inadequacy \(\text{risk} = \frac{e^x}{1+e^x}; \) where \(X \) corresponds to predicted odds at a given HEFI-2019 score percentile. The expected change in the prevalence of inadequate nutrient intakes, i.e., risk difference, was calculated by the difference between the estimated risk of inadequacy at the 90th percentile vs. the median HEFI-2019 score.

Fourth, steps 1 to 3 were repeated 500 times using bootstrap replicate weights to generate standard errors and 95%CI via normal approximation. The convergence of bootstrap standard errors and the normality of bootstrap estimates were confirmed graphically. Data from one bootstrap replicate was removed for potassium due to non-convergence.
Results

Total HEFI-2019 score

The mean (SD) HEFI-2019 score among all adults 65 years and older was 46.0 (8.9) (/80 points). Among age and sex subgroups, the mean HEFI-2019 score was the highest in females, 65 to 70 years (48.2 points) and the lowest in males, 65 to 70 years (44.9 points; Figure 1).

Prevalence of inadequate nutrient intake

The prevalence of inadequate nutrient intakes ranged from 1% (iron) to 96% (vitamin D; Figure 2). The prevalence of inadequate intakes was high for vitamin D, calcium, magnesium, vitamin B6, and vitamin A (96%, 83%, 64%, 38%, and 36%, respectively; Supplemental Figure 1. Results were similar for most nutrients when stratified by DRI age and sex group (Supplemental Figure 1).

Relationship between HEFI-2019 score and nutrient intakes

Relationships between the HEFI-2019 score and nutrient intakes are illustrated in Figure 3. Respondents with higher HEFI-2019 score had higher intakes of fibers, magnesium, vitamin B6, potassium, and protein, but lower intakes of vitamin D, vitamin B12, dietary folate equivalent, and iron. The HEFI-2019 score had null associations or associations that plateaued at higher scores for vitamin A, calcium, and zinc. Table 1 presents the expected differences in nutrient intakes associated with an increase in HEFI-2019 score to the 90th percentile of the score distribution compared with median HEFI-2019 score. For example, increasing HEFI-2019 from the median to the 90th percentile of the score distribution was associated with a 3.4 g/day higher fiber intake (95%CI: 2.0, 4.8; Table 1). In contrast, the same HEFI-2019 score increase was associated with a 0.5 μg/day lower vitamin D intake (95%CI: -1.0, 0.0; Table 1).

Relationship between the HEFI-2019 score and nutrient intake adequacy

Inadequate nutrient intakes

Figure 4 presents the prevalence and the difference in the prevalence of inadequate nutrient intake according to the HEFI-2019 score. An increase of HEFI-2019 score to the 90th percentile of the score distribution compared with median HEFI-2019 score was associated with reduction of 20, 13, and 5 percentage point in the prevalence of inadequate nutrient intakes for magnesium, vitamin B6, and protein, respectively. Inversely, the same HEFI-2019 score increase was associated with a minor increase in the prevalence of inadequate vitamin D intakes (prevalence difference, +2.6%; 95%CI: 1.1, 4.0%). For dietary folate equivalent, the 95%CI was compatible with an increase in the prevalence of inadequate intakes as large as +16.3%, but also compatible with a reduction as low as -8.4%. For calcium, data were compatible with a negligible reduction in the prevalence of
inadequacy (as low as -3%), but also an increase in the prevalence of inadequacy as large as +7.5% (Figure 3).

Hypothetical higher Estimated Average Requirements for protein

Compared with the median HEFI-2019 score, scores at the 90th percentile decreased the proportion of respondents with protein intakes below hypothetical EAR of 0.8 g/kg/day and 1.0 g/kg/day (Supplemental Figure 2). For 0.8 g/kg/day, the prevalence of inadequacy decreased from 29.3% to 18.5% (prevalence difference: -10.8; 95%CI: -20.0, -1.6). For 1.0 g/kg/day, the prevalence decreased from 64.7% to 50.8% (prevalence difference: -13.9; 95%CI: -25.0, -2.8).

Adequate intakes for fibers and potassium

Compared with the median HEFI-2019 score, score at the 90th percentile increased the proportion of respondents with intakes above the adequate intake for both fibers and potassium. For fibers, the prevalence increased from 6.5% to 20.5% (prevalence difference: +14.1; 95%CI: 5.1, 23.0). For potassium, the prevalence increased from 25.1% to 36.8% (prevalence difference: +11.7; 95%CI: 2.2, 21.1).
Discussion

The objective of this study was to describe the relationship between adherence to CFG-2019 recommendations on healthy food choices, measured using the HEFI-2019, and nutrient intakes in adults 65 years and older from Canada in 2015. We found that higher adherence was associated with higher intakes of fibres, magnesium, vitamin B6, potassium and protein. Had respondents had a higher adherence, we estimated that the prevalence of nutrient inadequacy based on foods for magnesium, vitamin B6 and protein would have been 20%, 13% and 5% lower, respectively. However, a higher adherence was not associated with higher intakes of calcium, zinc, iron, folate, vitamin B12 and vitamin D. In turn, we estimated that the high prevalence of calcium inadequacy would not have changed and that of food-based vitamin D would have been 3% higher in 2015. Overall, these results indicate that CFG-2019 recommendations are insufficient to mitigate nutrient intake inadequacy for certain key nutrients based on the eating patterns of adults aged 65 years or more from Canada in 2015. These findings partially confirm our hypothesis that nutrients typically found in animal-based foods (e.g., iron, vitamin B12, calcium, vitamin D) were inversely associated with adherence to CFG.

Few studies have examined nutrient intake adequacy according to adherence to the CFG-2019 recommendations. Barr (10) assessed the probability of intake inadequacy upon adherence to an eating pattern consistent with foods depicted in the CFG-2019 plate snapshot. The probability of inadequacy was near 100% for calcium and vitamin D for males and females aged 71 years or more. This result is consistent with findings in the present study, where a higher adherence to recommendations on healthy food choices was insufficient to mitigate the prevalence of inadequacy for calcium and vitamin D. The lack of specific recommendations regarding dairy foods and alternatives in CFG-2019, and consequently the absence of points in the HEFI-2019, may partly explain these findings. Indeed, the main food source of calcium and vitamin D in Canadians’ diet was the “Milk & Alternatives” food group in 2015 (33-35). Of note, the prevalence of inadequacy for vitamin D was very high in this sample (>95%), supporting the notion that meeting vitamin D recommendations through foods alone is an important challenge (35). Similarly, data from the CCHS indicate that calcium intake inadequacy in supplement non-users increased from 58% to 68% between 2004 and 2015, respectively (34). All in all, higher adherence to CFG-2019 recommendations on food choices was insufficient to mitigate the high prevalence of inadequate calcium and vitamin D intakes. Thus, meeting calcium and vitamin D needs would require additional strategies such as specific recommendations in CFG in addition to supplementation or food fortification.

A review by Fernandez et al. highlighted potential gaps in the application of CFG-2019 recommendations, notably whether the CFG-2019 permitted the adequate consumption of nutrient-rich protein foods or not (11). Our results revealed that a higher adherence to CFG-2019 recommendations slightly reduced the low proportion of older adults with intakes below the current EAR (0.66 g/kg) and reduced by 11% and 14% the proportion of those below the
hypothetical EAR of 0.8 g/kg and 1.0 g/kg. Notwithstanding, the prevalence of inadequacy for the
hypothetical EAR would remain considerable, with 25% and 50% inadequate protein intakes,
respectively. Furthermore, these findings only reflect the total daily protein intake and the impact
on overall protein food quality or distribution during the day is unknown. Future studies should
investigate the relationship between higher adherence to CFG-2019 and overall protein food
quality and should examine how to increase consumption of high-quality plant-based protein foods.
In that regard, a qualitative study among older adults highlighted that health benefits and food
preparation skills would facilitate consumption of plant-based protein foods (36). Finally, we stress
that the CCHS 2015 – Nutrition excluded individuals living in institutions who may have additional
needs as well as barriers to consuming higher protein diets (14). The inverse associations between
the HEFI-2019 and intakes of iron, folate, and vitamin B12 also raise concerns. On one hand, the
prevalence of inadequacy for these nutrients did not increase at the population level, partly because
the EAR can be met at relatively low intakes for these nutrients. On the other hand, at the individual
level, meeting nutrient requirements while following CFG-2019 recommendations may be more
difficult in individuals at risk of inadequate intakes, e.g., older adults with loss of appetite (13, 14).
Further, vitamin B12 may be particularly important for older adults and recent evidence support
that food groups contribute differently at reducing risk of deficiency (37). In sum, CFG-2019
recommendations should be carefully implemented to ensure meeting nutrient intakes both at the
population and individual level.

The use of national survey data to estimate the impact of higher adherence on the prevalence of
nutrient inadequacy in Canada is a strength of this study. But it must be recognized that
relationships between adherence to CFG-2019 recommendations and nutrient intakes reflect the
underlying eating patterns of adults 65 years or older from Canada in 2015. A variety of underlying
food and beverage consumption patterns may be highly consistent with CFG-2019
recommendations yet, have diverging associations with intakes of certain nutrients. As well, eating
patterns of older adults, though generally stable, may evolve over time which would result in
different associations between adherence to CFG-2019 and nutrients intakes. Another key strength
of this work is the use of the NCI multivariate method to account for random errors in dietary
intakes measured with 24-hour recall (29, 30). Using the multivariate method permitted the joint
assessment of the relationship between usual nutrient intakes and adherence to CFG-2019
recommendations on healthy food choices, as measured with the HEFI-2019, and the modelling of
higher adherence to CFG-2019 recommendations compared with average adherence. Limitations
must be addressed. First, self-reported dietary intakes with 24-hour dietary recall are affected by
systematic errors (38, 39). The assumption that intakes are unbiased cannot be verified, although
evidence indicates that diet quality based on 24-hour dietary recall may not be prone to large bias
(40). Second, the food composition database, the Canadian Nutrient File 2015, may not adequately
reflect the nutrient profile of foods actually consumed (41). Third, our results cannot be used to
extrapolate nutrient intake inadequacy at the national level. Nutrient intakes from dietary
supplements were not included since the objective was to assess the relationship between
nutrients and adherence to CFG-2019 recommendations on healthy food choices (4, 5, 16).
In conclusion, higher adherence to CFG-2019 recommendations on healthy food choices was associated with greater intakes of many nutrients considered, based on eating patterns of adults aged 65 years or more from the CCHS 2015 – Nutrition. However, higher adherence was associated with lower intakes of iron, folate, vitamin B12 and vitamin D, and not associated with calcium and zinc intakes, thus insufficient to mitigate dietary inadequacy in these key nutrients. Knowledge of shortfalls of CFG-2019 recommendations regarding nutrient intake adequacy are relevant to help government, policymakers and registered dietitians in providing more comprehensive and appropriate recommendations to older adults. Future studies should investigate how eating patterns changed after the publication of CFG-2019 and how these changes may affect the relationship between adherence to recommendations and nutrient intakes.
Acknowledgments

Authors’ contributions to the manuscript: DB and SC designed the research; DB performed statistical analysis; DB wrote the first draft of the manuscript; DB and SC gave final approval and critically reviewed the manuscript.
References

Tables

Table 1. Usual nutrient intake difference between HEFI-2019 scores at the 90th percentile and the median HEFI-2019 score distribution in 4,089 adults aged 65 years or more from the CCHS 2015 - Nutrition.

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Adults, 65 y+</th>
<th>Males, 65 to 70 y</th>
<th>Females, 65 to 70 y</th>
<th>Males, 71 y+</th>
<th>Females, 71 y+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein, g/d</td>
<td>3 (-2, 8)</td>
<td>2 (-4, 9)</td>
<td>5 (-1, 11)</td>
<td>2 (-4, 8)</td>
<td>4 (-2, 10)</td>
</tr>
<tr>
<td>Calcium, mg/d</td>
<td>4 (-50, 57)</td>
<td>-16 (-96, 65)</td>
<td>21 (-47, 89)</td>
<td>-14 (-88, 60)</td>
<td>25 (-38, 89)</td>
</tr>
<tr>
<td>Vitamin D, mcg/d</td>
<td>-0.5 (-1.0, 0.0)</td>
<td>-0.8 (-1.6, -0.1)</td>
<td>-0.1 (-0.7, 0.5)</td>
<td>-0.7 (-1.5, 0.0)</td>
<td>-0.1 (-0.7, 0.6)</td>
</tr>
<tr>
<td>Iron, mg/d</td>
<td>-0.2 (-1.0, 0.5)</td>
<td>-0.6 (-1.8, 0.6)</td>
<td>0.2 (-0.7, 1.1)</td>
<td>-0.6 (-1.8, 0.6)</td>
<td>0.3 (-0.5, 1.1)</td>
</tr>
<tr>
<td>Vitamin B12, mcg/d</td>
<td>-0.3 (-0.7, 0.1)</td>
<td>-0.4 (-0.9, 0.0)</td>
<td>-0.1 (-0.7, 0.4)</td>
<td>-0.4 (-0.8, 0.1)</td>
<td>-0.1 (-0.6, 0.4)</td>
</tr>
<tr>
<td>Vitamin B6, mg/d</td>
<td>0.1 (0.0, 0.2)</td>
<td>0.1 (0.0, 0.2)</td>
<td>0.1 (0.0, 0.3)</td>
<td>0.1 (0.0, 0.2)</td>
<td>0.1 (0.0, 0.2)</td>
</tr>
<tr>
<td>Zinc, mg/d</td>
<td>0.0 (-0.7, 0.7)</td>
<td>-0.4 (-1.5, 0.7)</td>
<td>0.4 (-0.3, 1.2)</td>
<td>-0.3 (-1.3, 0.6)</td>
<td>0.5 (-0.2, 1.2)</td>
</tr>
<tr>
<td>Folate, mcg/d</td>
<td>-13 (-39, 14)</td>
<td>-15 (-56, 26)</td>
<td>-6 (-36, 25)</td>
<td>-16 (-55, 22)</td>
<td>-2 (-31, 27)</td>
</tr>
<tr>
<td>Fibers, g/d</td>
<td>3 (2, 5)</td>
<td>4 (2, 7)</td>
<td>3 (1, 5)</td>
<td>4 (2, 6)</td>
<td>3 (1, 5)</td>
</tr>
<tr>
<td>Magnesium, mg/d</td>
<td>33 (14, 52)</td>
<td>44 (14, 73)</td>
<td>30 (6, 55)</td>
<td>39 (13, 65)</td>
<td>31 (9, 53)</td>
</tr>
<tr>
<td>Potassium, mg/d</td>
<td>173 (17, 328)</td>
<td>230 (6, 455)</td>
<td>170 (-27, 368)</td>
<td>214 (3, 424)</td>
<td>178 (-7, 363)</td>
</tr>
<tr>
<td>Vitamin A, RAE/d</td>
<td>16 (-37, 69)</td>
<td>9 (-54, 71)</td>
<td>26 (-54, 106)</td>
<td>10 (-48, 68)</td>
<td>26 (-42, 95)</td>
</tr>
</tbody>
</table>

1Values are expected nutrient intake differences (95%CI) for a HEFI-2019 score at the 90th compared with the 50th percentile of the score distribution, and were estimated using linear regression models. Estimates reflect the expected nutrient intake difference when HEFI-2019 scores are increased to correspond to the 90th percentile of the score distribution, compared with the median HEFI-2019 score. All dietary intakes were modelled using the National Cancer Institute multivariate method (see Methods). 95%CI were estimated using 500 bootstrap weight replicates. CCHS, Canadian Community Health Survey; d, day; HEFI-2019, Healthy Eating Food Index-2019.
Figure legends

Figure 1: Distribution of total HEFI-2019 score, based on usual dietary intakes in 4,089 adults aged 65 years and more from the CCHS 2015 - Nutrition. Diamonds are means. Left and right whiskers indicate the 5th and 95th percentile, respectively. Dietary intakes were modelled using the National Cancer Institute multivariate method (see Methods). CCHS, Canadian Community Health Survey; DRI, Dietary Reference Intake.

Figure 2: Prevalence of inadequate nutrient intakes in 4,089 adults aged 65 years and older from the CCHS 2015 - Nutrition. Only nutrient intakes from foods were considered (i.e., excluding intakes from dietary supplement). Inadequate intakes are intakes below the age- and sex-specific Estimated Average Requirements (EAR). Potassium and fibers are not shown, because only Adequate Intakes (AI) values are available for these nutrients. All dietary intakes were modelled using the National Cancer Institute multivariate method (see Methods). 95%CI were estimated using 500 bootstrap weight replicates. CCHS, Canadian Community Health Survey.

Figure 3: Linear regression of nutrient intake on the total HEFI-2019 score in 4,089 adults aged 65 years or more from the CCHS 2015 - Nutrition. A positive relationship indicates that greater HEFI-2019 scores are associated with greater nutrient intake, and inversely. For visualization purpose, data points are from a random sample of 200 respondents selected proportionally to sampling weights. All dietary intakes were modelled using the National Cancer Institute multivariate method (see Methods). 95%CI were estimated using 500 bootstrap weight replicates. CCHS, Canadian Community Health Survey; HEFI-2019, Healthy Eating Food Index-2019.

Figure 4: Prevalence of inadequate intakes and difference for HEFI-2019 scores at the 90th compared with the 50th percentile of the score distribution in 4,089 adults aged 65 years or more from the CCHS 2015 - Nutrition. Inadequate intakes are intakes below the age- and sex-specific Estimated Average Requirements (EAR). Potassium and fibers are not shown, because only Adequate Intakes (AI) values are available for these nutrients. All dietary intakes were modelled using the National Cancer Institute multivariate method (see Methods). 95%CI were estimated using 500 bootstrap weight replicates. CCHS, Canadian Community Health Survey; HEFI-2019, Healthy Eating Food Index-2019.
Males, 65 to 70 y

Females, 65 to 70 y

Males, 71 y+

Females, 71 y+

HEFI-2019 score based on usual intakes (/80), points

Age and sex group
Folate
Vitamin D
Calcium
Vitamin B12
Iron
Zinc
Vitamin A
Protein
Vitamin B6
Magnesium

Prevalence of inadequate intakes, %

50th perc. 90th perc.

Prevalence difference, % point (95%CI)

-20 (-31, -9)
-13 (-23, -3)
-5 (-9, 0)
-5 (-14, 5)
-3 (-13, 7)
0 (0, 0)
1 (-9, 11)
2 (-3, 8)
3 (1, 4)
4 (-8, 16)

0.00 0.25 0.50 0.75 1.00

CC-BY 4.0 International license
It is made available under a
is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint this version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.13.23285868
doi: medRxiv preprint