Otolith vestibular function appears to affect human hippocampal volume

Running title: Vestibular function affects hippocampus

Joyce Bosmansa,*, Hanne Gommerena,b, Peter zu Eulenburgc,d,e, Annick Gillesa,b,f, Griet Mertensa,b, Angelique Van Ombergena, Patrick Crasa,g, Sebastiaan Engelborghsh,i, Vincent Van Rompaeya,b

a Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.
b University Department of Otorhinolaryngology-Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
c German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
d Graduate School of Systemic Neurosciences, Munich, Germany
e Institute for Neuroradiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
f Department of Education, Health & Social Work, University College Ghent, Ghent, Belgium
g Department of Neurology, Antwerp University Hospital and Born-Bunge Institute, University of Antwerp, Antwerp, Belgium
h Department of Neurology, Universitair Ziekenhuis Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
i Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium

* Bosmans Joyce, corresponding author

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Joyce.bosmans@uantwerpen.be

Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium

Acknowledgments

This work was supported by an Fonds voor Wetenschappelijk Onderzoek (FWO) Fundamental Research Project (Grant Number G042819N3).

Data-availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.
Abstract

INTRODUCTION: Recent studies implicate the effect of vestibular loss on cognitive decline, including hippocampal volume loss. As hippocampal atrophy is an important biomarker of Alzheimer’s disease, exploring vestibular dysfunction as a risk factor for dementia and its role in hippocampal atrophy is of interest.

METHODS: Hippocampal and whole-brain MRI volumes were compared in adults aged between 55 and 83 years: (1) to substantiate previous literature, bilateral vestibulopathy (BV) was compared to healthy controls, (2) to correct for a potential confounding effect of concomitant hearing loss, BV was compared to healthy controls matched on age, sex, and hearing status, (3) to additionally evaluate the isolated effect of hearing loss on brain structure, sensorineural hearing loss (SNHL) was compared to healthy controls. Furthermore, to delineate otolith influence on hippocampal volume in preserved vestibular function (healthy controls and SNHL combined), saccular function was investigated.

RESULTS: Whole-brain and targeted hippocampal approaches using volumetric and surface-based measures yielded no significant differences in either of three comparisons: (1) BV versus controls, (2) BV versus matched controls, and (3) SNHL versus controls. Binary support vector machines were unable to classify inner ear health status above chance level. Otolith parameters were significantly associated with hippocampal volume in preserved vestibular function.

CONCLUSION: No significant differences in whole-brain or hippocampal volume were found when comparing BV with healthy controls, nor did concomitant SNHL confound this relationship. Otolith function may be associated with hippocampal volume rather than lateral semicircular canal integrity. Future BV studies should generally incorporate otolith function testing.
Keywords

Hippocampus, Bilateral vestibulopathy, Hearing loss, Alzheimer’s disease, Cognition, Dementia

Key points

- Recent research suggests an association between vestibular function and cognition.
- Hippocampal atrophy is an important biomarker of Alzheimer’s disease.
- Bilateral vestibular loss did not modulate hippocampal or whole-brain volume.
- Otolith function may influence hippocampal volume.
- Future vestibular research should incorporate otolith function testing.

1. Introduction

Bilateral vestibulopathy (BV) is a severe chronic vestibular disorder of the labyrinth or the eighth cranial nerve characterized by postural imbalance, unsteadiness of gait which worsens in darkness and/or on uneven ground, and oscillopsia during head movements. Symptoms are typically absent under static conditions (Strupp et al., 2017). Multiple possible etiologies for BV exist, including but not limited to ototoxicity, bilateral Menière’s disease, bilateral vestibular schwannoma, genetic, or infectious causes (Lucieer et al., 2016).

There is evolving evidence suggesting that vestibular loss is associated with cognitive impairment and may even contribute to the onset of Alzheimer’s disease (Bigelow & Agrawal, 2015; Bosmans et al., 2022; Bosmans et al., 2021; Harun et al., 2016; Previc, 2013; Semenov et al., 2016). Recent literature points to a significant impact of the vestibular system on cognitive function, specifically its impact on visuospatial processing. Visuospatial cognition encompasses spatial memory, mental rotation, navigation, and mental representation in three-dimensional space (Bigelow & Agrawal, 2015; Dobbels, Peetermans, et al., 2019). Visuospatial deficits associated with vestibular loss have consistently been observed in animal (Baek et al., 2010; Smith et al., 2015; Smith & Zheng, 2013; Zheng et al., 2007, 2009) and
human studies (Bosmans et al., 2022; Brandt et al., 2005; Dobbels, Mertens, et al., 2019; Dobbels, Peetermans, et al., 2019).

When zooming in on the anatomical level, structural brain changes have been reported in patients with vestibular loss over the past twenty years in manual segmentation studies, specifically at the level of the hippocampus (Brandt et al., 2005; Hufner et al., 2007). The hippocampus is a seahorse-shaped structure necessary for memory processing (encoding, consolidation, and retrieval) (Manns et al., 2003; Scoville & Milner, 1957) and spatial memory function (McNaughton et al., 1996; O'Keefe & Dostrovsky, 1971).

Hippocampal function encompasses spatial cognition and navigation, which has been identified to be impacted in BV patients. Previous studies have compared hippocampal volumes between subjects with and without bilateral vestibular loss. Brandt et al. (2005) looked at manually segmented hippocampal volumes in seven patients with BV due to bilateral vestibular nerve section (disease duration 5-10 years) with nine sex-, age-, and education-matched healthy controls. They found a significant selective decrease of hippocampal volume by 16.9% in people with BV relative to controls (Brandt et al., 2005). A study by Kremmyda et al. (2016) described a significant decrease in grey-matter mid-hippocampal and posterior parahippocampal volume in 13 long-standing patients with BV compared to 13 age- and sex-matched healthy controls. In this study, BV was defined as a bilaterally pathological head-impulse test (HIT) as well as reduced/absent responsiveness to bi-thermal (30°C/44°C) caloric irrigation (mean peak slow phase velocity (SPV) ≤ 6°/s). Disease duration was 13.6 ± 17.4 years. A study comparing hippocampal volumes in BV patients and age- and sex-matched healthy controls was performed by Gottlich et al. (2016). They included 27 patients diagnosed with BV based on a bilateral pathological HIT, bilaterally reduced gain of the horizontal vestibulo-ocular reflex (VOR) (<0.72) assessed by video-HIT (vHIT), bilateral
caloric hypofunction (bi-thermal (27°C/44°C), mean peak SPV <5°/s on both sides), and brain magnetic resonance imaging (MRI) without structural brain lesions. Here, disease duration ranged from 3 months to 20 years. This study identified no differences in hippocampal grey matter volume when comparing the BV and control groups. However, they observed a negative association of grey matter volume in the bilateral hippocampal CA3 region with an increasing objective vestibulopathy-related disability, as measured by the Clinical Vestibular Score (Gottlich et al., 2016; Helmchen et al., 2009). A study by Dordevic et al. (2021) also observed a lack of volumetric differences in whole-brain and medial temporal lobe regions (including the hippocampus and insula) when comparing patients with chronic mild uni- or bilateral vestibulopathy and healthy controls. This study included 15 patients with disease duration ranging from 9 months to 23 years. These findings are supported by Schöne et al. (2022) who analysed structural changes in the brain, including the hippocampus, in 55 patients with peripheral vestibular dysfunction, of which 19 demonstrated bilateral vestibular loss (age: 53.18 ± 19 years; disease duration: 14.68 ± 13.29 years). They also observed a lack of hippocampal volume loss compared to age- and sex-matched healthy controls. Overall, studies evaluating hippocampal volume in bilateral vestibular loss have yielded contradicting results, with some studies from one lab observing a decrease in hippocampal volume (Brandt et al., 2005; Kremmyda et al., 2016) while other multi-site studies do not (Dordevic et al., 2021; Gottlich et al., 2016; Schöne et al., 2022).

A study by Kamil et al. (2018) took a different approach and evaluated hippocampal volume in 103 healthy older adults (≥ 60 years) from the Baltimore Longitudinal Study of Aging (BLSA). They observed that an increase in cervical vestibular-evoked myogenic potential (cVEMP) amplitude was significantly associated with an increase in mean hippocampal volume ($p = .003$, 35 participants included). They proposed that lower cVEMP amplitude, implying
reduced saccular function, is significantly associated with a lower mean volume of the hippocampus. Jacob et al. (2020) included 80 healthy older adults (≥ 60 years) from the BLSA cohort. They investigated the relation between vestibular function (using cVEMP) and the volume and shape of structures comprised of or connected with the vestibular cortex. They observed reduced volumes of the hippocampus and entorhinal cortex associated with reduced vestibular function. In addition, they found the shape of the hippocampus, amygdala, thalamus, nucleus caudate, putamen, and entorhinal cortex – trans-entorhinal cortex complex to be related with vestibular function. A review by Smith (2019) supports these findings, stating that reduced saccular function can be related to poorer spatial memory, Alzheimer’s disease, and reduced hippocampal volume.

Due to the close anatomical relationship in the inner ear, there is a high risk of concomitant sensorineural hearing loss (SNHL) in patients with vestibular dysfunction and vice versa. More precisely, the prevalence of SNHL in the BV population ranges from 31 to 44% (Lucieer et al., 2016; Zingler et al., 2007). In addition, hearing loss has been recognized as a modifiable risk factor for dementia and associated with volume loss in the temporal lobe, including the hippocampus and entorhinal cortex (Armstrong et al., 2019; Livingston et al., 2020; Uchida et al., 2018). However, not all studies could replicate these findings (Armstrong et al., 2020; Profant et al., 2020). Nevertheless, as a concomitant hearing loss could exacerbate a potential effect of vestibular dysfunction on brain volumes, the hippocampus being of main interest, hearing levels should be included in these analyses.

Previously mentioned studies comparing hippocampal volumes between BV patients and healthy controls generally lack a detailed description of hearing performance. Brandt et al. (2005) stated that only one patient had total postoperative hearing loss. Gottlich et al. (2016) did not report subjects’ hearing levels. Kremmyda et al. (2016) included a table of relevant
clinical data in included BV patients, reporting hearing loss in two cases, as well as tinnitus in an additional case. In addition, Menière’s disease was reported as the etiology of BV of one subject, which is a disorder of the inner ear leading to vertigo spells and SNHL. Dordevic et al. (2021) excluded all severe (unilateral) hearing deficits. However, none of these studies ever included hearing performance in their methodological approach to the topic.

As we expect that concomitant SNHL might confound results from previous studies which found a decrease in hippocampal volume in the BV population, we hypothesize to find hippocampal changes in individual comparisons between people with BV and controls (not matched for hearing loss) and between subjects with SNHL and controls (both with preserved vestibular function). We hypothesize that the isolated effect of BV (adjusted for hearing level) will not result in significant hippocampal volume differences when compared to controls. This study aims to substantiate literature on hippocampal and whole-brain volumetric differences when comparing BV participants with healthy controls, adjusting for hearing level. Furthermore, an additional aim of this study is to delineate otolith influence on hippocampal volume in a population with preserved vestibular function. Therefore, there are four objectives of this study: (1) to compare whole-brain and hippocampal volumes between a group with BV and healthy controls, without matching for hearing status, and (2) to evaluate the isolated effect of bilateral vestibular loss on whole-brain and hippocampal volume by comparing a group with BV with an age-, sex-, and hearing-matched control group, (3) to separately evaluate the effect of hearing loss on whole-brain and hippocampal volume by comparing a group with SNHL and preserved vestibular function with an age- and sex-matched control group, and (4) to evaluate saccular function in a population with preserved vestibular function and its relation to hippocampal volume. In addition to hippocampal and
whole-brain analyses, we will also perform cortical thickness and sulcus depth analyses for objectives 1 to 3 as well as surface-based morphometry.

2. **Materials and Methods**

2.1. **Participant Characteristics**

All participants were recruited from the *GEcko* study (Gehoor, Evenwicht, COgnitie), an ongoing prospective longitudinal cohort study of the effect of hearing loss and vestibular decline on cognitive function in older adults (Bosmans et al., 2020). This protocol was approved by the ethical committee of the University Hospital of Antwerp, Belgium (EC number B300201938949) and all participants gave their written informed consent in accordance with the Declaration of Helsinki prior to participation. The study protocol builds upon the Clinical Trials protocol with identifier NCT04385225.

2.1.1. **BV population**

The diagnosis of BV was made according to the Bárány Society criteria and was defined as (1) a bilaterally pathological horizontal angular VOR gain (<0.6) measured by the vHIT, and/or (2) reduced horizontal angular VOR gain (<0.1) upon sinusoidal stimulation on a rotatory chair (0.1 Hz, Vmax = 50°/sec), and/or (3) reduced caloric response (sum of bi-thermal (30°C/44°C) maximum peak SPV on each side <6°/sec) (Strupp et al., 2017).

2.1.2. **Subjects with sensorineural hearing loss and healthy controls**

People with hearing levels worse than age- and sex-based audiologically normal ranges in their best hearing ear were categorized in a group with SNHL. People with hearing levels within these audiologically normal ranges in their best hearing ear were categorized as healthy controls. Preserved hearing ranges were based on the ISO7029 method for air-
conducting pure-tone threshold audiometry (frequencies 0.5, 1, 2, 3, 4, 6, 8 kHz). All participants underwent vHIT to confirm normal vestibular function (bilateral horizontal VOR gain > 0.6).

For all people (BV, SNHL, and healthy controls) the following inclusion criteria were applied (1) age 55 – 84 years, (2) Dutch as native language, (3) right-handed as defined by the Edinburgh Handedness Inventory (Oldfield, 1971), and (4) preserved cognitive function. A neuropsychological exam including a Mini-Mental State Examination (MMSE) and Repeatable Battery for the Assessment of Neuropsychological Status for Hearing impaired individuals (RBANS-H) was performed in all participants (Claes et al., 2016; Folstein et al., 1975). Participants were considered having preserved cognitive function when scoring ≥ 24/30 on the MMSE as well as ≥ percentile 16 on the RBANS-H total score (Albert et al., 2011; Folstein et al., 1975). People with an implanted hearing aid device (e.g., cochlear implant or bone-anchored hearing aid) were excluded from this study.

For the analyses comparing BV participants with healthy controls, adjusted for hearing level, BV participants were matched based on age, sex, and best aided speech audiometry in noise.

2.2. MRI Volumetry

2.2.1. Acquisition Protocol

All subjects were investigated in a clinical 3.0 T scanner (Siemens Magnetom Prisma, Erlangen equipped with a 32-channel receiver head coil, 39 subjects in total, being 11 with BV, 10 with SNHL, and 18 healthy controls; Siemens Magnetom Vida, Erlangen equipped with a 64-channel receiver head coil, 11 subjects in total, being 5 with BV, 5 with SNHL, and 1 healthy control). A high-resolution T1-weighted image (GRAPPA sequence, 256 slices, slice thickness
= 0.75 mm, voxel size = 0.75 x 0.75 x 0.75 mm, TR = 2060 ms, TE = 2.17 ms) was obtained in sagittal orientation.

2.2.2. MRI Data Processing

Neuroimaging data quality control was performed via MRIQC version 0.15.1 (Esteban et al., 2017). Structural images were pre-processed and automatically segmented by the Computational Anatomy Toolbox (CAT12 Version 1980) (Gaser et al., 2022), an extension within the framework of Statistical Parametric Mapping software (SPM12) in MATLAB. Atlas-based segmentation for regions-based morphometry included the entire hippocampus as well as the volume of its substructures (CA1, CA2, and CA3) taken from the cytoarchitectonic representation in the Julich Brain atlas (Amunts et al., 2020). In addition, total intracranial volume (TIV) was estimated and used (together with age and scanner type) as a covariate for all the voxel- and region-based, but not for surface-based analyses (Hutton et al., 2009).

2.3. Otolith function evaluation of the saccule

Saccular function was investigated via the vestibulocollic reflex (VCR) using cVEMP with the validated Neuro-Audio device incorporating electromyography feedback (Neurosoft, DIFRA). While participants lied in a supine position, they lifted and rotated their head to one side, tensioning the sternocleidomastoid (SCM) muscle. Short 500 Hz tone bursts were presented in the contralateral ear at suprathreshold level (95 dB nHL). Present responses were biphasic and had two distinctive peaks (p13 and n23). Normative ranges were applied, with the p13 occurring 11.81–15.59 ms after stimulus onset, and with the n23 occurring 18.15–25.64 ms after stimulus onset (Li et al., 2014). Intact responses needed to be elicited at least twice to confirm presence of the VCR. Outcome measures included presence of intact responses (0, 1 ear, or both ears), and for each present response outcome measures included p13 latency.
(ms), n23 latency (ms), P-N amplitude (µV), rectified amplitude (µV), and SCM muscle contraction level (mean rectified voltage, MRV, µV).

2.4. Hearing Assessment

Unaided pure-tone audiometry was measured over a frequency range from 125 Hz to 8 kHz (specifically 0.125, 0.25, 0.5, 1, 2, 3, 4, 6, 8 kHz). Hearing thresholds were measured separately for each ear using a 2-channel Interacoustics AC-40 audiometer with insert earphones. Speech audiometry in noise (speech-in-noise; SPIN) was evaluated by the Leuven Intelligibility Sentences Test (LIST) with an adaptive procedure (van Wieringen & Wouters, 2008) in free field using a loudspeaker at a distance of 1 meter at 0° azimuth. The noise level was constant at 65 dB sound pressure level (SPL) while the speech level was adapted according to a correct (decreased speech level of 2 dB SPL) or incorrect (increased speech level of 2 dB SPL) response. Two lists of ten sentences each were conducted to acquire the speech reception threshold (SRT in dB SNR; averaged speech levels of the last five sentences and the imaginary 11th sentence), both in an unaided and aided condition. The mean value of the best aided condition was used for analyses.

2.5. Statistical Analysis

For demographic and ROI-based analyses (by use of the Julich-Brain atlas (Amunts et al., 2005)), JMP Pro 15 (Medmenham, UK) was used. Levene’s tests and visualization of data using histograms confirmed equal variances and the normality of reported data. However, because of the small sample size, nonparametric tests with the median and range are reported. Continuous patient characteristics were compared using Kruskal-Wallis ANOVA, for nominal patient characteristics, the Pearson Chi-squared statistic was used. For voxel-based morphometry analyses, the CAT12 toolbox and SPM12 were used. For each aim, a two-sample
t-test was performed. Whole-brain changes were investigated by an F-contrast, with age, TIV, and scanner type as covariates. Similar statistics were performed for surface analyses (cortical thickness and sulcus depth), with only age and scanner type as covariates. Regarding p-value adjustment, the Monte-Carlo method for permutation testing (10,000 permutations) was applied using the TFCE toolbox (Version 224), with correction for multiple comparisons via false discovery rate (p < .05). In addition, machine learning in the form of multi-voxel pattern analysis is performed to increase the sensitivity to detect differences in each pairwise comparison by use of the Pattern Recognition for Neuroimaging Toolbox v3.0 (PRoNTo) (Schrouff et al., 2016). Classification was performed using a binary support vector machine (SVM) with one subject per class left out as the cross-validation scheme and 10,000 permutations. A Spearman correlation (and its 95% confidence interval) was performed for saccular analyses. P-values are reported, as well as eta squared (η^2) indicating the effect size. The Pearson Chi-squared statistic was used for ordinal parameters, with w indicating its effect size. Between-scanner type differences were examined by a two-sample t-test of quality control parameters derived from MRIQC.

3. Results

3.1. Patient Characteristics

Demographic and clinical details as well as neuroimaging data quality of included participants can be found in Table 1 (BV versus healthy controls, without accounting for hearing loss and SNHL versus healthy controls, with preserved vestibular function) and Table 2 (BV versus age-, sex-, and hearing-matched controls). Sixteen patients with BV (median age = 63, range [56, 74], 10 males); 15 patients with SNHL (median age = 71, range [58, 83], 8 males); and 19 healthy controls (median age = 70, range [55, 81], 11 males) participated in the study. The
median [range] disease duration for the BV population was 8 years [2, 22]. Among the etiologies of BV, 6 patients had a genetic risk (DFNA9), 1 patient autoimmune, 2 patients infectious (meningitis, varicella zoster), 1 patient ototoxic, 2 patients due to trauma, 1 patient with unknown etiology, and 3 patients idiopathic. All patients with idiopathic etiology had undergone an MRI fossa posterior, tonal audiometry, and (hetero)anamnesis to exclude other causes. To confirm the diagnosis of BV, patients must meet at least one out of three of the Bárány Society criteria (Strupp et al., 2017). All three criteria (bilaterally reduced vHIT response, rotatory chair, and caloric testing) were met by 25% (n = 4) of people with vestibular loss. In 37.5% (n = 6), two out of three criteria were fulfilled, and the remaining 37.5% (n = 6) of people met one criterion. Based on the unaided tonal audiometry of the best hearing ear, 6 subjects with BV demonstrated age-normal hearing function, 4 had moderate SNHL, and 6 had severe SNHL.

Age, sex, hearing level, education level, obesity, smoking status, tinnitus presence, and depression may affect hippocampal volumes (Campbell et al., 2004; Cherbuin et al., 2015; Nobis et al., 2019; Profant et al., 2020). Therefore, age, sex, Fletcher index high (F_{high}; average threshold of 1 kHz, 2 kHz, and 4 kHz), SPIN, hearing aid ownership, years of education (number of years spent in school, starting from the age of 6 years old), body mass index (BMI), smoking status, tinnitus presence, and the total score of the Beck Depression Inventory were included in the demographic characteristics.

When comparing the BV group with healthy controls, not matched for hearing status, significant differences were observed for hearing level (Fletcher index high, SPIN, and hearing aid ownership), highlighting the importance of including hearing status in future analyses. In addition, significant differences were found for age (Table 1). These differences must be considered when interpreting results. When comparing the BV group with age-, sex-, and
hearing-matched controls to single out the sole effect of bilateral vestibular loss, no significant demographic or patient characteristic differences were observed (Table 2). When comparing a group with SNHL with healthy controls, both with preserved vestibular function, expected significant differences were observed for hearing level (Fletcher index high, SPIN, and hearing aid ownership). In addition, these groups differed significantly on depressive status, which needs to be considered when interpreting results (Table 1). In these groups, two participants were on antidepressants or anxiolytics (1 healthy control used Paroxetine; 1 person with SNHL used Sulpiride).

Neuroimaging data quality control encompassed image quality metrics for structural images including Dietrich’s signal-to-noise ratio (SNRd) (Dietrich et al., 2007), entropy focus criterion (EFC) (Atkinson et al., 1997), and coefficient of joint variation (CJV) (Ganzetti et al., 2016). Neuroimaging data quality control was blinded for diagnostic categories and afterwards tested for group differences. The parameters EFC and CJV were included to control for the potential head motion differences between the groups during structural neuroimaging. None of the pairwise comparisons resulted in a significant difference on any of the image quality metrics (Table 1, Table 2). For inter-scanner differences, the same image quality metrics were compared between both scanners including all obtained data. The Siemens Magnetom Prisma was used in 39 participants with median [range] age 65 years [55, 81], including 21 males and 18 females, being 11 participants with BV, 10 with SNHL, and 18 healthy controls. The Siemens Magnetom Vida was used in 11 participants with median [range] age 72 years [63, 83], including 8 males and 3 females, being 5 participants with BV, 5 with SNHL, and 1 healthy control. There was no significant difference for SNRd and EFC between scanners \(p = .7223; p = .8550 \); respectively). However, CJV differed significantly between scanners \(p = .0009 \), with
larger values and therefore more head motion in the Siemens Magnetom Vida scanner. This has to be kept in mind when interpreting results.

3.2. A comparison between the BV population and healthy controls, unaccounted for hearing status

To try and reproduce results from previous studies, tissue segmentation of people with BV was compared with healthy controls, unaccounted for hearing status. No suprathreshold clusters, thus no significant changes in whole-brain grey matter volume between these two groups were observed ($p > .05$). A dedicated ROI analysis of the hippocampus proper (CA1 – CA3) also revealed no significant differences between these two groups ($p = .7137$). Lateralization analyses of the hippocampus proper again found no significant difference between these two groups (left hippocampus proper: $p = .6237$; right hippocampus proper: $p = .8562$). Details of the ROI analysis of the hippocampus proper can be found in Table 3. Surface-based analyses (cortical thickness as well as sulcus depth) also found no significant difference between these two groups ($p > .05$). Machine learning is applied here as a more sensitive tool to detect differences between both groups. The area under the receiver operating characteristic (ROC) curve value of the SVM model remained 0 ($p = 1$) with a total accuracy of 55.26%, reflecting random classification of people with BV versus healthy controls unaccounted for hearing status, which is in line with previous results.

3.3. Effect of bilateral vestibular loss on brain volumes

To evaluate the isolated effect of bilateral vestibular loss on brain tissue compartments and to exclude a potential confounding effect of concomitant hearing loss, modulated grey and white matter tissue volumes of people with BV were compared with healthy controls.
additionally matched for hearing status. Again whole-brain grey matter comparisons including substantial permutation testing to protect against false positive findings in small cohorts like ours yielded no significant differences between these two groups ($p > .05$). A ROI analysis of the hippocampus proper again found no significant morphometric changes between these two groups (total hippocampus proper: $p = .7806$; left hippocampus proper: $p = .7200$; right hippocampus proper: $p = .8958$; see Table 3). Surface-based analyses (cortical thickness and sulcus depth) also gave no significant differences between these two groups ($p > .05$). The SVM model resulted in an area under the ROC curve value of 0 ($p = 1$, total accuracy of 40.62%), reflecting again at random classification of people with BV versus their matched healthy controls, supporting these previous results.

3.4. Effect of sensorineural hearing loss on brain volumes

To evaluate the sole effect of SNHL in voxel-based morphometry, in this case to explore the effect of this potential confounding factor when analyzing brain volumes of people with BV, brain volumes of subjects with SNHL were compared with healthy controls. Comparisons of whole-brain grey matter tissue found no significant differences between these two groups ($p > .05$), as well as a ROI analysis of the hippocampus proper (total hippocampus proper: $p = .4520$; left hippocampus proper: $p = .7375$; right hippocampus proper: $p = .3271$; see Table 3). In addition, surface-based analyses (cortical thickness and sulcus depth) yielded no significant differences between these two groups ($p > .05$). These results are in line with the SVM model which resulted in an area under the ROC curve value of 0 ($p = 1$, total accuracy of 65.79%).

3.5. Otolith (saccular) function and hippocampal volumes

To explore whether hippocampal volume correlates with saccular function in a population with preserved vestibular function, cVEMP parameters of participants without BV were
analysed (Table 4). These analyses included a total of 34 participants (15 with SNHL and 19 healthy controls). Out of all 68 ears, 43 ears demonstrated an intact saccular response. However, the presence of intact responses was not significantly associated with the volume of the hippocampus proper ($X^2(2, N = 34) = .0804, p = .9606$). Of the ears with intact responses, P-N amplitude, rectified amplitude, and n23 latency demonstrated no significant nor clinically meaningful effect ($r(1) = -0.07, p = .643; r(1) = 0.01, p = .966 ; r(1) = 0.11, p = .472$; respectively). Muscle tension of the SCM as measured by MRV also demonstrated no significant effect ($r(1) = 0.16, p = .304$). P13 latency on the other hand was significantly associated with hippocampal volume ($r(1) = 0.34, p = .028$) with a medium effect ($\eta^2 = .1129$). Even though cVEMP testing does not depend on hearing level but to correct for SNHL, p13 latency was correlated with unaided Fh_{high}-values of the best hearing ear (Rosengren et al., 2019). As expected, this correlation was not significant ($r(1) = -0.001, p = .995$) with a trivial effect size ($\eta^2 < .001$). There are heterogeneous results on the effect of age on p13 latency, but p13 latency is generally known to be associated with age (Macambira et al., 2017). However, the correlation between age and p13 latency was not significant ($r(1) = -0.278, p = .072$).

4. **Discussion**

This study aimed to substantiate and potentially clarify the literature on hippocampal and whole-brain volumetric differences when comparing BV participants with healthy controls whilst adjusting for hearing level. Previous studies on this inner ear topic did not control for the confounding effects of altered hearing levels. Hence, we first tried to reproduce previous literature by comparing a group of subjects with BV with a healthy control group, without considering hearing status. However, we were unable to replicate previous findings as we did
not find any differences between both groups: neither using whole-brain grey matter analyses, nor using an ROI analysis of the hippocampus proper, nor using surface-based analyses, nor using the SVM model as a more sensitive machine learning technique. Equivalent results were found when only analysing data obtained from the Siemens Magnetom Prisma. Therefore, the absence of significant differences could not be linked to different scanner types. Data from the Siemens Magnetom Vida were not analysed by themselves because of too small sample sizes. Further details are not described here but are available upon request. As we hypothesized to observe a difference between these groups, we wanted to untangle the individual impact of vestibular dysfunction and potential concomitant hearing loss in this expected volumetric difference. The evaluation of the isolated effect of BV on whole-brain and hippocampal volume resulted in no significant differences, which was in line with our hypothesis. However, we did expect to find a significant difference when separately evaluating the effect of hearing loss on whole-brain and hippocampal volume, but this comparison also resulted in no significant difference.

In summary: in this study, neither BV nor SNHL resulted in significant whole-brain or hippocampal volumetric differences in comparison with healthy controls. In addition, we aimed to delineate otolith influence on hippocampal volume in a population with preserved vestibular function. An intact cVEMP response was elicited in at least one ear in 82% of the cases. The p13 latency was positively correlated with hippocampal volume, where longer latencies within normal ranges indicated larger hippocampal volumes. Other saccular parameters at suprathreshold level (95 dB nHL) including the number of intact responses, P-N amplitude, rectified amplitude, n23 latency, and MRV did not demonstrate a significant correlation with the volume of the hippocampus proper.
This study used the normative ranges of Li et al. (2014) to indicate the presence of intact cVEMP responses (p13: 11.81-15.59 ms; n23: 18.15-25.64 ms). However, different latencies can be observed in the literature, with some diverging from the normative ranges of Li et al. (2014) (for a recent systematic review with meta-analysis, see Macambira et al. (2017)). For transparency reasons, an overview per subject of saccular parameters and additional relevant data can be found in the Appendix.

The emerging theory of the association between vestibular loss and cognitive decline would be supported by associated hippocampal atrophy in BV. As such, positive studies by Brandt et al. (2005) and Kremmyda et al. (2016) are often cited exclusively to substantiate this hypothesis. However, the role of the replication crisis should not be underestimated and these current null findings, together with those observed by Dordevic et al. (2021), Gottlich et al. (2016), and Schöne et al. (2022) need to be taken into account to correct earlier underpowered findings using less reliable segmentation approaches to avoid future false understandings of this association. However, one can question whether the present study’s negative results can completely disprove the association between hippocampal atrophy and BV? Not necessarily. First of all, BV is a broad and heterogeneous condition. Therefore, one might consider subdividing the BV population by etiology or duration since onset. Second, multiple tests exist to assess peripheral vestibular end-organ functioning. The current study included older adults diagnosed with BV. Diagnostic criteria for this condition all rely on semicircular canal function. However, measurements of otolithic organs and in particular saccular function (as measured by the cVEMP) may be of added value. They may provide interesting new insights because of their association with spatial learning and memory (Smith, 2019). Therefore, this study included saccular characteristics and their association with hippocampal volume, observing a significant contribution to p13 latency. However, the
underlying mechanisms of this observed correlation still need further exploration. Future research should include saccular function testing when studying hippocampal volumes and should try to reproduce these findings to gain a more extensive understanding of the exact underpinnings of the current association.

The first limitation of this study is the small sample size. Our research included 16 participants with BV, 15 with SNHL, and 19 healthy controls. A recent review investigated the number of examined healthy volunteers in original articles published in Magnetic Resonance in Medicine between 2017 and 2019 (Hanspach et al., 2021). A median of 6 healthy volunteers was included over all technical and anatomical categories. Regarding sample sizes for the technical category of T1 weighted images, a mean of 6.44 and a median of 2 was obtained. Regarding sample sizes for the anatomical category of the head, a mean of 7.81 and a median of 5 were obtained. Regarding sample sizes for the magnetic field strength of 3T, a mean of 6.38 and a median of 5 were obtained. Even though our sample size exceeded these mean and median numbers, the recommendation that each subgroup should at least include 20 participants was not fully met (Gaus & Rainer, 2013). But we believe that the obtained data quality and stringency of the employed processing pipeline together with the application of full permutation testing makes our findings extremely robust.

A second minor limitation is the difference in disease duration for the current BV population. Our study’s median [range] disease duration was 8 [2-22] years. Comparable studies have a disease duration of 5-10 years (Brandt et al., 2005), 13.6 ± 17.4 years (Kremmyda et al., 2016), and 3 months to 20 years (Gottlich et al., 2016). The high variation in disease duration might complicate a direct comparison between studies.

Another limitation could be the influence of confounding factors within our analyses. When comparing BV with healthy controls not accounted for hearing status, a significant difference
was observed in age (with healthy controls being older). When comparing the SNHL group with healthy controls, a significant difference was observed in depression, with the SNHL group obtaining higher depression scores. These significant confounding factors need to be kept in mind when interpreting results. In particular age, for example when the currently younger BV group reaches the same age as the currently older healthy controls (considering that hippocampal volume tends to decrease with age), hippocampal volumes of BV patients may further decrease, possibly resulting in a more pronounced difference in hippocampal volume than demonstrated in current comparison.

5. Conclusion

Neither whole-brain nor hippocampal volume differences were observed when comparing subjects with BV and healthy controls, unaccounted for hearing status. Comparisons between the BV population and matched healthy controls based on age, sex, and hearing level to evaluate the isolated effect of BV yielded similar non-significant results. To assess the sole impact of potentially confounding hearing loss, whole-brain and hippocampal volumes of subjects with SNHL were compared with healthy controls. Again, no significant differences were observed. Saccular function testing resulted in a significant correlation between p13 latency and hippocampal volume. Future research could benefit from including saccular function testing on top of semicircular canal function testing on which diagnostic criteria for BV are primarily based. The association between otolith (here: saccular) function and hippocampal volume (including current findings) needs to be replicated. More extensive population-based studies may further explore the exact etiology underlying the association between vestibular or only otolith function and hippocampal and whole-brain structure in humans.
6. **Declarations of interest**

The authors have no relevant financial or non-financial interests to disclose.

7. **Data availability**

The datasets generated and analysed during the current study are available from the corresponding author upon request.

8. **Author contributions**

9. **Funding**

This work was supported by an Fonds voor Wetenschappelijk Onderzoek (FWO) Fundamental Research Project (Grant Number G042819N3).
10. Reference list

11. Tables

Table 1. Demographic characteristics of people with BV, hearing loss, and healthy controls. Significant values are indicated with an asterisk (*: p<.05, **: p<.01, ***: p<.001). Education level indicates the years spent in school, starting from 6 years old. NA indicates the amount of missing data. BV, bilateral vestibulopathy; HC, healthy controls; SNHL, sensorineural hearing loss; SD, standard deviation; Fihigh, Fletcher index high (mean 1 – 2 – 4 kHz); dB HL, decibel hearing level; SPIN, speech-in-noise; SRT, speech reception threshold; BMI, body mass index; SNRd, Dietrich’s signal-to-noise ratio; EFC, entropy focus criterion; CJV, coefficient of joint variation.

<table>
<thead>
<tr>
<th></th>
<th>Bilateral vestibulopathy (n = 16)</th>
<th>Sensorineural hearing Loss (n = 15)</th>
<th>Healthy controls (n = 19)</th>
<th>p-Value BV vs HC</th>
<th>p-Value SNHL vs HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year: median [range])</td>
<td>63 [56, 74]</td>
<td>71 [58, 83]</td>
<td>70 [55, 81]</td>
<td>.0155*</td>
<td>.7839</td>
</tr>
<tr>
<td>Sex (n: M/F)</td>
<td>10/6</td>
<td>8/7</td>
<td>11/8</td>
<td>.7817</td>
<td>.7903</td>
</tr>
<tr>
<td>Hearing level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bilateral vestibulopathy (n = 16)</td>
<td>Matched controls (n = 16)</td>
<td>p-Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (year: median [range])</td>
<td>63 [56, 74]</td>
<td>64 [57, 74]</td>
<td>.4486</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (n: M/F)</td>
<td>10/6</td>
<td>10/6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearing level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F_{\text{high}}) best ear (unaided dB HL: median [range])</td>
<td>40 [10, 78.3]</td>
<td>33.3 [6.7, 68.5]</td>
<td>.7395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPIN (best aided SRT: median [range])</td>
<td>-2.8 [-5, 14.3]</td>
<td>-3 [-5.7, 1.7]</td>
<td>.1867</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearing aid ownership (n: YES/NO)</td>
<td>8/8</td>
<td>8/8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinnitus presence (n: YES/NO/NA)</td>
<td>10/4/2</td>
<td>10/6</td>
<td>.6048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education level (year: median [range])</td>
<td>13 [8, 20]</td>
<td>14.5 [12, 32]</td>
<td>.1030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (median [range])</td>
<td>26 [24.2, 32.8]</td>
<td>25.8 [21, 36.6]</td>
<td>.2991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking (n: YES/NO/NA)</td>
<td>2/12/2</td>
<td>0/16/0</td>
<td>.1176</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Demographic characteristics of people with BV and its age-, sex-, and hearing-matched controls. Education level indicates the number of years spent in school, starting from 6 years old. NA indicates the amount of missing data. SD, standard deviation; \(F_{\text{high}}\), Fletcher index high (mean 1 – 2 – 4 kHz); dB HL, decibel hearing level; SPIN, speech-in-noise; SRT, speech reception threshold; BMI, body mass index; SNRd, Dietrich’s signal-to-noise ratio; EFC, entropy focus criterion; CJV, coefficient of joint variation.
Table 3. ROI volumes of the hippocampus proper.

<table>
<thead>
<tr>
<th></th>
<th>Bilateral vestibulopathy</th>
<th>Sensorineural hearing loss</th>
<th>Healthy controls</th>
<th>Matched controls</th>
<th>p-Value BV vs HC</th>
<th>p-Value BV vs matched controls</th>
<th>p-Value SNHL vs HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left hippocampus proper (median [range])</td>
<td>3.3 [1.3, 3.8]</td>
<td>2.9 [2.5, 3.8]</td>
<td>3.1 [2.3, 3.6]</td>
<td>3.2 [2.6, 3.8]</td>
<td>.6237</td>
<td>.7200</td>
<td>.7375</td>
</tr>
<tr>
<td>Right hippocampus proper (median [range])</td>
<td>3.9 [3.1, 4.6]</td>
<td>3.7 [2.9, 4.7]</td>
<td>4.0 [2.9, 5.7]</td>
<td>3.9 [3.4, 4.7]</td>
<td>.8562</td>
<td>.8958</td>
<td>.3271</td>
</tr>
<tr>
<td>Hippocampus proper (median [range])</td>
<td>7.3 [5.1, 8.2]</td>
<td>6.5 [5.4, 8.5]</td>
<td>7.1 [5.4, 9.1]</td>
<td>7.2 [6.0, 8.5]</td>
<td>.7137</td>
<td>.7806</td>
<td>.4520</td>
</tr>
</tbody>
</table>

Table 4. Saccular characteristics and their association with volume of the hippocampus proper.

Latencies are expressed in milliseconds, amplitude and muscle tension are expressed in microvolts. Significant results are indicated with an asterisk (*: *p*<.05). cVEMP, cervical vestibular-evoked myogenic potentials; MRV, mean rectified voltage.

<table>
<thead>
<tr>
<th>cVEMP parameter</th>
<th>Median [range]</th>
<th>Correlation with hippocampal volume (95% confidence interval)</th>
<th>p-Value</th>
<th>Effect size η²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of intact responses (n = 34)</td>
<td>No responses: n=6 (18%) One ear: n=13 (38%) Both ears: n=15 (44%)</td>
<td>Chi-Square (df=2): .0804</td>
<td>.9606</td>
<td>w = .0486 (trivial)</td>
</tr>
<tr>
<td>P-N amplitude (n=43)</td>
<td>102.5 [38.5, 195.2]</td>
<td>0.07 (-0.23, 0.37)</td>
<td>.6429</td>
<td>.0053 (trivial)</td>
</tr>
<tr>
<td>Rectified amplitude (n=43)</td>
<td>0.69 [0.36, 1.47]</td>
<td>0.01 (-0.29, 0.31)</td>
<td>.9660</td>
<td>.00004 (trivial)</td>
</tr>
<tr>
<td>p13 latency (n=43)</td>
<td>13.4 [12, 15.2]</td>
<td>0.34 (0.04, 0.58)</td>
<td>.0276*</td>
<td>.1129 (medium)</td>
</tr>
<tr>
<td>n23 latency (n=43)</td>
<td>22 [18, 25.3]</td>
<td>0.11 (-0.19, 0.40)</td>
<td>.4718</td>
<td>.0127 (small)</td>
</tr>
<tr>
<td>MRV (n=43)</td>
<td>149.9 [90.5, 204.7]</td>
<td>0.16 (-0.15, 0.44)</td>
<td>.3039</td>
<td>.0258 (small)</td>
</tr>
</tbody>
</table>
Appendix. Overview per subject of sex, age, hearing level, saccular parameters, and hippocampal volume. All cVEMP latencies lying between the normative ranges of Li et al. (2014) and therefore included in the analyses are shaded in grey. NR indicates no response was found. F high, Fletcher index high (mean 1 – 2 – 4 kHz, unaided, best hearing ear); cVEMP, cervical vestibular-evoked myogenic potential; MRV, mean rectified voltage; NR, no response.

<table>
<thead>
<tr>
<th>ID</th>
<th>Sex</th>
<th>Age</th>
<th>F high best ear</th>
<th>cVEMP right ear</th>
<th>cVEMP left ear</th>
<th>Hippocampal volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>P13 latency</td>
<td>N23 latency</td>
<td>P-N amplitude</td>
<td>Rectified amplitude</td>
</tr>
<tr>
<td>1</td>
<td>Female</td>
<td>76-80</td>
<td>43.33</td>
<td>12.3</td>
<td>19.6</td>
<td>165.0</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>71-75</td>
<td>21.67</td>
<td>13.2</td>
<td>25.3</td>
<td>159.3</td>
</tr>
<tr>
<td>3</td>
<td>Female</td>
<td>61-65</td>
<td>33.33</td>
<td>14.3</td>
<td>22.0</td>
<td>62.1</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>61-65</td>
<td>33.33</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>76-80</td>
<td>21.67</td>
<td>15.2</td>
<td>22.0</td>
<td>146.7</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>66-70</td>
<td>30.00</td>
<td>14.7</td>
<td>24.7</td>
<td>101.6</td>
</tr>
<tr>
<td>7</td>
<td>Male</td>
<td>61-65</td>
<td>31.67</td>
<td>16.0</td>
<td>25.2</td>
<td>178.1</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>76-80</td>
<td>31.67</td>
<td>14.0</td>
<td>23.8</td>
<td>99.2</td>
</tr>
<tr>
<td>9</td>
<td>Female</td>
<td>71-75</td>
<td>28.33</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>10</td>
<td>Male</td>
<td>56-60</td>
<td>6.67</td>
<td>14.0</td>
<td>23.0</td>
<td>130.5</td>
</tr>
<tr>
<td>11</td>
<td>Female</td>
<td>51-55</td>
<td>15.00</td>
<td>15.7</td>
<td>23.4</td>
<td>71.3</td>
</tr>
<tr>
<td>12</td>
<td>Female</td>
<td>56-60</td>
<td>21.67</td>
<td>14.8</td>
<td>20.7</td>
<td>62.0</td>
</tr>
<tr>
<td>13</td>
<td>Female</td>
<td>71-75</td>
<td>15.00</td>
<td>19.3</td>
<td>25.4</td>
<td>71.5</td>
</tr>
<tr>
<td>14</td>
<td>Male</td>
<td>66-70</td>
<td>25.00</td>
<td>11.2</td>
<td>18.6</td>
<td>108.4</td>
</tr>
<tr>
<td>15</td>
<td>Male</td>
<td>71-75</td>
<td>28.33</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>16</td>
<td>Male</td>
<td>56-60</td>
<td>16.67</td>
<td>14.9</td>
<td>21.4</td>
<td>136.3</td>
</tr>
<tr>
<td>17</td>
<td>Female</td>
<td>66-70</td>
<td>20.00</td>
<td>12.3</td>
<td>23.4</td>
<td>154.8</td>
</tr>
<tr>
<td>18</td>
<td>Female</td>
<td>66-70</td>
<td>16.67</td>
<td>12.4</td>
<td>22.2</td>
<td>100.5</td>
</tr>
<tr>
<td>19</td>
<td>Male</td>
<td>81-85</td>
<td>26.67</td>
<td>12.3</td>
<td>20.5</td>
<td>102.5</td>
</tr>
<tr>
<td>20</td>
<td>Male</td>
<td>71-75</td>
<td>15.00</td>
<td>15.2</td>
<td>21.2</td>
<td>112.0</td>
</tr>
<tr>
<td>21</td>
<td>Male</td>
<td>61-65</td>
<td>18.33</td>
<td>12.6</td>
<td>22.2</td>
<td>106.2</td>
</tr>
<tr>
<td>22</td>
<td>Male</td>
<td>61-65</td>
<td>45.00</td>
<td>13.8</td>
<td>22.5</td>
<td>99.6</td>
</tr>
<tr>
<td>23</td>
<td>Male</td>
<td>81-85</td>
<td>46.67</td>
<td>12.7</td>
<td>22.9</td>
<td>141.0</td>
</tr>
<tr>
<td>24</td>
<td>Male</td>
<td>71-75</td>
<td>55.00</td>
<td>13.4</td>
<td>23.3</td>
<td>85.0</td>
</tr>
<tr>
<td>25</td>
<td>Male</td>
<td>56-60</td>
<td>53.33</td>
<td>13.2</td>
<td>20.4</td>
<td>104.6</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>76-80</td>
<td>53.33</td>
<td>12.7</td>
<td>23.0</td>
<td>112.9</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>26</td>
<td>Female</td>
<td>56-60</td>
<td>53.33</td>
<td>13.4</td>
<td>20.8</td>
<td>195.2</td>
</tr>
<tr>
<td>27</td>
<td>Male</td>
<td>71-75</td>
<td>65.00</td>
<td>14.8</td>
<td>25.3</td>
<td>70.5</td>
</tr>
<tr>
<td>28</td>
<td>Female</td>
<td>71-75</td>
<td>76.67</td>
<td>16.8</td>
<td>27.9</td>
<td>121.2</td>
</tr>
<tr>
<td>29</td>
<td>Male</td>
<td>71-75</td>
<td>75.00</td>
<td>12.8</td>
<td>19.1</td>
<td>42.9</td>
</tr>
<tr>
<td>30</td>
<td>Female</td>
<td>76-80</td>
<td>73.33</td>
<td>15.2</td>
<td>24.9</td>
<td>94.2</td>
</tr>
<tr>
<td>31</td>
<td>Male</td>
<td>61-65</td>
<td>63.33</td>
<td>19.4</td>
<td>26.7</td>
<td>112.2</td>
</tr>
<tr>
<td>32</td>
<td>Female</td>
<td>71-75</td>
<td>65.00</td>
<td>9.1</td>
<td>16.7</td>
<td>55.0</td>
</tr>
<tr>
<td>33</td>
<td>Male</td>
<td>66-70</td>
<td>73.33</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>