Running title: Glutamate, schizotypal and autistic traits

Association between increased anterior cingulate glutamate and psychotic-like symptoms, but not autistic traits

Verena F Demler¹, Elisabeth F. Sterner¹, Martin Wilson², Claus Zimmer¹, Franziska Knolle*¹,³

Affiliations:
1 Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
2 Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
3 Department of Psychiatry, University of Cambridge, Cambridge, UK

*corresponding author: franziska.knolle@tum.de

Keywords: MRS, anterior cingulate cortex, glutamate, schizophrenia, psychosis, autism

WORD COUNT: 3999
Abstract (227)

Background: Despite many differences, autism spectrum disorder and schizophrenia spectrum disorder share environmental risk factors, genetic predispositions as well as neuronal abnormalities, and show similar cognitive deficits in working memory, perspective taking, or response inhibition. These alterations are already present in subclinical traits of these disorders. The literature proposes that alterations in the inhibitory GABAergic and excitatory glutamatergic system could explain underlying neuronal commonalities and differences.

Methods: Using magnetic resonance spectroscopy (1H-MRS), we therefore investigated the associations between glutamate concentrations in the anterior cingulate cortex (ACC), the left and right putamen, and left and right dorsolateral prefrontal cortex (DLPFC) autistic traits and psychotic-like experiences in 53 healthy individuals (28 women).

Results: Applying linear regressions and moderations analyses, we found that ACC glutamate, but none of the other concentrations, predicted positive-like symptoms. None of the other clinical scores was associated with altered levels of glutamate. We furthermore found that high levels of ACC glutamate are predictive of psychotic symptoms when glutamate concentrations in the right putamen were reduced, and that high levels of ACC glutamate are predictive of psychotic symptoms when disorganized traits were increased.

Conclusion: These results indicated that an imbalance in the glutamatergic neurotransmitter system involving cortical and subcortical regions may contribute to development of psychotic-like experiences, especially positive-like symptoms. These findings may ultimately facilitate early detection of individuals transitioning into an acute episode of psychosis.
Introduction

Already in the earliest clinical reports of schizophrenia and autism spectrum disorder (ASD), their commonalities and associations have been discussed (1–3). On a phenomenological level, schizophrenia and ASD overlap regarding negative symptoms, social cognition, and perceptual alterations (4). Additionally, both disorders display similar cognitive deficits in terms of working memory function, perspective taking, or response inhibition (5). Nevertheless, ASD and schizophrenia show distinct clinical profiles and clinical progressions (6,7). While ASD is a neurodevelopmental disorder with an early onset, usually diagnosed in childhood, and is characterized by a stable or improving long-term prognosis (8), schizophrenia typically develops later in adolescence or early adulthood and is associated with persistent long-term impairment (9). The greatest difference between the disorders, however, lies within the type of positive symptoms: While individuals with ASD may show repetitive or restricted behaviours, individuals with schizophrenia may suffer from hallucinations or delusions (10).

Despite those differences, both disorders share common environmental risk factors, genetic predispositions as well as neuronal abnormalities (7,11). Patients with ASD and schizophrenia show, for example, abnormal development in the anterior cingulate cortex (ACC), striatum and frontal lobe (12–14). Additionally, shared atypical connections were identified in the default mode network and the salience network (15). Both disorders show similar alterations in reward processing (16,17) and prediction error learning (18–21), with individuals with ASD showing greater impairment in social reward and prediction error learning. Importantly, both disorders show substantial overlap already at the subclinical and trait level (22–24).

Potential candidates providing an explanation for the underlying neuronal commonalities and differences, are different neurotransmitter systems such as the glutamatergic system. The
The glutamate hypothesis of schizophrenia is well described (25,26), building on the discovery that antagonists of a glutamate receptor (N-methyl-D-aspartate (NMDA) receptor) induced psychotic symptoms. Alterations in neurotransmitter systems may be assessed non-invasively with magnetic resonance spectroscopy (MRS). A recent review (25) summarizes that glutamate and Glx (glutamate+glutamine) concentrations are increased in the basal ganglia, thalamus and medial temporal lobe in schizophrenia patients. However, other studies reveal more inconsistent findings, showing increased prefrontal glutamate in anti-psychotic naïve patients (27), while another study (28) reports glutamate reductions in the ACC in psychosis, but could not detect alterations in the putamen or DLPFC. Reductions in glutamate concentrations have been found more consistently in the ACC in medicated early psychosis patients (29) and a mix of early psychosis and chronic schizophrenia patients (30). This supports the theory that increased glutamate is a sign of an acute psychotic or prodromal phase which builds up to a first episode and is linked to inflammatory processes (31,32). Interestingly, there are strong links between altered levels of glutamate and neurofunction, which are task-dependent (33).

In a recent meta-analysis, Zahid and colleagues (34) reported reduced positive associations between ACC glutamate levels and brain activity during resting state conditions, but increased positive associations between ACC glutamate levels and brain activity during cognitive control tasks in early psychosis patients. These studies seem to suggest that there are complex interactions, dependent on the brain state, between cortical and subcortical glutamate that may be altered in schizophrenia.

Also, in ASD research there is emerging evidence that an imbalance between different neurotransmitter systems, mainly the excitatory glutamatergic and inhibitory GABAergic system, contributes to the development of the disorders. Alterations with respect to glutamate have been reported in many cortical and subcortical regions. Horder and colleagues (35) for
example found reduced levels of glutamate in the striatum to be associated with the severity of social symptoms in ASD. Interestingly, Page and colleagues (36) found increased concentrations of glutamate/glutamine in the amygdala/hippocampus, but not in parietal regions, while others found increased glutamate in the inferior frontal gyrus (37), the sensory motor cortex (children (38)) or the putamen (39). Another study (40) found reduced glutamate concentrations in the auditory cortex and increased concentrations in the ACC. Alterations in these regions have also been reported by other (41,42). However, also in ASD findings are inconsistent (43–45). Both disorders are associated with alterations in cortico-striatal-thalamic circuits (46–48) and abnormal excitatory glutamate neurotransmitter concentrations in overlapping cortical and subcortical areas (28,35,49–53) including the cingulate cortex, the prefrontal cortex and striatum. This suggests that a complex interaction of altered levels of glutamate in different cortical and subcortical regions may contribute to the development of symptoms within those two disorders.

Consistent with the continuum model of psychotic disorders, such as schizophrenia, and ASD, symptoms of schizophrenia and autism are reflected on a spectrum ranging from subclinical variants of psychotic-like experiences and autistic traits to clinical states of schizophrenia and ASD respectively (54) where schizophrenia and autism are seen as extremes of a continuum diverging in opposite directions from normality (6,55). Frameworks of subclinical traits allow the investigation of neurobiological mechanisms underlying symptomatology without the influence of potential confounders such as medication, illness duration or age onset. Traits of these disorders may be assessed with the Schizotypal Personality Questionnaire (SPQ) and the Autism Spectrum Quotient (AQ) for psychotic-like experiences and autistic traits, respectively. As for the clinical stages of the disorders, strong associations between both subclinical spectra are reported in the literature. A recent meta-analysis (56) revealed a high correlation between
autistic and global psychotic-like experiences of 0.48. Interestingly, however, the results indicate that while autistic traits share significant overlap with negative-like symptoms \((r=0.54)\) and disorganized traits \((r=0.36)\), they are only weakly associated with positive-like symptoms \((r=0.26)\).

Only few studies explored changes of neurotransmitter concentrations associated to psychotic-like experiences and autistic traits. Ford and colleagues (57) investigated whether abnormalities in the glutamate/GABA ratio were linked to symptoms shared between the two traits and symptom severity using MRS. They found a positive correlation between glutamate/GABA ratio in the right superior temporal gyrus and the total scores of AQ, SPQ and AQ+SPQ. Additionally, positive correlations with subscales related to social skills and communication (57), indicating that alterations in glutamatergic and GABAergic neurotransmitter systems are associated with shared symptoms. Given that the literature reports alteration of neurotransmitter concentrations, mainly glutamate, across a number of different brain regions, it is likely that those regions contribute in an interactive way to the development of clinical symptoms.

The aim of the present study was, therefore, to use MRS to explore if and how glutamate concentrations in five cortical and subcortical areas interact and are associated with autistic traits and psychotic-like experiences in a sample of healthy individuals. The regions included the ACC, the left and right dorsolateral prefrontal cortex (DLPFC), and the left and right putamen. We hypothesized that increased levels of glutamate in the ACC and reduced levels of glutamate in the DLPFC and putamen would be associated with psychotic-like experiences, especially positive-like symptoms, and would not be moderated by autistic traits. On the other hand, we hypothesized that reduced levels of ACC glutamate and increased levels of glutamate in the putamen would be associated with autistic traits which would be, at least, partially
mediated by psychotic-like experiences. Potentially moderated interactions of subcortical and cortical glutamate concentrations on subclinical scores were tested with moderation analyses.

Methods and Materials

Participants and subclinical questionnaires

53 healthy subjects (28 women) aged 18-35 years participated in this study. See supplementary materials for recruitment and inclusion criteria. The study was approved by the medical research ethics committee of the Technical University of Munich. All subjects gave written informed consent in accordance with the Declaration of Helsinki.

All participants completed a German version (58) of the Schizotypal Personality Questionnaire (SPQ) (59) capturing psychotic-like experiences which may be factored into positive-like symptoms, negative-like symptoms, and disorganized traits (60); as well as the Autism Spectrum Quotient (AQ) (61) assessing autistic traits (Table 1; see supplementary material for details).

Table 1: Demographic data and clinical scores.

<table>
<thead>
<tr>
<th></th>
<th>Female (n = 28)</th>
<th>Male (n = 27)</th>
<th>P-value*</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>23.54 (3.53)</td>
<td>23.93 (4.21)</td>
<td>0.9392</td>
<td>373</td>
</tr>
<tr>
<td>SPQ: positive-like symptoms (/132)</td>
<td>34.04 (23.80)</td>
<td>28.70 (25.20)</td>
<td>0.3080</td>
<td>439</td>
</tr>
<tr>
<td>SPQ: negative-like symptoms (/100)</td>
<td>36.89 (15.65)</td>
<td>34.33 (20.49)</td>
<td>0.4535</td>
<td>423</td>
</tr>
<tr>
<td>SPQ: disorganized traits (/64)</td>
<td>21.93 (14.57)</td>
<td>21.22 (13.12)</td>
<td>0.9933</td>
<td>379</td>
</tr>
<tr>
<td>AQ: total score (/50)</td>
<td>21.21 (7.03)</td>
<td>20.96 (7.65)</td>
<td>0.8794</td>
<td>387.5</td>
</tr>
</tbody>
</table>

Note: Values are mean (SD)

SPQ = Schizotypal Personality Questionnaire, AQ = Autism Spectrum Quotient

a Wilcoxon rank sum test

MR Image acquisition

Structural MRI and 1H-MRS data were collected on a 3T Philips Ingenia Elition X MR-Scanner (Philips Healthcare, Best, The Netherlands) using a 32-channel head coil. For anatomical reference and spectroscopic voxel placement we acquired a T1-weighted magnetization prepared rapid gradient echo (MPRAGE) sequence (see supplementary materials). MRS data were collected using a 1H-MRS single voxel ECHO volume Point Resolved Spectroscopy Sequence (PRESS) sequence with TR of 2000ms, TE set to shortest (35.6ms-41.2ms), 1024 samples, and a 2000Hz bandwidth (16 phase cycle steps, flip angle=90°). For this, we used the conventional Philips water suppression technique (excitation) that performs Automatic Water Suppression Optimization (AWSO) prescans to minimize the residual water (window=140Hz, second pulse angle=300). We placed one voxel in the ACC (20x20x20mm) and one voxel per side in the Putamen (20x15x20mm) as well as in the DLPFC (30x20x20mm). See Figure 1 for voxel placement overlap.
Note: Placement of MRS voxels in the ACC, putamen, and DLPFC. The colors indicate the areas covered by the subjects’ individually placed MRS voxels. The individual voxels were standardized with SPM, overlapped in MRicroGL and visualized in FSLeyes. ACC, anterior cingulate cortex; PUT R, right putamen; PUT L, left putamen; DLPFC R, right dorsolateral prefrontal cortex; DLPFC L, left dorsolateral prefrontal cortex.

1H-MRS Analysis

The MRS data were analysed using Spectroscopy Analysis Tools (spant) version 2.6.9 (62) (https://martin3141.github.io/spant/index.html), an open-source R toolbox. We aligned the spectrum to the tNAA resonance at 2.01 ppm and removed the residual water signal using an HSVD filter for each participant spectrum. Beforehand, the automatic processing of the scanner had already performed coil combination and phase-frequency alignment, before averaging each repetition. See Supplements Figure 1 for a more detailed workflow.

As the TE of our MRS data varied, we simulated six different PRESS basis sets for each TE (36, 37, 38, 39, 40, 41) with a bandwidth of 2000Hz and 1024pts using MARSS in INSPECTOR version...
11-2021 (63). Based on recommendations in the LCModel manual (64), we selected the following metabolites: alanine, aspartate, creatine (Cr), GABA, glucose, glutamate (Glu), glutamine, glutathione, glycerophosphocholine, lactate, myoinositol, N-acetylaspartate (NAA), N-acetyl-aspartylglutamate, phosphocholine, phosphocreatine, scylo-inositol and taurine. To this basis set we added the default macromolecular und lipid components provided by spant.

The fitting in spant uses an adaptive baseline fitting algorithm (ABfit) (65), which accurately estimates the optimal baseline. For the quantification of absolute metabolite concentrations, given in mMol/kg tissue water, calculated tissue volume fractions within the MRS voxel are needed. Therefore, we used svs_segment from fsl_mrs version 2.0.2 (66) (https://open.win.ox.ac.uk/pages/fsl/fsl_mrs/), which relies on fsl_anat to run FSL FAST tissue segmentation. The structural T1-image was segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The segmentation parameters are saved in a JSON-file. We then ran the spant::scale_amp_molal_pvc() with the ABfit method to quantify glutamate, whereas correction for tissue fractions is based on Gasparovic and colleagues (67). The fit of the glutamate spectra was appropriate for all participants (Figure 2). Spectral exclusion criteria were either visual failure of the fitting algorithm or Cramer-Rao lower bounds (CRLB) > 20% of glutamate concentration. All our subjects met inclusion criteria.
Figure 2: Representative fitted MRS spectra from the ACC, left and right putamen and left and right DLPFC

Note: 1H-MRS spectrum fitted by spant.

ACC, anterior cingulate cortex; PUT_R, right putamen; PUT_L, left putamen; DLPFC_R, right dorsolateral prefrontal cortex; DLPFC_L, left dorsolateral prefrontal cortex

The association between the autistic traits and the schizotypal traits

To investigate the relationship between the SPQ subscales and autistic traits, we calculated Spearman's rank correlation coefficients as the assumptions of normality, linearity and homoscedasticity were not met. The correlation analyses were performed in R using the Hmisc package version 4.7.1 (https://hbiostat.org/R/Hmisc/).

Linear and moderated association between Glutamate and clinical scores
To understand the contributions of glutamate concentrations in different cortical and subcortical regions to symptom expression, we first conducted four linear regression models with symptom score (i.e., positive-like symptoms, negative-like symptoms, disorganized traits, autistic traits) as outcome and all five glutamate concentrations as predictor variables. We then used two sets of moderation analyses to investigate, first, whether the association between the significantly predicted clinical score and the significant glutamate concentration were moderated by the other glutamate concentrations, and second, whether the association between the significantly predicted clinical score and the significant glutamate concentration were moderated by the other clinical scores. Multiple comparison correction was applied. Analyses were performed in R using the stats package version 4.0 (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html).

Results

1H-MRS Glutamate levels and spectral quality

We measured the concentration of glutamate in five voxels of interest, the ACC, the left putamen, right putamen, left DLPFC and right DLPFC. For all subjects, the glutamate concentration could be estimated. All acquired spectra were of good quality. Results are presented in Table 2.

Table 2: 1H-MRS quality parameters and glutamate levels by region

<table>
<thead>
<tr>
<th>Region</th>
<th>ACC</th>
<th>PUT R</th>
<th>PUT L</th>
<th>DLPFC R</th>
<th>DLPFC L</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>Glu (SD), mMol/kg</td>
<td>20.97 (3.41)</td>
<td>16.60 (2.02)</td>
<td>17.31 (2.01)</td>
<td>14.22 (1.97)</td>
<td>15.16 (3.42)</td>
</tr>
</tbody>
</table>
Correlation between the subscores of SPQ and AQ

Using the Spearman's rank correlation coefficient, we found a strong positive correlation between positive-like symptoms and disorganized traits ($r=0.76$, $p<0.00001$) and between negative-like symptoms and autistic traits ($r=0.73$, $p<0.00001$), a moderate correlation between negative-like symptoms and the disorganized traits ($r=0.64$, $p<0.00001$), as well as between positive-like symptoms and the negative-like symptoms ($r=0.45$, $p<0.0001$). Lastly, we observed a weak correlation between disorganized traits and autistic traits ($r=0.39$, $p<0.01$) and between autistic traits and positive-like symptoms ($r=0.19$, $p=0.17$). Correlation strength was classified according to Akoglu (68). The correlations between the subscores are shown in Figure 3. The chord diagram was created in R using the circlize-package Version 0.4.15 (69).
Figure 3: Visualization of the correlations between the subscores

Note: The Chord Diagram describes the relationship between the individual items of the subscores of the AQ and SPQ using Spearman Correlation Coefficients. The subscores are structured according to their respective associated traits (i.e., Autistic Traits for AQ; Negative-like Symptoms, Positive-like Symptoms, Disorganized traits for SPQ). The color and width of the bidirectional links indicate the strength of the connection between each of the subscores – the wider and darker the stronger. This figure shows, for example, that positive-like symptoms are only weakly, not significantly, correlated to autistic traits.
Association between positive-like symptoms and glutamate concentration in the anterior cingulate cortex

We first fitted a complete multiple linear regression model to test if glutamate concentrations in our five voxels of interest predicted symptom scores. We found that positive-like symptoms (F(47,5)=1.55, p=0.192, r²=0.05) were significantly predicted by glutamate concentration in the ACC (β =0.31(014), t=2.3, p=0.026). These results were specific to glutamate alterations, as shown in control analyses using total NAA and total Cr (Supplementary Table 1). There was no association between negative-like symptoms, disorganized traits, or autistic traits and cortical or subcortical glutamate concentration. In a further control analysis, we confirmed that alterations in ACC glutamate were independent of changes in grey matter volumes in the respective region (Supplementary Figure 2).

We then reduced the complexity of the model revealing significant predictor effects, by removing one glutamate concentration after the other (Table 3), and compared all models to the simplest model only containing glutamate concentrations in the ACC as predictors for positive-like symptoms using the Likelihood ratio test (lmtest package, R, https://CRAN.R-project.org/package=lmtest). There was no significant difference between any of the models (Table 3).

Table 3: Results of the regression analysis and model comparison.

<table>
<thead>
<tr>
<th>Model</th>
<th>Statistics</th>
<th>Significant predictors</th>
<th>Likelihood ratio test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive-like symptoms ~ PUT R + PUT L + DLPFC R + DLPFC L + ACC</td>
<td>F(47,5)=1.55, p=0.192, r²=0.05</td>
<td>ACC: β =2.23(0.98), t=2.30, p=0.026</td>
<td>Chisq(4)=2.60, p=0.627</td>
</tr>
</tbody>
</table>
We then computed two sets of moderation analysis. In the first set, we investigated possible moderation effects of the glutamate concentrations in the left and right DLPFC and putamen on the significant interaction between ACC glutamate concentration and positive-like symptoms. We found a significant interaction effect between the glutamate concentration in ACC and the right putamen on positive-like symptoms ($F(49,3)=4.97$, $p=0.004$, $r^2=0.19$, ACC: $\beta=28.94(9.21)$, $t=3.14$, $p=0.003$, right putamen: $\beta=32.09(10.94)$, $t=2.93$, $p=0.005$, ACC*right putamen: $\beta=-1.59(0.55)$, $t=-2.91$, $p=0.006$), revealing a partial moderation of glutamate concentrations in the right putamen on the interaction of ACC glutamate and positive-like symptoms. This moderation effect indicates that high levels of ACC glutamate are predictive of psychotic symptoms when glutamate concentrations in the right putamen are decreased.
(Figure 4). The effect survived multiple comparison correction (level of significance, p<0.0125).

None of the other glutamate concentrations showed a significant moderation effect.

Figure 4: Moderation effect of glutamate concentration in the right putamen on the interaction of ACC glutamate and positive-like symptoms.

Note: The moderation plot shows the significant moderating effect of decreased concentrations of glutamate in the right putamen (-1SD, dashed light blue line) on the interaction between ACC glutamate and positive like symptoms.

In the second set of moderation analyses, we investigated possible moderation effects of the different symptom traits, negative-like symptoms, disorganized traits and autistic traits, on the significant interaction between ACC glutamate concentration and positive-like symptoms. We found a significant interaction effect between the glutamate concentration in ACC and
disorganized traits on positive-like symptoms \((F(49,3)=39.23, p<0.001, r^2=0.69, \text{ACC}: \beta=-0.95 (1.08), t=-0.88, p=0.33, \) disorganized traits: \(\beta=-0.81 (0.87), t=-0.93, p=0.38, \) ACC*disorganized traits: \(\beta=0.10(0.04), t=2.54, p=0.014), \) revealing a moderation of disorganized traits on the interaction of ACC glutamate and positive-like symptoms. This moderation effect indicates that high levels of ACC glutamate are predictive of psychotic symptoms when disorganized traits are increased (Figure 5). The effect survived multiple comparison correction (level of significance, \(p<0.017 \)). None of the other symptom subscores showed a significant moderation effect.

Figure 5: Moderation effect of disorganized schizotypal traits on the interaction of ACC glutamate and positive-like symptoms.

![Moderation effect plot](image)

Note: The moderation plot shows the significant moderating effect of increased disorganized traits (+1SD, solid dark blue line) on the interaction between ACC glutamate and positive like symptoms.

Discussion
In this study, we explored if and how glutamate concentrations in five cortical and subcortical areas interact and are associated with autistic traits and psychotic-like experiences in a sample of healthy individuals. We found that ACC glutamate, but none of the other concentrations, predicted positive-like symptoms in healthy individuals. None of the other clinical scores was associated with altered levels of glutamate. Using two sets of moderation analyses, we furthermore found that, on the one hand, high levels of ACC glutamate are predictive of psychotic symptoms when glutamate concentrations in the right putamen were reduced, and that, on the other hand, high levels of ACC glutamate are predictive of psychotic symptoms when disorganized traits were increased.

Association between ACC glutamate and positive-like symptoms

ACC glutamate alterations have been associated with psychotic-like experiences in healthy individuals (70), symptoms and structural changes in high-risk individuals (71), symptoms in first episode psychosis (71–73) and chronic psychosis (74). However, findings are inconsistent with some finding higher levels (31,72), while other report reductions (29,30) or no differences (75,76). Although, Modinos and colleagues (76) did not find different levels of glutamate in the ACC between individuals with high schizotypy and low schizotypy, they found that increased grey matter volume in ACC negatively related to ACC glutamate, supporting the view that glutamatergic alteration may explain structural changes which are associated with the development of psychotic-like experiences. The association in this one, but also other studies (70), however, suggests that decreasing levels of glutamate in the ACC are associated with specific pathologies in psychosis, whereas our study indicates that higher levels of ACC glutamate are associated with development of psychotic-like experiences. Our results correspond to findings from Demro and colleagues (77) who reported that increased subclinical
symptoms of grandiosity were linked to increased levels of glutamate in the ACC. Egerton and colleagues (78) found higher levels of glutamate/creatine-ratio in the anterior cingulate cortex in symptomatic first episode psychosis patients compared to those in remission. In a different study, Egerton and colleagues (79) found that higher levels of glutamate metabolites in the ACC predicted treatment response, indicating that higher baseline levels are associated with poorer treatment response, while lower levels of ACC glutamate are predictive of improvements across positive and negative symptoms as well as general functioning in first episode psychosis patients. Relatedly, Godlewska and colleagues (28) reported lower levels of glutamate in the ACC in early psychosis patients compared to healthy controls. Importantly, however, the majority of patients included in this study were medicated, which confirms results from a recent meta-analysis (80) on the impact of anti-psychotic treatment on frontal glutamate levels. The authors found that antipsychotics were linked to a significant decrease in frontal Glx levels in both first episode and chronic schizophrenia patients, with the effect being stronger in first episode psychosis patients. As our results indicate that ACC glutamate levels are specifically predictive of positive-like symptoms but not of any other subclinical traits, the results are in line with the theory that increased glutamate is a sign of an acute psychotic or prodromal phase which builds up to a first episode and is linked to inflammatory processes (31,32). The theory suggests that a hypofunction of NMDA receptors reduces the activity of inhibitory GABAergic inter-neurons, on which they are located. This activity reduction increases glutamatergic neurotransmission of pyramidal cells, and may contribute to the development of, especially, positive symptoms during an acute episode of psychosis (32,81).

Moderation effect of reduced glutamate in right putamen on association between ACC glutamate and positive-like symptoms
Although, glutamate concentrations in the other regions did not predict trait symptom expressions, we are able to show that glutamate levels in the right putamen significantly moderated the association between ACC glutamate and positive-like symptoms. Notably, our results are unconfounded by medication or disease duration, possibly indicating that it is not only an imbalance between excitatory and inhibitory processes that are contributing to the development of psychotic-like symptoms (50,82), but also the interaction of different cortical and subcortical regions (47,48). Interestingly, there are a number of studies showing altered connectivity between the putamen and the ACC in different stages of the disease (50,83). Shukla and colleagues (50) found that the functional connectivity pattern of the ACC was correlated with glutamate, but also GABA, concentrations. Similar results have been reported by Overbeek and colleagues (82), who showed that aberrant associations of ACC glutamate and of ACC GABA with ACC functional connectivity was significantly different in first-episode psychosis patients compared to controls in several cortical and subcortical regions including the putamen. Although this study provides clearer evidence for a modulatory effect of GABA on the connectivity between ACC and striatal regions, it generally indicates the impact of the glutamatergic and GABAergic neurotransmitter system on functional connectivity. Moreover, Modinos and colleagues (70) showed that in individuals with high schizotypy (i.e., increased psychotic-like experiences) ACC glutamate correlated significantly and negatively with striatal activation including the putamen, providing further evidence for the modulatory effect on functional and structural alterations possibly contributing the development of symptoms. Nevertheless, we would like to point out that the current results are inconsistent most likely due to the use of various individuals at various stages of the disease including pre-clinical stages.
Moderation effect of increased disorganized traits on association between ACC glutamate and positive-like symptoms

In addition to the moderation effect of glutamate in the right putamen, we found that the association between ACC glutamate and positive-like symptoms was strengthened when disorganised traits were increased in the individuals. Considering the strong positive correlation between positive-like symptoms and disorganized traits in general in individuals with psychotic-like experiences (56), but especially in our sample (r=0.76, p<0.00001), is seems little surprising. This result however may further support the hypothesis that increased levels of ACC glutamate are indicative of an acute phase, as both subclinical scores have been found to be associated with positive symptoms in schizophrenia spectrum disorder (84), which are also more prominent in an acute phase (25).

Lack of effect for other regions and subclinical traits

Surprisingly, our data did not reveal any associations between different glutamate concentrations and other subclinical symptoms than positive-like symptoms. Generally, the literatures present an inconsistent picture regarding glutamate concentration in different regions. For example, although Godlewska and colleagues (28) reported alterations in glutamate in the ACC in early psychosis patients compared to healthy controls, they did not find differences in the putamen and DLPFC. However, especially the literature with regard to subclinical schizotypal traits is sparse, and mainly concentrates on ACC and hippocampal glutamate (70,76). To our knowledge only one other study investigated prefrontal glutamate in individuals with high schizotypy compared to low schizotypy (85), in which the authors reported a reduction in high schizotypy.
The literature is similarly sparse with regard to associations between glutamate and subclinical autistic traits. Data by Ford and colleagues (86) suggest social disorganisation is associated with increased glutamate/GABA+ ratio in the right superior temporal region across both the autistic and schizotypal spectrum. In contrast, Kondo and colleagues (87) report that autistic and schizotypal traits were associated with the Glutamine+Glutamate/GABA ratio in the auditory cortex but not in the frontal areas, including ACC, DLPFC and inferior frontal cortex. More research is needed, especially focussing on consistent ways of measuring metabolite differences, as it is not only the choice of location for voxel placement that differs grossly among studies, but also the choice of metabolite representation (e.g., glutamate/GABA ratio, absolute glutamate, glutamate/creatine ratio, etc) and selection of basis sets.

Limitations

This study has several limitations. First, we did not analyse levels of GABA in the voxels of interest, as no spatial editing was applied to the MRS sequence. Future studies should try to measure both metabolites reliably in order to understand interactions between neurotransmitters and regions. Second, we were unable to recruit participants with highly increased scores along both spectra. One possible explanation is that many individuals with highly increased scores would already have a clinical psychiatric diagnosis, which was an exclusion criterium in our study. Nevertheless, follow-up studies should recruit larger samples allowing for a larger spectrum. Third, our sample does not include many individuals with low SPQ and high AQ scores, and vice versa, which would be necessary in order to clearly differentiate between clinical traits. Yet, our sample represents the distribution of subclinical symptoms within the general population as confirmed by similar correlations of subclinical subscores compared to previous studies (56,88).
Conclusion

Taken together, this study shows that an interaction between glutamate in the ACC and the putamen is specifically associated with positive-like symptoms, which indicates that an imbalance in the glutamatergic neurotransmitter system involving cortical and subcortical regions may contribute to the development of psychotic-like experiences, especially positive-like symptoms. These findings may ultimately facilitate early detection of individuals transitioning into an acute episode of psychosis.
Acknowledgments

We would like to thank all participants for their time and engagement. Funding: VD was funded by the doctoral program “Translationale Medizin” of the Technical University of Munich supported by Else Kröner-Fresenius-Stiftung (EKFS).

Disclosures

All authors report no relevant biomedical financial interests or potential conflicts of interest.

Ethics: The medical research ethics committee of the Technical University of Munich gave ethical approval for this work. All subjects gave written informed consent in accordance with the Declaration of Helsinki.

Data availability: Data is available upon reasonable request to the authors.
References

https://doi.org/10.3389/fnmol.2016.00014

56. Zhou H, Yang H, Gong J, Cheung EFC, Gooding DC, Park S, Chan RCK (2019): Revisiting the overlap between autistic and schizotypal traits in the non-clinical population using meta-

neurometabolite levels in schizophrenia: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. *Schizophr Res* 222: 122–132.

