A prospective study on tumour response assessments methods after neoadjuvant endocrine therapy in early oestrogen receptor positive breast cancer

Running title: Tumour response after neoadjuvant endocrine therapy in early ER positive breast cancer

Joanna I. López-Velazco†, Sara Manzano†, María Otaño², Kepa Elorriaga², Núria Bultó², Julio Herrero², Ainhara Lahuerta², Virginia Segur², Isabel Álvarez-López¹,², Maria M. Caffarel¹,³# and Ander Urruticoechea¹,²#

¹ Biodonostia Health Research Institute, San Sebastian, Spain.

² Gipuzkoa Cancer Unit, OSI Donostialdea - Onkologikoa Foundation, San Sebastian, Spain.

³ IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.

*These authors share first authorship. #These authors share senior and corresponding authorship.

Corresponding authors (#): Dr Maria M. Caffarel, Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, San Sebastian, 20014, Spain. Email: maria.caffarel@biodonostia.org, Tel: +34 943328193; Dr Ander Urruticoechea, Onkologikoa Foundation, Paseo Dr Begiristain 121, San Sebastian, 20014, Spain. Email: anderu@onkologikoa.org, Tel: +34 943328400.

ABSTRACT

Neoadjuvant endocrine therapy in oestrogen receptor (ER) positive HER2 negative breast cancer allows real-time evaluation of drug efficacy as well as investigation of the biological and molecular changes that occur after estrogenic
deprivation. Clinical and pathological evaluation after neoadjuvant endocrine therapy may be used to obtain prognostic and predictive information of tumour response to decide adjuvant treatment. In this setting, clinical scales developed to evaluate response after neoadjuvant chemotherapy are not useful and there are not many validated biomarkers to assess response to neoadjuvant endocrine therapy beyond Ki67 expression and preoperative prognostic index (PEPI) score.

In this prospective study, we extensively analysed radiological (by ultrasound and magnetic resonance imaging) and pathological tumour response of 104 postmenopausal patients with ER+/HER2- resectable breast cancer, treated with neoadjuvant endocrine treatment for a mean of 7 months prior to surgery. Our results show that radiological evaluation by both USS and MRI underestimate pathological tumour size, although they support the use of MRI over USS to clinically assess tumour response. In addition, we propose that the tumour cellularity size, calculated as the product of the percentage of residual tumour cellularity in the surgical specimen and the tumour pathological size, could become a new tool to standardize response assessment to NET given its good correlation with and potential added value to existing biomarkers. Our findings shed light on the dynamics of tumour response to neoadjuvant endocrine therapy, challenge the paradigm of the ability of NET to decrease surgical volume and point to the utility of the tumour cellularity size to quantify the scattered tumour response usually produced by endocrine therapy.

Keywords: Neoadjuvant endocrine therapy, aromatase inhibitors, tumour cellularity size, oestrogen receptor positive breast cancer, pathological and radiological tumour response, preoperative endocrine prognostic index score, Ki67 expression.
INTRODUCTION

Oestrogen receptor positive (ER+)/human epidermal growth factor receptor 2 negative (HER2-) breast cancer (hereafter referred to as ER+ BC) represents almost 70% of all breast malignancies. Antiestrogenic or endocrine therapy is the cornerstone of ER+ BC treatment, being the neoadjuvant (preoperative) setting a very attractive scenario to find novel biomarkers of response and therapeutic strategies (Burstein 2020). This is an urgent clinical need because long-term resistance to endocrine therapy is a common event (Burstein 2020). Neoadjuvant endocrine therapy (NET) results in pathological and clinical response rates similar to those observed with neoadjuvant chemotherapy (NCT), although with lower toxicity (Spring et al. 2016; Sella et al. 2021). Three pioneer clinical trials (IMPACT, PROACT and P024) demonstrated that NET is effective in downsizing ER+ BC and facilitating breast-conserving surgery (BCS), also showing a greater efficacy for aromatase inhibitors compared with tamoxifen (Eiermann et al. 2001; Cataliotti et al. 2006; I. E. Smith et al. 2005). These and another results have provoked the inclusion of NET as a recommendation in international guidelines, particularly for postmenopausal women presenting ER+ BC given for 4-8 months (Korde et al. 2021; Martí et al. 2022; Cardoso et al. 2019). An important advantage of NET is that it allows “in vivo” evaluation of response, hence granting real-time examination of drug efficacy as well as investigation of the biological and molecular changes that occur after estrogenic deprivation. However, the lack of useful biomarkers of long-term efficacy of therapy has precluded the development of the neoadjuvant strategy for endocrine therapies.

In the management of patients under neoadjuvant systemic therapy (either NET or NCT) two important evaluations are performed. First, a preoperative
assessment of radiological tumour response (rad-TR) determines the response grade and establishes the surgical strategy (Skriver et al. 2018; Lerebours et al. 2016; Ueno et al. 2018). Next, surgical specimens are histopathologically evaluated to obtain prognostic information according to pathological tumour response (path-TR) scales (Skriver et al. 2018; Lerebours et al. 2016). In the case of BC patients treated with NCT, there are well-established parameters to measure tumour response, such as RECIST criteria, Miller & Payne or Sataloff grading scales, and residual cancer burden value (Eisenhauer et al. 2009; Ogston et al. 2003; Lerebours et al. 2016) (Eisenhauer et al. 2009; Ogston et al. 2003; Sataloff et al. 1995; Symmans et al. 2017). However, in ER+ BC, only Preoperative Endocrine Therapy Prognostic Index (PEPI) score and Ki67 expression have been validated as prognostic markers after NET (Lerebours et al. 2020; Suman, Ellis, and Ma 2015; Guarneri et al. 2019). Hence, tumours that show substantial down-staging after NET and present low Ki67 expression and PEPI score at surgery have an excellent long-term prognosis even without chemotherapy (Burstein 2020; I. Smith et al. 2020; Guarneri et al. 2019; Ueno et al. 2018). Both Ki67 expression at surgery and PEPI score have been shown to predict long-term outcomes (e.g., relapse-free survival). However, they are not optimal and they are not routinely used due to, among other reasons, a lack of Ki67 measurement standardisation (Ellis et al. 2017). In the clinical practice, understanding the impact of tumour response to NET in long-term outcome will help clinicians to individualize adjuvant treatment for ER+ BC. In contrast to what happens for NCT, pathologic complete response (pCR) after NET is a rare event and is not a useful marker of prognosis given its low likelihood (Lerebours et al. 2020; Sella et al. 2021; Cortazar et al. 2014). In fact, previous studies suggest that ER+ BC
tumours after neoadjuvant systemic therapy present a “diffuse cell loss” response at pathological level, which is characterized by a distribution of the tumour in multiple scattered foci or small groups of tumour cells without affecting overall tumour size (Heil et al. 2020).

In this context, there is an urgent need for the identification of robust, reproducible biomarkers of response to NET with long term prognostic value. Ideally, these new biomarkers should be candidates for initial validation in retrospective series. In addition, the mentioned “diffuse cell loss” in ER+ BC patients treated with NET needs to be better characterized. In order to investigate the dynamics of tumour response, we generated a prospectively collected series of ER+ BC patients treated with NET. We characterised and compared tumour response by ultrasound scan (USS) and/or magnetic resonance imaging (MRI) with pathological tumour size (path-TS). Finally, we described a new biomarker with potential prognostic implications, called tumour cellularity size (TCS), which could help to characterize the response to NET in ER+ BC by an estimation of the diffuse cell loss.
MATERIALS AND METHODS

Study population

We analysed clinical data from a cohort of patients treated in our institution between 2005 and 2019 following a homogenous therapeutic protocol. Data were prospectively collected and retrospectively analysed. All were postmenopausal women with histologically confirmed, untreated, invasive, operable larger than 10 mm and amenable for radiological follow-up, ER+/HER2- non-metastatic breast cancer. Patients had to be treated for at least 3 months with NET prior to surgery with curative intention. The administered NET was an aromatase inhibitor except contraindicated. Informed consent was obtained from all patients. The study was conducted in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines as well as authorised by the Spain Health Authority and the local Ethics Committee.

Imaging and histopathological analysis

Tumour baseline assessment was performed by breast USS and/or MRI. Clinical response by USS was evaluated after 2 months of treatment and repeated every 2 months. MRI and/or USS were also performed before surgery to evaluate radiological tumour response (rad-TR). Surgical breast specimens were evaluated by the pathologist to determine pathological tumour response (path-TR), tumour size (path-TS) and residual tumour cellularity (%). Clinical (assessed by MRI and USS) or pathological tumour size corresponds to the major diameter of the tumour in millimetres (mm) and T-stage of the primary tumour was defined according to AJCC Cancer Staging Manual (Hortobagyi et al. 2020).
Immunohistochemistry analyses were performed in baseline FFPE biopsies and surgical specimens to determine the expression of ER, progesterone receptor (PgR) and Ki67, using international standards (Hammond et al. 2010; Dowsett et al. 2011). ER, PgR and Ki67 were recorded as continuous variables (percentage of positive tumour nuclei). The positivity cut-off for ER and PgR was ≥10% of stained nuclei. The change in Ki67 (ΔKi67) after NET was calculated using the following equation: ΔKi67 = [(Ki67 (%) in surgery specimen) – (Ki67 (%) in baseline biopsy)] / (Ki67 (%) in baseline biopsy). ΔKi67 results were categorized into three groups depending on their magnitude of change. ΔKi67 = -1 means that Ki67 changes to zero in the surgery specimen. ΔKi67 = > -1 to < 0 means that the tumour presented a decrease in Ki67 expression. Finally, ΔKi67 ≥ 0 means that the tumour did not present any change in Ki67 expression or that Ki67 expression in the surgery specimen was greater than the one on baseline biopsy.

Rad-TR was defined using mRECIST 1.1 criteria (Eisenhauer et al. 2009). According with this criteria, complete responses (CR) were defined as tumour disappearance and partial responses (PR) were defined as the reduction of the tumour diameter by ≥ 30%. An increase ≥ 20% in tumour diameter was qualified as progressive disease (PD). The rest of situations were qualified as stable disease (SD).

Path-TR was quantified using a modified Miller and Payne grading scale (Ogston et al. 2003; Skriver et al. 2020). In this scale, response grades 1 and 2 (no change or less than 30% loss of tumour cells, respectively) were regarded as SD. Grades 3 and 4 (reduction in tumour cells between 30-90% and > 90%, respectively) were considered as pathologic PR. Grade 5 (defined as no malignant cells identifiable in the tumour niche) was considered pathologic CR (pCR). Thus, in binary
analyses, path-TR was defined as loss of tumour cells ≥ 30 % (grades 3-5) and no path-TR as <30% (grades 1-2).

Modified PEPI (mPEPI) score was determined on the basis of tumour characteristics of surgical specimen (i.e. tumour size, nodal involvement status and Ki67 staining), as previously published (Ellis et al. 2008; Suman, Ellis, and Ma 2015). Patients were classified into 3 mPEPI risk groups (I=0, II=1-3 and III=>3).

TCS, the novel score we introduce in this study, was calculated as the product of tumour cellularity in the surgical sample (%) and tumour diameter (path-TS, in mm). TCS values (in mm) was classified into quartiles as follows: Q1 = values < 2.5, Q2 = values between ≥ 2.5 to ≤ 4.2, Q3 = values between > 4.2 to < 8 and Q4 = values ≥ 8.0.

Statistical analyses

Statistical analyses were performed using GraphPad Prism version 9. For the descriptive statistical analyses, minimum, maximum and mean values were used. For Gaussians distributions, paired Student’s t-test was used to compare differences between two groups. For non-Gaussian distributions, Wilcoxon matched-pairs or Kruskal-Wallis tests were performed. Chi-square or Fisher´s tests were used to determine differences between expected frequencies. Spearman´s r coefficient (rho) were used to quantify correlations (bwith a 95% of confidence interval). p values < 0.05 were considered statistically significant. Unless otherwise specified, histograms represent mean values +/- standard error of the mean (SEM).
RESULTS

Differences between diagnostic biopsies and surgery specimens after NET: tumour characteristics and change in tumour biomarkers

104 patients with early ER+/HER2 breast cancer were included in our study. The study population presented with a mean age at diagnosis of 69 (47-93) years and the mean NET duration before surgery was 7 months (3-39). The mean size of the tumours was 25 mm (10-90) assessed by MRI and 18 mm (40-70) by USS. The main administered NET drug was letrozole (n=100), but some patients also received anastrozole (n=2), tamoxifen (n=1), or exemestane (n=1). One patient was diagnosed with bilateral disease and her two tumours were independently considered in our analyses. The principal characteristics of the tumours and their surgical management as well as the pathological changes after NET are summarised in Table 1. No significant decrease of histological grade was observed after NET (p = 0.12). Ki67, ER and PgR expression was assessed in all tumours pre- and post- treatment. As seen in previous studies using similar cohorts (Toi et al. 2011; Martí et al. 2022), NET significantly decreased all these three parameters, being the changes in Ki67 and PgR the most significant (both p < 0.0001) (Table 1 and supplementary material, Figure S1). Regarding to surgical management, 95 patients (90%) underwent a BCS after NET, while in 10 patients (10%) a modified radical mastectomy was performed. Most patients (81%) fell into low (I, n=34, 35%) and intermediate (II, n=45, 46%) mPEPI risk groups. While only 13 patients (12%) were cN+ before treatment, 26 patients (25%) were pN+ at pathological assessment. Only one case of pCR after NET was recorded and most cases (72%) showed partial path-TR (Table 2). These
results are in agreement with the response rates obtained in similar series (Martí et al. 2022; Lerebours et al. 2016; Skriver et al. 2018).

Radiological examination of tumour size after NET underestimates pathological tumour size

To determine which is the best radiological technique to predict pathological tumour size (path-TS) after NET, we compared tumour size measured by MRI and USS before and after treatment. As expected, radiological tumour size (rad-TS), measured by MRI or USS, both at diagnosis and after NET (just before surgery), significantly correlated with path-TS (Figure 1A-D). Surprisingly, our results showed that path-TS correlated best with tumour size assessed by MRI and USS at diagnosis (Figure 1A) rather than measures taken after NET. This may suggest that the radiological evaluation before surgery may not be a very precise technique to assess tumour size after NET. To better visualize this, we compared the mean value of tumour size assessed by each radiological technique, before and after NET, and by path-TS. As shown in Figure 1E, MRI/USS measurements after NET were significantly lower than path-TS and, interestingly, radiological measures at diagnosis were more similar to path-TS than the measures after treatment. Actually, MRI and USS before surgery underestimated path-TS in 77% (76/99) and 92% (84/91) of the cases, respectively.

Importantly, we also found that this disagreement in tumour size estimation affects the concordance between radiological (rad-TR) and pathological (path-TR) tumour response methods (Table 2). Complete rad-TR was observed in 27 (by MRI) and 16 (by USS) patients while only one patient presented a pCR by pathological assessment. To better visualize these discrepancies, we plotted the
correlation between rad- and path-TR. As shown in Figure 2A-B, we found that rad-TR assessed by MRI correlated better with path-TR than rad-TR assessed by USS, although both associations were statistically significant. Interestingly, we observed that a considerable number of tumours presented a complete (100%) rad-TR after NET but presented a low path-TR (G2 or G3, highlighted in red in Figure 2A-B). Taken together, our data indicate that the radiological examination of tumour size after NET and before surgery underestimates path-TS bearing surgical implications for the definition of tumour area.

Next, we evaluated the association between rad- and path-TR with the two most accepted prognostic markers after NET: Ki67 expression at surgery and mPEPI score (Ellis et al. 2008; Ueno et al. 2018; Suman, Ellis, and Ma 2015). As expected, pathological responders presented significantly lower Ki67 expression at surgery and mPEPI score (Figure 2C-D). Regarding rad-TR, both prognostic markers were associated with tumour response assessed by MRI (Figure 2E-F), but, in the case of USS, there was not association with the mentioned prognostic markers (Figure 2G-H). Our data indicate that rad-TR assessed by MRI could be more reliable than USS to predict prognosis after NET.

Tumour cellularity size is a new parameter to standardize the assessment of residual tumour content after NET

Diffuse cell loss has been observed as the type of tumour response observed after neoadjuvant therapies in ER+ (luminal) tumours (Heil et al. 2020). In an attempt to better assess tumour response after NET, we propose a novel parameter called tumour cellularity size (TCS). TCS is the product of tumour cellularity (%) and tumour diameter (path-TS, in mm) and estimates the volume of remaining cells in the tumour bed after NET. First, we evaluated how TCS
relates to radiological and tumour size and response (Figure 3). As seen in Figure 3A, TCS values were much lower than the path-TS data and more similar to MRI or USS measures after NET compared to rad-TS at diagnosis or path-TS. We then analysed how TCS associates with radiological and pathological response (Figure 3B-D). Our results showed that TCS inversely correlated with path-TR and with MRI rad-TR (Figure 3B-C). Interestingly, the association between TCS and rad-TR determined by USS was not significant (Figure 3D), in line with previous results supporting that MRI may be more adequate than USS to quantify response to NET. Taken together, our data indicate that TCS can quantify the tumour “diffuse cell loss” response observed in ER+ BC tumours after NET, and may capture better the biological mechanism that explains why the radiological pre-operative assessment of tumour size underestimates the path-TS.

In order to further evaluate if TCS can be used as a biomarker of response for patients undergoing NET, we evaluated its association with changes in Ki67 (ΔKi67) (Figure 3E-G) and Ki67 expression at surgery (supplementary material, Figure S2), well-established prognostic markers for NET. We observed that ΔKi67 and Ki67 expression at surgery correlated better with TCS than with tumour cellularity or path-TS (Figure 3E-G, and supplementary material, Figure S2A-C). Consequently, tumours with high residual Ki67 expression (ΔKi67 > 0 and high Ki67 expression at surgery) also present a high TCS, suggesting that TCS could be a promising biomarker of response to NET.

Finally, to identify an initial (promising) cut-off value where TCS can divide responder patients to NET from those no responders patients, we analysed the relationship of TCS quartiles with response to NET (Figure 4). Our results showed that as the TCS value increased, Ki67 at surgery and ΔKi67 values also increased.
(Figure 4A-B). How is pointed in Figure 4C-D those patients with a value of TCS in Q1 (TCS < 2.5 mm) had a better response to NET measured as Ki67 at surgery and ΔKi67 compared with those in patients with higher TCS quartiles (Q2, Q3 and Q4). These results indicate that a TCS value < 2.5 mm could be used as a good cut-off value to identify those responders patients to NET. However, more studies are needed to verify this in other cohorts and extrapolate our results with survival data, not available for this cohort yet.
DISCUSSION

There are different reasons why neoadjuvant endocrine therapy (NET) is a very promising and attractive therapeutic strategy for ER+ BC patients. First, it is less toxic than neoadjuvant chemotherapy albeit resulting in similar pathological and clinical response rates and, indeed, it is already recommended by international guidelines for post-menopausal women (Sella et al. 2021). Finally, it represents an ideal scenario for clinical research as it allows real time investigation of drug efficacy and the molecular and biological changes in tumours after endocrine treatment. This may lead to the identification of novel biomarkers of response and new therapeutic strategies. However, NET remains being an underused tool for ER+ BC because monitoring response is challenging, among other reasons (Martí and Sánchez-méndez 2021; Sella et al. 2021). Many NET clinical trials use the radiological response rate (by pre-operative evaluation with USS, mammography or MRI using RECIST 1.1 criteria) and improvement of BCS rates as a primary objective to demonstrate effectiveness (Sella et al. 2021; Skriver et al. 2018; Ueno et al. 2018). However, our results, obtained from a prospectively collected series of 104 ER+ BC patients treated with NET, prove that the pre-operative radiological evaluation after NET underestimates path-TS. Previous reports have also shown that radiological and clinical evaluation after NET underestimate the lesion size (Lerebours et al. 2016), although Reis and cols found this difference negligible (Reis et al. 2020). Clinically, these discrepancies may have strong surgical implications for the definition of lesion area and our data suggest that the radiological evaluation of tumour size should not be determinant to plan the resection area. In fact, the AJCC recommends that imaging findings
after NET, NCT and radiotherapy are not considered elements of initial clinical staging (Hortobagyi et al. 2020).

In addition, our data show that radiological complete responses almost never parallel pCR. In our series, 26% and 15% of patients showed complete radiological response by MRI and USS, respectively, but only 1 patient achieved pCR. In fact, pCR after NET is a rare event and only occurs in less than 1% of the cases (Sella et al. 2021). Usually, residual disease is found even in very good responder tumours, in the form of microscopically scattered residual cancer nests in the tumour bed (Reis et al. 2020). An explanation for it may be the scattered tumour or the diffuse cell loss response observed after neoadjuvant therapies in ER+ tumours (Heil et al. 2020). While pathological assessment considers the maximum area occupied by the tumour and does not capture this scattered response, radiological evaluation after NET may reflect the diffuse cell loss response. This could explain why rad-TS after NET did not reflect path-TS in the surgery specimens in our cohort and challenges the paradigm of NET as a tool to increase the BCS rates. This difference between radiological and pathological evaluation of neoadjuvant systemic treatment (NST) is less frequently observed in triple-negative and non-luminal HER2+ tumours, which tend to present a shrinkage or concentric response (also called tumour collapse) to NST (Heil et al. 2020).

Nevertheless, we should also take into consideration that the complete response assessed by MRI may capture biological events with potential prognostic/predictive value, including normalization of tumour vessels endothelium. Hence, the event of CR by MRI, even without pCR, may define a prognostic category that deserves further study.
Despite the discrepancies between radiological and pathological evaluation of tumour response to NET, clinical and radiological monitoring of tumour response during the course of NET are necessary to early detect progressive disease. Our data indicate that MRI is preferable than USS to assess response after NET, as 1) path-TR correlated better with rad-TR assessed by MRI than by USS and 2) MRI rad-TR was significantly associated with reduction of Ki67 in the surgical specimen and lower mPEPI score, the two most accepted prognostic markers after NET (Ellis et al. 2008; Ueno et al. 2018; Suman, Ellis, and Ma 2015). This association was not statistically significant in the case of USS. Our results are in agreement with previous reports supporting the use of MRI as the most accurate tool among other methods (clinical examination, USS and mammography) to assess tumour response to NST in breast cancer (Fowler, Mankoff, and Joe 2017; Sella et al. 2021).

As mentioned above, the diffuse cell loss response observed in ER+ tumours as a response to NST represents a challenge to evaluate tumour response to NET. We hypothesize that the parameter tumour cellularity size (TCS), presented herein, can be used to assess the scattered response to NET as it estimates the multiple scattered foci of tumour cells in the tumour niche. TCS is the product of tumour cellularity (%) and tumour diameter (path-TS, in mm) in the post-treatment surgical sample. We found that TCS significantly associated with rad-TR evaluated with MRI. As previously discussed, only PEPI score and Ki67 expression under treatment are validated prognostic markers for NET (Lerebours et al. 2020; Suman, Ellis, and Ma 2015; Guarneri et al. 2019). Importantly, TCS correlated better with the decrease in Ki67 at surgery (ΔKi67) than the percentage of tumour cellularity in the post-treatment sample and the path-TS. This may
indicate that reduction in Ki67 expression is related to the tumour cellularity content even when the path-TS does not change after NET. The association between TCS and mPEPI score could not be evaluated as they are not independent variables since both include path-TS in their calculation (Ellis et al. 2008).

In summary, our results shed light on two clinically relevant and unanswered questions in the context of NET highlighted by Sella and cols (Sella et al. 2021). One of them is which is the optimal imaging technique to pre-surgically evaluate residual disease after NET. Our data supports the use of MRI over USS, but also prove that both imaging techniques underestimate pathological tumour size. As mentioned, this points to careful consideration of clinical and radiological TR to define the surgical resection tumour area and challenge the paradigm of the reduction of surgical volume by NET given that the initial radiological assessment seems to be the best value to define the tumour area even after therapy. The second unanswered question is the need of novel biomarkers to assess pathological response to NET. We propose a new biomarker called tumour cellularity size (TCS) that could be a promising candidate to use in combination with changes in Ki67, although it should be validated in larger cohorts.
REFERENCES

Cancer Working Group.” *Journal of the National Cancer Institute.*
https://doi.org/10.1093/jnci/djr393.

https://doi.org/10.1023/a:1013128213451.

https://doi.org/10.1200/JCO.2016.69.4406.

Hortobagyi, Gabriel N, James L Connolly, Carl J D Orsi, Stephen B Edge, Elizabeth A Mittendorf, Hope S Rugo, Lawrence J Solin, Donald L Weaver, David J Winchester, and Armando Giuliano. 2020. AJCC Cancer Staging

Martí, Covadonga, Laura Yébenes, José María Oliver, Elisa Moreno, Laura

https://doi.org/10.1016/S1470-2045(20)30458-7.

TABLES

Table 1. Histopathological information and surgical management of tumours included in our series. *One patient was diagnosed with bilateral disease and her two tumours were independently considered in the histopathological analysis and in its surgical management. †One tumour was not evaluable for biological characteristics at surgery because the patient achieved a pCR. c/yp axillary node status was determined clinically and pathologically before and after NET, respectively. N/A: not available. BCS: Breast-conserving surgery.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Before NET (n = 105*)</th>
<th>After NET (n = 104†)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histological grade [n (%)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>23 (22)</td>
<td>34 (33)</td>
</tr>
<tr>
<td>II</td>
<td>78 (74)</td>
<td>69 (66)</td>
</tr>
<tr>
<td>III</td>
<td>4 (4)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Histological type [n (%)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ductal</td>
<td>86 (82)</td>
<td>85 (82)</td>
</tr>
<tr>
<td>Lobular</td>
<td>10 (10)</td>
<td>12 (12)</td>
</tr>
<tr>
<td>Other special type</td>
<td>9 (8)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>c/yp axillary node status [n (%)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>91 (87)</td>
<td>72 (69)</td>
</tr>
<tr>
<td>Positive</td>
<td>13 (12)</td>
<td>26 (25)</td>
</tr>
<tr>
<td>N/A</td>
<td>1 (1)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>Stained cells (%) [mean (range)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ki67</td>
<td>20 (3-60)</td>
<td>9 (0-75)</td>
</tr>
<tr>
<td>Oestrogen receptor</td>
<td>94 (20-100)</td>
<td>90 (0-99)</td>
</tr>
<tr>
<td>Progesterone receptor</td>
<td>63 (1-100)</td>
<td>15 (0-99)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

Breast surgery performed [n (%)]*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BCS</td>
<td>95 (90)</td>
</tr>
<tr>
<td>Modified radical mastectomy</td>
<td>10 (10)</td>
</tr>
</tbody>
</table>

Table 2. Radiological and pathological tumour responses after NET.

*evaluated by mRECIST 1.1 criteria. °measured using a modified Miller and Payne grading scale. N/A: not available.

<table>
<thead>
<tr>
<th>Rad-TR type* [n (%)]</th>
<th>MRI</th>
<th>USS</th>
<th>Path-TR° [n (%)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>7 (7)</td>
<td>14 (13)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Complete</td>
<td>27 (26)</td>
<td>16 (15)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Partial</td>
<td>40 (38)</td>
<td>49 (47)</td>
<td>76 (72)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>29 (27)</td>
<td>24 (23)</td>
<td>28 (27)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>2 (2)</td>
<td>2 (2)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>
CONFLICT OF INTEREST

The authors have declared that no conflict of interest exists.

ACKNOWLEDGEMENTS

We are grateful to the members of our laboratory for critical discussion of this work and to the Pathology Services of Hospital Donostia and Onkologikoa Foundation for technical assistance. This work was funded by Spanish Ministry of Science and Innovation – ISCIII (P20/01253, CP18/00076 and FI19/00193) and European Regional Development (FEDER) funds, Basque Department of Health (2020111040), Fundación SEOM (SEOM Avon Fellowship 2020) and Ikerbasque Basque Research Foundation. The group also received funds from the breast cancer patient’s charity Katxalin and from Roche Farma S.A. JILV is funded by an AECC PhD Fellowship.

AUTHOR CONTRIBUTIONS

JILV, SM, AU and MMC analysed the data and wrote the manuscript. AU designed the study. AU and MMC co-supervised the study. KE analysed histopathology. VS and NB analysed imaging data. JILV, JH, MO, AL, IAL and AU collected and analysed patient data.

DATA AVAILABILITY STATEMENT

The data for this study are available upon reasonable request.
XY pairs at diagnosis:

A. Path-TS (mm) vs. MRI size (mm)
- rho = 0.55, p < 0.0001
- XY pairs = 98

B. Path-TS (mm) vs. USS size (mm)
- rho = 0.55, p < 0.0001
- XY pairs = 101

C. Path-TS (mm) vs. MRI size (mm) after NET
- rho = 0.33, p = 0.0004
- XY pairs = 99

D. Path-TS (mm) vs. USS size (mm) after NET
- rho = 0.45, p < 0.0001
- XY pairs = 91

E. Tumour size (mm) mean (range)
- MRI: 25 (10-90)
- USS: 18 (7-40)
- Path-TS: 20 (0-80)
- MRI: 12 (0-60)
- USS: 9 (0-31)

At diagnosis:

- p = 0.69
- p = 0.03

After NET:

- p < 0.0001
- p < 0.0001

p = 0.69

CC-BY 4.0 International license It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in which medRxiv preprint posted February 6, 2023. doi: 10.1101/2023.02.02.23285373
Figure 1. Comparison between pathological and radiological tumour size before and after neoadjuvant endocrine treatment (NET). (A-D) Correlation of pathological tumour size (path-TS) with MRI (A and C) and USS (B and D) measurements at diagnosis (A-B) and after NET (C-D). Spearman correlation coefficients (rho) and p values are shown (All). (E) Comparison of radiological tumour size (assessed by MRI and USS at diagnosis and after NET) with path-TS. p values were calculated using Kruskal-Wallis test.
Figure 2

A) Path-TR (n) MRI rad − TR (%) CR by MRI (n)
G1 G2 G3 G4 G5
3 23 58 13 1

B) Path-TR (n) US rad − TR (%) CR by USS (n)
G1 G2 G3 G4 G5
1 20 55 13 1

C) KI67 stained cells (%) after NET
n = 103

D) No. patients
I II mPEPI score
p = 0.006
n = 97

E) KI67 stained cells (%) after NET
n = 96

F) MRI rad − TR
SD PR CR

G) KI67 stained cells (%) after NET
n = 90

H) US rad − TR
SD PR CR

p = 0.6
n = 82
Figure 2. Evaluation of radiological tumour response (rad-TR) after NET by comparison with pathological tumour response (path-TR) and prognostic biomarkers for NET. (A-B) Rad-TR was assessed by MRI (A) and USS (B) and evaluated by mRECIST 1.1 criteria. Path-TR was evaluated using a modified Miller and Payne grading scale. p values were calculated using Kruskal-Wallis test (All). In the upper square, tumours presenting complete responses by MRI (A) or USS (B), but G2-G3 by path-TR, are indicated with red spots. (C, E and G) Analysis of Ki67 staining at surgery in tumours classified according their path-TR (C) and rad-TR by MRI (E) or USS (G). p values were calculated using Kruskal-Wallis test (All). (D, F and H) Contingency analyses of the association between modified PEPI (mPEPI) score and path-TR (D) and rad-TR by MRI (F) or USS (H). p values were calculated using Chi-square test (All). CR: complete response, PR: partial response, SD: stable disease and PD: progression disease.
Figure 3

A

\[p < 0.0001 \quad p = 0.02 \]

\[p < 0.0001 \quad p = 0.02 \]

Tumour size (mm)

\[\text{mean (range)} \]

<table>
<thead>
<tr>
<th>MRI</th>
<th>TCS</th>
<th>USS</th>
<th>MRI</th>
<th>USS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (10-90)</td>
<td>12</td>
<td>18 (7-40)</td>
<td>7 (0-40)</td>
<td>9 (0-31)</td>
</tr>
</tbody>
</table>

At diagnosis

After NET

B

\[p < 0.0001 \]

\[n = 91 \]

G1 2 G2 20 G3 55 G4 13 G5 1

Path-TR

C

\[p = 0.003 \]

\[n = 86 \]

SD 28 PR 33 CR 25

MRI rad – TR

D

\[p = 0.05 \]

\[n = 82 \]

PD 2 SD 21 PR 45 CR 14

USS rad – TR

E

\[p = 0.001 \]

\[n = 91 \]

ΔKi67 -1 5 > -1 a 0 ≥ 0

Path-TR

F

\[p = 0.003 \]

\[n = 94 \]

ΔKi67 -1 5 > -1 a 0 ≥ 0

G

\[p = 0.02 \]

\[n = 101 \]

ΔKi67 -1 5 > -1 a 0 ≥ 0

Path-TS (mm)
Figure 3. Tumour cellularity size (TCS) as a new parameter to measure response to NET. (A) Comparison of radiological tumour size (assessed by MRI and USS, before and after NET) with TCS. Dotted line indicates the mean of path-TS obtained for those tumours. (B-D) Association between TCS and pathological (path-TR) (B) and radiological response assessed by MRI (C) or USS (D). (E-G) Association between TCS (E), tumour cellularity (F) and pathological tumour size (path-TS) (G) with changes in Ki67 (ΔKi67) after NET. p values were calculated using Kruskal-Wallis test (All).
Figure 4. Identification of a tumour cellularity size (TCS) cut-off value to discriminate patients according to their response to NET. (A-B) Comparison of TCS quartiles (Q1, Q2, Q3 and Q4) with Ki67 staining at surgery (A) and ΔKi67 (B). with TCS quartiles. (C-D) Comparison between Q1 versus Q2, Q3 and Q4 TCS quartiles with Ki67 staining at surgery (C) and ΔKi67 (D). p values were calculated using Mann Whitney test (All).