Modelling mpox vaccination and behavior

Modelling the impact of vaccination and sexual behavior change on reported cases of mpox in Washington D.C.

Patrick A. Claya,*, Jason M. Asherb, Neal Carnesc, Casey E. Copena, Kevin P. Delaneyc, Daniel C. Payned, Emily D. Pollocka, Jonathan Merminf, Yoshinori Nakazawae, William Stillg, Anil T. Manglag, Ian H. Spicknalla

a Division of STD Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, Georgia, USA.
b Center for Forecasting and Outbreak Analytics, Office of the Director, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, Georgia, USA.
c Division of HIV Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, Georgia, USA.
d Division of Foodborne, Waterborne & Environmental Diseases, National Center for Emerging & Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, Georgia, USA.
e Division of High Consequence Pathogens & Pathology, National Center for Emerging & Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, Georgia, USA.
f Office of the Director, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, Georgia, USA.
g DC Department of Health, 899 North Capitol St NE, Washington, DC 20002, USA

*Corresponding Author, ruq9@cdc.gov, 713-443-4845

Abstract

Background: The 2022 mpox outbreak infected over 30,000 people in the United States. Infections were commonly associated with sexual contact between men. Interventions included vaccination and reductions in sexual partnerships. We estimated the averted infections attributable to each intervention using mathematical modeling.
Modelling mpox vaccination and behavior

31 **Methods:** We fit a dynamic network transmission model to mpox cases reported by the District of Columbia through January 2023. We incorporated vaccine administration data and reported reductions in sexual partnerships among gay, bisexual, or other men who have sex with men (MSM). Model output consisted of predicted cases over time with or without vaccination and/or behavior change.

36 **Results:** We estimated initial case reductions were due to behavior change. Vaccination alone averted 64% [IQR:57%-72%] and behavior change alone averted 21% [IQR:11%-29%] of cases. Vaccination and behavior change together averted 80% [IQR:74%-85%] of cases. In the absence of vaccination, behavior change reduced cumulative cases but also prolonged the outbreak.

40 **Conclusions:** Initial case declines were likely caused by behavior change, but vaccination averted more cases overall. Overall, this indicates that encouraging individuals to protect themselves was vital in the early outbreak, but that combination with a robust vaccination program was ultimately required for control.

44 **Keywords:** Mpx, Monkeypox, Outbreak, Modelling, Vaccination, MSM, Washington D.C., Poxvirus
Introduction

Since May 2022, over 30,000 cases of mpox have been reported to the Centers for Disease Control and Prevention (CDC). The majority of infections have been among gay, bisexual, and other men who have sex with men (MSM) and have been associated with sexual contact1,2. Incidence decreased by >80% from a peak of 440 daily cases in mid-August to 70 in mid-October and fewer than 4 daily cases nationally as of January 20233. In response to the mpox outbreak, CDC and other public health authorities recommended sexual behavioral change and after the JYNNEOSTM (Modified Vaccinia Ankara vaccine, Bavarian Nordic) mpox vaccine became increasingly available, preventive vaccination. In early June, CDC developed messaging for individuals seeking to reduce their chances of acquiring mpox (updated on August 5)4. CDC additionally worked with partner organizations, media, and digital apps to communicate this information to MSM, the most affected population2. Later surveys reported that 50% of MSM who engaged in one-time sexual encounters had reduced their frequency of these encounters since the beginning of the mpox outbreak5. In addition to behavioral interventions, JYNNEOSTM vaccine became available from the Strategic National Stockpile for post-exposure prophylaxis shortly after the first confirmed case of mpox on May 17th6,7, and for pre-exposure prophylaxis for impacted communities in late June.

Understanding the relative effects of sexual behavior change and vaccine-induced immunity on mpox cases can inform public health efforts for this and future outbreaks. A previous study suggested that mpox outbreaks in the United States and other countries could have ended due to infection-driven herd immunity alone, but did not incorporate the potential role of behavioral change or vaccination in outbreak trajectory8. We used data from Washington, DC, and a dynamic network model of sexually transmitted infection (STI) transmission to
Modelling mpox vaccination and behavior

estimate the relative effects of behavior change and vaccination on the outbreak, and the theoretical impact if vaccines had been more fully available earlier in the outbreak.

73 Methods

74 Model Overview

We adapted a previously published dynamic network model of STI transmission in MSM9,10 to mpox transmission11 and added behavioral change and vaccination. The contact structure of the network is based on surveys of MSM recruited through websites9 or at Lesbian, Gay, Bisexual, Transgender, Queer, and other gender and sexual minorities (LGBTQ+) serving establishments in Atlanta, Georgia12. Participants were asked whether they had a “main” partner (defined as an enduring sexual partner who took priority over others), how many “casual” partners they had (defined as enduring sexual partners other than “main” partners), and how many one-time sexual contacts they had had in the past three months. Based on survey results, individuals in the model have a set probability of having 0 or 1 main partners with a mean relationship duration of 477 days, and 0-2 casual partners with a mean relationship duration of 166 days. Additionally, individuals in the model are assigned to 1 of 6 sexual activity groups, depending on their probability per day of engaging in one-time sexual partnerships, with activity group 1 representing the lowest sexual activity level (never engaging in one-time partnerships) and activity group 6 representing the highest sexual activity level (29\% chance of engaging in one-time partnership per day). Individuals have a probability of forming one-time partnerships during each model timestep based on their activity group and their number of main and casual
Modelling mpox vaccination and behavior

partnerships (Table S1). Individuals choose partners based on age and preferred sexual position
during intercourse (purely insertive, purely receptive, or versatile).

Individuals in the model can exist in the following states: susceptible to infection (S),
infectected but pre-symptomatic and non-infectious (E), pre-symptomatic and infectious (P),
symptomatic and infectious (I), recovered and resistant (R), and vaccinated with one (V1) or 2
(V2) doses of JYNNEOS. We assume that symptom onset lowers the probability of an
individual engaging in one-time sexual contact, modeled as individuals temporarily moving to
one lower sexual activity level. We further assume that symptoms reduce the probability of
sexual contact with main and casual partners by half. At each timestep, the probability that an
infectious individual will infect a susceptible partner is the product of the probability of sexual
contact per timestep in each relationship type and the probability of infection per sexual contact
(\(\mu\)). Upon infection, an individual enters the E state, after which they have a probability per
timestep of entering the P and then I and R states. Individuals have a probability of seeking
medical attention upon symptom onset (\(\rho\)); we assume those who seek care become aware of
their infectious status, and so do not engage in one-time or casual sexual partnerships until they
recover. We assume that individuals who learn their infection status also decrease contact with
their main partners such that they have a 10% chance of infecting their main partner over the
duration of the infection, reflecting prior estimates of household transmission\(^{13}\). Infected
individuals who seek medical care are reported as diagnosed cases, hereafter referred to as cases.

Our model represents an outbreak in a single well-connected population, and thus best
represents outbreak dynamics within a single city, rather than at the national scale. We
parameterized the model to represent the mpox outbreak in Washington D.C., which reported its
final case on Nov. 22, 2022. Thus, we set the population size to be 37,400, roughly equal to the
Modelling mpox vaccination and behavior

population of MSM in Washington D.C.14. We additionally ran our analysis for a population size of 20,000, as not all MSM may be in the relevant sexual mixing pool (Fig. S4), and found that our qualitative results do not change. The model begins with 5 newly infectious individuals randomly selected from the 8,976 individuals in activity groups 5 and 6 on May 21st. This produced a median of 5 cumulative cases in the model on June 6th, matching D.C. data. The length of time between symptom onset and medical attention seeking is derived from the average time between symptom onset and orthopoxvirus test reported by Washington D.C. (Fig. S3).

\textit{Vaccination}

As input for our model, we took first and second doses administered in Washington D.C. through December 10, at which time vaccination rates had dropped from an approximate maximum of 4,500 doses given per week to fewer than 100 doses given per week. Pre-exposure vaccination for MSM began the week of June 26th and peaked the week of July 31st for first doses, and peaked the week of August 28th for second doses (Table S2). As vaccines were originally offered primarily to MSM with multiple recent sexual partners15, we model vaccine distribution as limited to only the top two sexual activity groups for the first four weeks of vaccination, as limited to the top four sexual activity groups for the next four weeks of vaccination, and as limited to any individuals with a non-zero probability of engaging in one-time sexual contacts for the rest of the time period. In our model, we vaccinate susceptible (S) and pre-symptomatic (E, P) individuals. Individuals who receive the vaccine while in the E or P class are not prevented from becoming infectious. For second dose vaccination, we randomly draw individuals from the pool of those who have received their first dose at least four weeks in the past. We assume that the vaccine has no efficacy for two weeks after the first dose, at which time efficacy jumps to 37\%, and that efficacy increases again to 69\% two weeks after the second
Modelling mpox vaccination and behavior

dose based on U.S. data16, though we run a sensitivity analysis based on an 85% first dose
efficacy based on data from Israel17 (Fig. S8). In the case of breakthrough infections, individuals
enter the pre-symptomatic (E) class and prior vaccination has no further effect on subsequent
contagiousness or pathogenicity. We assume that some reported vaccinations are administered to
non-msm or non-resident commuters rather than the modeled population. Thus, we fit the total
proportion of reported vaccines given to the modeled population to case data, as described
below.

Behavior Change

Individuals may change sexual behavior in response to perceived risk level18. In our
model, we assume that MSM reduced their probability of one-time sexual contacts per day by a
time-varying relative percentage. For tractability, we assume all individuals reduce their
probability of one-time contact by the same relative amount, resulting in the largest reduction in
sexual partner numbers among high-activity individuals. To measure risk perception, we
identified LGBTQ+ focused communities on the social media discussion site Reddit
(“subreddits”) that contained multiple discussions about mpox. We used the number of posts and
comments in these subreddits containing the terms “monkeypox”, “mpox”, or “mpx” over time
(hereafter “Reddit activity”) as a proxy for risk perception (appendix). The relative reduction in
sexual activity per day in our model was set equal to relative Reddit activity. We fit maximum
reductions in sexual activity to case data (described below).

Modelling Process

We fit five parameters to D.C. case data: the probability of transmission per contact (μ),
the average length of the pre-symptomatic infectious period (l), the number of individuals
Modelling mpox vaccination and behavior

infected with mpox virus at Capital Pride Parade/Festival, occurring on June 11-12 (ε), the
maximum percent reduction in probability of one-time sexual contact per day in response to the
mpox outbreak (ω), and the proportion of reported vaccine doses given to the modeled
population (θ) (see appendix for details). We additionally fit our model to case data assuming no
interventions to test the likelihood that the outbreak ended due to infection-driven herd immunity
alone.

We then estimated what proportion of cases have been averted by either behavior change
or vaccination. We ran the model with no vaccination and no behavior change. This represents a
scenario in which no interventions had taken place. We then compare the cumulative cases in
this model until May 21st 2023 with cases in models where we include behavior change, include
vaccination, or include both interventions. Differences in cumulative cases between intervention
scenarios and the no intervention scenario represent cases averted by these interventions. We
additionally estimated cumulative cases if vaccinations had been rolled out 28 days earlier or
later, and if available vaccine doses were increased or decreased by 50% (behavior change was
included in this sensitivity analysis). For each intervention scenario, we calculated median and
interquartile ranges for cumulative case data over time for 120 model runs.

Results (currently 978/3,265 words. 3,500 allowed total)

Fitting the model with vaccination and behavior change to cumulative case data from
Washington D.C., we find that an 87.5% probability of transmission per sex act (μ), a pre-
symptomatic infectious period (l) lasting 4 days, 40 individuals infected at D.C. Pride (ω), a
40% maximum reduction in probability of one-time sexual contacts in response to the mpox
outbreak (ε), and 100% of reported vaccines being administered to the modeled population (θ)
Modelling mpox vaccination and behavior

generates the best fit between model output and empirical data (Figure 1A). This indicates that
mpox virus is highly transmissible, and that MSM substantially adjusted their behavior to reduce
onward transmission of mpox virus. While it is implausible that 100% of reported vaccine doses
were administered to resident MSM in D.C. rather than healthcare workers and non-resident
MSM, a fit θ value of 100% indicates that a negligible amount of reported vaccine doses were
administered to non-modelled populations (see Fig. S5 for proportion population vaccinated over
time). We found a relatively low likelihood that the outbreak ended due to infection-driven herd
immunity alone (Fig. 1, A vs. B).

Cumulative Cases

We estimated that initial reductions in mpox cases were due to behavioral change. The
trajectory of the “behavior change only” model matches the “vaccine and behavior” model until
September for cumulative cases, indicating that until this point, reductions in case reports were
due primarily to behavior change (Figure 2A). The “vaccine only” scenario, on the other hand,
closely matched the “no intervention” scenario until September for cumulative cases, indicating
that behavior change altered the epidemic trajectory before vaccination. Behavior change has an
earlier impact on cases than vaccination for two reasons. First, we find that Reddit activity, and
thus behavior change, began when cases first appeared in D.C. (Fig. S1), whereas vaccine supply
did not reach more than 400 doses per week until July. Second, reductions in sexual partnerships
immediately reduce transmission, whereas we assume no protection from vaccination until 14
days after the first dose.

We estimated that one year into the outbreak, vaccination will have prevented more cases
than behavior change. We estimated that by May 21st 2023, we would have 2,700 [IQR 2,550 –
2,950] cumulative case reports in the absence of both interventions. The model estimated that
Modelling mpox vaccination and behavior

behavior change alone would have prevented 21% [IQR 11% - 29%] of cases, vaccination alone
would have prevented 64% [IQR 57% - 72%] of cases, and both interventions together will have
prevented 80% [IQR 74% - 85%] (Fig. 2A).

In our model, behavior change helped vaccination avert more infections by allowing
more individuals to remain free of infection and therefore be vaccinated. The model estimates
that with behavior change, 91% of individuals with the highest frequency of one-time sexual
partnerships who were able/willing to be vaccinated were vaccinated, while without behavior
change only 84% of these individuals were vaccinated. These estimates indicate that individuals
with a high frequency of engaging in one-time partnerships were more likely to contract mpox
virus before they had a chance to be vaccinated, and by delaying transmission, behavior change
allowed for additional high-activity individuals to be vaccinated (Fig. S6).

Infection Prevalence

Our analyses suggest that the outbreak will only end within a year with vaccination (Fig.
2B). After 1 year, we would have 77 [IQR 48 - 119] prevalent infections (defined as the number
of infectious individuals on a given day) in the absence of any intervention. We estimated that
vaccination would lower prevalent infections to 2 [IQR 0 - 4], or 0 [IQR 0 - 2] when paired
with behavior change. Alternatively, behavior change alone would increase prevalent infection to
180 [IQR 116 - 292] one year into the outbreak. Behavior change can increase prevalence late in
the outbreak because unlike vaccination, behavior change does not provide long-term protection.
Vaccination replaces infection-driven herd immunity with vaccine-driven herd immunity,
whereas behavior change only delays herd immunity. Thus, one year into the outbreak, more
individuals are resistant to infection in the “no intervention” scenario” than in the “behavior
change only” scenario, resulting in higher transmission, and thus infection prevalence. If
Modelling mpox vaccination and behavior

Vaccinations were not available, individuals may have reduced their sexual activity for longer periods of time than we observed. However, behavior change alone cannot end the outbreak within a year even when we extend the period of maximum behavior change by an additional two months (Fig. S7).

Varying Vaccine Administration

The number and timing of vaccine allocations varied between jurisdictions, and there is uncertainty around vaccine efficacy. We estimated how changes in availability and timing could have impacted cases. We estimated that by one year into the outbreak, moving the initiation of vaccination earlier by 28 days would have decreased cumulative cases by 31% [IQR 46% - 13%], and moving the vaccination timeline later by 28 days would have increased cumulative cases by 29% [IQR 1% - 68%] (Fig. 3A). Increasing available vaccine doses by 50% would have decreased cumulative cases by 12% [IQR -23% - 33%], and decreasing doses by 50% would have increased cumulative cases by 52% [IQR 15% - 87%] (Fig. 3A). (Fig. 3B). Thus, for the parameter space explored, distributing vaccines earlier would linearly decrease cases, whereas increasing available vaccine doses would have diminishing returns.

Discussion (currently 876/3,265 words. 3,500 allowed total)

We estimated the relative importance of vaccination and reductions in one-time sexual partnerships among MSM for averting mpox cases. We found that the majority of averted cases through October were averted by behavior change, but that vaccination began having an effect in September, was key to ending the outbreak in Washington D.C., and averted more cases overall. These results have several implications for the current mpox outbreak and for future outbreaks of sexually associated infections. First, national vaccine distribution is logistically time-consuming,
Modelling mpox vaccination and behavior

and vaccines are not immediately effective. Thus, behavioral interventions can temporarily slow transmission, protecting communities from infection before vaccination takes effect. Partnering with affected communities is key to effective communication on behavioral interventions. During this outbreak, MSM, community-based organizations, digital and traditional media, and the public health community worked together in disseminating public health messaging and expanding vaccination. The enthusiasm of MSM to protect themselves and the health of their communities highlights the effectiveness of public health efforts that manifest collaborations between affected communities and public health. Second, without vaccine administration, temporary behavioral interventions can reduce, but not eliminate, infection prevalence. This means that regions with low vaccine uptake might benefit from a focus on increasing vaccine administration even if cases are decreasing, and that behavior change alone is unlikely to successfully control future mpox outbreaks. Third, at early stages of an outbreak, administering vaccines sooner will provide substantial benefit in preventing cases over time and potentially have more impact than delayed administration of broader vaccination efforts that might lead to higher overall vaccine coverage.

Consistent with the current mpox outbreak, our model indicated that a combination of vaccination and behavior change would end the outbreak within a year. This may not be the case if (a) vaccines do not reach certain segments of the population, and (b) individuals who do not or cannot access vaccination preferentially partner with one another. We assumed in our model that only age and sexual positioning determines who individuals choose to partner with, and that neither of these factors influenced vaccination or treatment seeking. However, MSM partner with same-race individuals roughly 90% of the time, and initial administration of the mpox vaccine was lower in Black individuals than in other racial groups. Thus, mpox transmission might
Modelling mpox vaccination and behavior

272 persist at a low but steady level in certain populations, mirroring our “behavior change only”
273 scenario (Figure 2B), if vaccine equity is not improved.

274 Our results suggest that the outbreak ended in D.C. in large part due to vaccination and
275 behavior change, rather than ending solely due to infection-driven herd immunity, shown to be a
276 possibility in recent work⁸. Specifically, we find that without vaccination and behavior change,
277 model fits that match the rapid early increase in cases overestimate the final number of cases,
278 and model fits that match the final number of cases underestimate the initial growth of the
279 epidemic. Possible differences in conclusions from these studies may arise from assumptions
280 about the natural history of mpox (e.g. per-act transmission probability is assumed to be within
281 the range of household transmission in¹³, much lower than our fitted parameter), or differences in
282 the underlying sexual network.

283 **Limitations**

284 The sexual network used here was primarily parameterized by surveys distributed in
285 Atlanta in 2010¹². The sexual networks of other cities may differ from that in Atlanta due to
286 differences in demography, socioeconomic status, or cultural beliefs. Further, sexual networks in
287 MSM may have changed in the last ten years due to increased prevalence of HIV pre-exposure
288 prophylaxis and internet-based dating applications²⁴,²⁵. Thus, collecting new, regionally
289 dispersed data on sexual networks of MSM and other populations experiencing high rates of
290 sexually associated infections would improve modelling capabilities in future outbreaks. Another
291 assumption we made is that sexual networks in D.C. are separate from neighboring jurisdictions.
292 In reality, transmission in the network would be influenced by individuals traveling in and out of
293 D.C., or by individuals who work in D.C. but live elsewhere.
Modelling mpox vaccination and behavior

Although substantial changes in sexual behavior by MSM in response to mpox have been documented, we were unable to directly measure changes in one-time partnership behavior among MSM. Despite this, the initial decline in daily case reports was likely due to behavior changes among MSM because all parameter sets that fit the initial exponential increase in cases predicted that cases would have continued to sharply rise throughout the fall of 2022 unless we invoke behavior change. Our behavior analysis is further limited as we were only able to collect behavior proxies at the national, rather than regional level. However, it may be that MSM responded to national cases and news coverage, similar to how general interest in mpox (by Google search proxies) responded to national rather than local events. If the sexual activity levels of MSM respond to national rather than local events, then we expect that behavior change will have had a different impact on outbreaks in different cities, depending on the relative timing of the outbreak and national perception of mpox risk.

Conclusions

This study indicates synergistic effects of sexual behavior change and vaccination in controlling the mpox outbreak. By changing their behavior gay, bisexual, and other men who have sex with men reduced transmission before vaccines were widely available, and those reductions in sexual behavior continue to protect individuals who are not vaccinated. We estimated that vaccination in turn will more effectively reduce infections later in the outbreak by providing long-term protection. The synergies observed when combining behavioral harm reduction and vaccination serve as a reminder for those administering mpox vaccination to use this clinical encounter to reinforce the importance of behavioral harm reduction strategies in a culturally appropriate way.

Acknowledgements
Modelling mpox vaccination and behavior

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention or the National Cancer Institute.

Author Contributions

Manuscript concept was designed by PAC, IHS, JM, YN. Model was designed by PAC, IHS, and EDP. JMA advised on model structure. NC, CEC, and KPD, provided input on modeling of behavior. DCP provided input on modeling of vaccination. WS and ATM provided epidemiological data from D.C. Manuscript was primarily written by PAC, with input from all authors.

Citations

9. Weiss, K. M. *et al.* Egocentric sexual networks of men who have sex with men in the
Modelling mpox vaccination and behavior

19. CDC’s Response to the 2022 Monkeypox Outbreak | Monkeypox | Poxvirus | CDC. https://www.cdc.gov/poxvirus/monkeypox/about/cdc-response.html.

Modelling mpox vaccination and behavior

Modelling mpox vaccination and behavior

Figures

Figure 1: Model output fit to cumulative cases from Washington D.C. Y-axis shows cumulative cases, over date on the X-axis. Black dots represent cumulative case reports from Washington D.C., while the blue line represents median cumulative cases over 120 model runs for the best fitting parameter set, and the blue band represents the interquartile range, when (A) we fit all parameters, including effectiveness of interventions, and (B) we assume no intervention effectiveness. NLL indicates negative log likelihood, with lower values indicating a higher likelihood.
Modelling mpox vaccination and behavior

Figure 2: Vaccination and behavior change both reduce estimated cumulative cases and prevalent infections. (A) Y-axis shows model estimates of cumulative cases (i.e. individuals who are diagnosed with mpox), over time on the X-axis from May 21st 2022 to May 21st 2023. (B) Y-axis shows prevalent infections, over time on the X-axis. Solid lines indicate median values from 120 simulations, while transparent bands represent interquartile ranges. Colors indicate intervention combinations.
Modelling mpox vaccination and behavior

Figure 3: Changing number of administered doses and timing of vaccine administration can influence case reports. (A) Y-axis shows model estimates of cumulative case counts, over time on the X-axis from May 21st, 2022 to May 21st, 2023. Solid lines indicate median values from 120 simulations, while transparent bands outlined by thin lines represent interquartile ranges. Black lines show model results based on actual vaccine administration and a maximum vaccine efficacy of 90%, while red and blue lines represent more pessimistic and more optimistic scenarios, respectively. All scenarios shown here include behavior change.