A Pooled Electronic Consultation Program to Improve Access to Genetics Specialists

Emma K. Folkerts BS¹,², Renée C. Pelletier MS CGC¹,², Daniel C. Chung, MD³,⁴,⁵, Susan A. Goldstein, MS⁶, Douglas S. Micalizzi, MD⁴,⁵, PhD, Kristen M. Shannon MS CGC⁴, David A. Sweetser MD PhD⁵,⁷, Eugene K. Wong MS CGC¹, Heidi L. Rehm, PhD¹,²,⁵, Leland E. Hull MD, MPH²,⁸

¹Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
²The Broad Institute of MIT and Harvard, Cambridge, MA
³Division of Gastroenterology, Department of Medicine, Mass General Hospital
⁴Massachusetts General Hospital Cancer Center, Boston, MA
⁵Harvard Medical School, Boston, MA
⁶Massachusetts General Physicians Organization, Massachusetts General Hospital, Boston, MA
⁷Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA
⁸Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA

Corresponding Author:
Leland E. Hull, MD, MPH
Division of General Internal Medicine
Massachusetts General Hospital
100 Cambridge St, 16th Floor
Boston, MA 02114
C: (914) 420-9250

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Financial Support: Dr. Hull is supported by the National Human Genome Research Institute of the National Institutes of Health (K08HG012221).

Conflicts of Interest: The authors have no relevant conflicts of interest to disclose.

Implementation of a Genetics & Genomics eConsultation Program Platform Presentation on 11/19/22 at NSGC Annual Conference 2022, Nashville TN.

Word Count (Main Text): 900

Number of Tables: 1

Number of Figures: 1

Keywords: e-Consult, genomics, primary care, genetics, delivery model, EHR
Abstract:

Innovative service delivery models are needed to increase access to genetics specialists. Electronic consultation (e-Consult) programs can connect clinicians with specialists. At Massachusetts General Hospital, an e-Consult service was created to address genomics-related questions. In its first year, the e-Consult service triaged 153 requests and completed 122 in an average of 3.2 days. Of the 95 e-Consults with actionable recommendations, there was documentation that most ordering clinicians followed through (82%). A variety of providers used the service, although the majority (77%) were generalists. E-Consult models should be considered as one way to increase access to genetics care.
Introduction:

Access to genetic subspecialists for care-related questions is often limited.1-3 Electronic consultations (\textit{e-Consults}) have been trialed across diverse health systems to provide expedited access to specialists.4-6 \textit{e-Consult} programs within genetics and genomics programs care have emerged as models to address access issues by providing first-pass triage of genetics questions, answering simple questions that do not require a visit (thus freeing access for additional patient care), as well as educating generalists on genetics care topics that could be directly applied to future patients.

Massachusetts General Hospital (MGH) is an academic medical center in Boston, MA, where several specialties offer clinical genetics care.7 In April 2021, we launched a pooled \textit{e-Consult} program to provide timely access to subspecialists from three different clinics, The MGH Center for Cancer Risk Assessment, MGH Medical Genetics and Metabolism, and the MGH Preventive Genomics Clinic. Clinicians order an \textit{e-Consult} through the electronic health record (\textit{EHR}), select a reason for the \textit{e-Consult} from a prespecified list, and enter a patient-specific clinical question with the option to add additional data or relevant reports. A genetic counseling assistant performs initial triage of submitted \textit{e-Consults} by directing inquiries to a specific specialty in the “pool” of genetics specialists based on the clinical content. The answering specialist reviews the patients’ \textit{EHR} data and sends an electronic response to the submitting clinician, which is then documented in the EMR. Sometimes, a genetic counselor or another staff member may investigate the submitted topic and draft a response. \textit{E-Consults} can be declined at any point in the process.

We characterized the patients and clinicians utilizing the \textit{e-Consult} program and the \textit{e-Consult} processes during the program’s first year.
Methods:

We performed a retrospective observational analysis of e-Consult data that the Mass General Brigham Institutional Review Board approved.

We characterized the providers ordering, the providers responding to, and the patients for whom e-Consults were ordered between April 2021 and March 2022, as well as the content of and outcomes of e-Consults that were collected over this period. We obtained our data from 1) the Mass General Physicians Organization (MGPO) e-Consult database, which pulls relevant data from the EHR, 2) publicly available MGH websites characterizing providers and their clinics, and 3) chart review. We characterized patients (age at order, legal sex, and self-reported race), providers submitting e-Consults (degree and specialty), and providers responding to e-Consults (specialty). We characterized e-Consults by several factors: turnaround time, the prespecified reason for the e-Consult, e-Consult recommendation type (actionable v. no action recommended), and recommendation follow-through by the submitting provider (Yes vs. No/Not Documented).

Patient and provider demographics were summarized descriptively. Next, we outlined the reasons for e-Consult submission and the outcomes of e-Consults.

Results:

Of 153 e-Consults submitted in the program’s first year, 122 were completed (80%), and 31 were declined (Figure 1). The reasons for declined e-Consults are summarized in Figure 1. A minority of e-Consults related to patients over age 65 (8%); patients were primarily female and White (Table 1). Both physicians and nurse practitioners submitted e-Consults; a greater proportion of nurse practitioner e-Consults were declined (39%) compared to physician-submitted e-Consults (18%). Clinicians requesting e-Consults represented a large range of
specialties, although the majority (80/104, 77%) were generalists such as internists, general pediatricians, and family medicine physicians. Most e-Consults were triaged to Medical Genetics and Metabolism (90/122, 73%), followed by Cancer Genetics (n=31, 25%). All clinicians answering e-consults were physicians.

The top pre-specified reasons ordering providers selected for e-Consult submission were a personal or family history of cancer (n=37), suspicion or knowledge of a known syndrome or genetic disorder (n=35), and reasons not captured by the other prespecified fields (free text, n=25) (Figure 1). E-Consults were answered with a median of 2.0 days. Most completed e-Consults resulted in at least one actionable recommendation for the submitting clinician (95/122); 82% (78/95) of those with an actionable recommendation had documented evidence of follow-through.

Discussion

With increasing indications for incorporating genetics into patient care, building systems to improve access to genetics expertise is paramount. In the first year of our e-Consult program, diverse questions were submitted by clinicians from various specialties, especially generalist providers. As primary care clinicians have endorsed poor knowledge and comfort providing genetics care to their patients, the successful use of the e-Consult program by generalists is encouraging because such programs can provide a system for interacting and learning from genetics experts.

Our data suggest that an e-Consult program can help to reduce unnecessary visits. There were several potential sources of saved visits that we observed. For example, of the 122 e-Consults answered, 27 recommended no further action, 10 recommended non-genetics lab testing, and 8 advised screening plans. In addition, e-Consult recommendations can also
improve the efficiency of subsequent genetics evaluations, such as when familial genetic testing
was recommended first (18/122 answered e-Consults), to enhance the utility of subsequent
 genetics evaluations. Further studies should assess the impact of e-consults on access to genetics
 services across the hospital system.10

Finally, a significant number of e-Consults (20\%) were declined. The primary reasons for
declaring were either clinical (e.g., appropriate specialist not in the e-Consult “pool” of
providers) or process errors (e.g., duplicate order entries). To scale the program, we aim to
resolve clinical barriers to using the program, such as recruiting additional specialists from fields
of high demand to join the consult “pool,” refining workflows, and further educating referring
providers on the appropriate use of the E-Consult program.
Table 1. Characteristics of e-Consults Ordered (N=153 distinct e-Consults)

<table>
<thead>
<tr>
<th>Patient Characteristics (N=153 Distinct Patients)</th>
<th>Total e-Consults (N=153)</th>
<th>Accepted (n=122, 80%)</th>
<th>Declined (n=31, 20%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at Time of Referral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-17</td>
<td>49 32%</td>
<td>47 96%</td>
<td>2 4%</td>
</tr>
<tr>
<td>18 to 34</td>
<td>38 25%</td>
<td>28 74%</td>
<td>10 26%</td>
</tr>
<tr>
<td>35 to 64</td>
<td>54 35%</td>
<td>38 70%</td>
<td>16 30%</td>
</tr>
<tr>
<td>>=65</td>
<td>12 8%</td>
<td>9 75%</td>
<td>3 25%</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>51 33%</td>
<td>43 84%</td>
<td>8 16%</td>
</tr>
<tr>
<td>Female</td>
<td>99 65%</td>
<td>77 78%</td>
<td>22 22%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>4 3%</td>
<td>4 100%</td>
<td>0 0%</td>
</tr>
<tr>
<td>Black</td>
<td>4 3%</td>
<td>3 75%</td>
<td>1 25%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>8 5%</td>
<td>7 88%</td>
<td>1 13%</td>
</tr>
<tr>
<td>Other</td>
<td>1 1%</td>
<td>1 100%</td>
<td>0 0%</td>
</tr>
<tr>
<td>White</td>
<td>121 79%</td>
<td>95 79%</td>
<td>26 21%</td>
</tr>
<tr>
<td>Unknown</td>
<td>15 9%</td>
<td>12 80%</td>
<td>3 20%</td>
</tr>
<tr>
<td>Referring Clinician Characteristics (N=104 Distinct Clinicians)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Referring Clinician Degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD/DO (n=94)</td>
<td>135 88%</td>
<td>111 82%</td>
<td>24 18%</td>
</tr>
<tr>
<td>NP (n=10)</td>
<td>18 12%</td>
<td>11 65%</td>
<td>7 39%</td>
</tr>
<tr>
<td>Referring Clinician Specialty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Medicine (n=37)</td>
<td>55 36%</td>
<td>39 71%</td>
<td>16 29%</td>
</tr>
<tr>
<td>Pediatrics (n=27)</td>
<td>36 24%</td>
<td>34 94%</td>
<td>2 6%</td>
</tr>
<tr>
<td>Pediatric Sub (n=11)</td>
<td>19 12%</td>
<td>18 95%</td>
<td>1 5%</td>
</tr>
<tr>
<td>Family Medicine or Med/Peds (n=16)</td>
<td>20 13%</td>
<td>13 65%</td>
<td>7 35%</td>
</tr>
<tr>
<td>Adult Sub (n=10)</td>
<td>13 8%</td>
<td>10 77%</td>
<td>3 23%</td>
</tr>
<tr>
<td>REI (n=3)</td>
<td>10 7%</td>
<td>8 80%</td>
<td>2 20%</td>
</tr>
<tr>
<td>Responding Clinician Specialty (N=12 Distinct Clinicians)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Genetics</td>
<td>N/A</td>
<td>90 73%</td>
<td>N/A N/A</td>
</tr>
<tr>
<td>Cancer Genetics</td>
<td>N/A</td>
<td>31 25%</td>
<td>N/A N/A</td>
</tr>
<tr>
<td>Preventive Genomics</td>
<td>N/A</td>
<td>3 2%</td>
<td>N/A N/A</td>
</tr>
</tbody>
</table>

Abbreviations: e-Consult = Electronic Consultation; REI = reproductive endocrinology & infertility

*Missing: Legal sex (3)

**All clinicians responding to e-consults were physicians. E-consult responses could be prepped for the physician by another team member for review and signature.
Figure 1. Outcomes of Submitted e-Consults

Reasons for e-Consult (N=153)
- Personal or family history of cancer (37)
- Suspected or known syndrome or genetic disorder (35)
- Free text (25)
- Family history of disease (other than cancer) (18)
- Labs, newborn screen, or presentation suggesting a metabolic disorder (11)
- Interpretation of prior genetic testing (test report required) (10)
- Genetic testing for a healthy patient (8)
- Preconception counseling (5)
- Fetal anomalies and concerns about birth defects (4)

e-Consults Declined (n=31)
Clinical reason for a declined consult (13):
- Patient requires traditional referral with a specialist for evaluation (10)
- Specialist needed is not part of the e-Consult pool of providers (3)

Process reason for a declined e-Consult (18):
- Responding clinician chose alternative platform (e.g., in-basket staff message) to address the clinical question (10)
- Duplicate order (6)
- Not enough information included in the e-Consult request to respond (2)

Answered e-Consults (n=122)
Median time-to-response: 2.0 days (IQR 0.97-4.83)

No Further Action Recommended (n=27)
Genetic testing or evaluation not indicated (20)
Interpreted previous genetic testing (7)

Actionable Recommendation (n=95)
- Recommended genetics evaluation (46)
- Familial testing is recommended first (18)
- In-person appointment recommended (13)
- Non-genetics labs recommended (10)
- Advised on screening plan (8)

Referring Provider Acted on the Recommendation?
- Yes (n=78)
- No/Not Documented (n=17)
References

10. Vimalananda, V. G. et al. Electronic consultations (e-consults) to improve access to