MUC17 mutations are associated with poor prognosis in both adult low-grade glioma and glioblastoma patients

Gabriel Cardoso Machado¹², Valéria Pereira Ferrer¹²

1. Graduate Program in Pathological Anatomy, Faculty of Medicine, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
2. Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil

*Correspondence: valeriaferrer@id.uff.br

Abstract

Diffuse gliomas are tumors that arise from glial or glial progenitor cells that have historically been classified as low-grade glioma (LGG), a slower-growing tumor, and glioblastoma (GBM), a more aggressive tumor. Despite advances in the diagnosis and treatment of glioma, the median survival time after diagnosis of GBM remains low, approximately 15 months, and with a 5-year overall survival rate of only 6.8%. Therefore, new biomarkers that could support earlier diagnosis and prognosis of these tumors would be of great value. MUC17, a member of the membrane-bound mucins, has been identified as a potential biomarker in several tumors. However, this mucin is unexplored in adult gliomas. Here we have shown for the first time in a retrospective study and by in silico analysis that MUC17 is one of the relevant mutant genes in adult gliomas and that the increase in MUC17 methylation correlates with the increase in glioma grade malignancy. Patients with MUC17 mutation had a poorer prognosis compared to their wild-type counterparts in both the LGG and GBM cohorts. We also analyzed which mutational profile correlates more strongly with poor survival. Therefore, in the present work, we present a new potential biomarker to be investigated for the diagnosis and prognosis in adult diffuse glioma.

Key points

MUC17 accounts the mutational burden in gliomas

Mutated MUC17 is associated with poor prognosis in both LGG and GBM cohorts

MUC17 methylation rate increases with tumor grade in gliomas

The C > T base change is the most common missense MUC17 mutation in GBM and correlates with a poorer prognosis.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
1 Introduction

Glial tumors are the most common primary malignant brain tumors of the central nervous system (CNS)\(^1\). Diffuse gliomas represent a heterogeneous group of brain tumors that arise from neuroglial stem/progenitor-like cells that exhibit genetic and epigenetic malignant modifications\(^2\).

Low-grade gliomas (LGG) are slow-growing brain tumors that present variable pathology and less aggressive malignant histological features\(^3,4\). In general, LGG primarily affects young adults between the ages of 35 and 44, with a higher incidence in men\(^5\). LGG first-line treatment is surgery with maximally safe resection, and radiotherapy and chemotherapy are also being considered in some high-risk cases\(^6\). In turn, high-grade glioma, glioblastoma (GBM), is the most common CNS malignancy, accounting for 49.1% of all primary CNS malignancies\(^1\). GBM is characterized by a poor prognosis, low survival rates and limited therapeutic options\(^7\), with a median survival time of 15 months after diagnosis and a 5-year overall survival (OS) rate of only 6.8%, which varies by age and gender\(^8\). This tumor is 1.6 times more common in men\(^1\) and has a median age diagnosis of 64 years with a peak of 75-84 years\(^9\). Despite the standard treatment of GBM consisting of surgery, radiotherapy, and chemotherapy\(^10\), and advances in brain tumor therapies\(^11,12\), the disease remains incurable and shows a high rate of treatment resistance and recurrence\(^8,13\).

Since 2016, the use of molecular signatures of genes associated with the diagnosis and prognosis of diffuse glioma has been included in the WHO classification system\(^14\). Among the key markers, mutations on IDH genes and codeletions of chromosome arms 1p and 19q were the first molecular criteria used to classify astrocytoma’s and oligodendrogliomas, respectively\(^15,16\). In general, these deletions and mutations predict a better clinical picture and are therefore rare in GBM and common in LGG\(^17,18\). The methylation status of the MGMT promoter region is another important biomarker for diffuse glioma\(^5\). Epigenetic inactivation of MGMT demonstrates increased survival in glioma patients and predicts benefit in using alkylating agents for chemotherapy in GBM patients\(^19,20\).

According to the World Health Organization (WHO) glioma classification updated in 2021, tumor grade (from 2 to 4) reflects a combination of histological features, but
with well-defined genetic alterations. In this new classification, gliomas are simply grouped into GBM IDH-wildtype, which is thus the most aggressive form of diffuse glioma, while the astrocytoma’s IDH-mutant and the oligodendroglioma IDH-mutant, and 1p/19q-codeleted composed the LGG tumors21,22. The latest WHO classification of gliomas in recent years underlines the importance of molecular knowledge in the diagnosis and prognosis of gliomas.

Mucins are a family of high molecular weight glycoproteins encoded by twenty-one currently known genes of the human genome23. Furthermore, based on their structure and cellular localization, this family is divided into two main groups, namely secreted mucins, and membrane-anchored mucins24. In fact, membrane-bound mucins share a single-pass transmembrane domain and are composed of at least ten mucin types, including MUC17.

MUC17 is located at locus 7q22.1 of the human chromosome25 and encodes the third largest membrane mucin (4493 amino acids), whose PTS domain (proline/threonine.serine) occupies 4073 amino acids with more than 1,600 O-glycosylation sites26–28. MUC17 has already been identified as a potential biomarker in several tumors such as breast cancer29–31, gastric cancer32–34, colon cancer35–37, bile duct cancer38, laryngeal squamous cell carcinoma39 and pancreatic ductal adenocarcinoma40. However, little is known about the clinical association of MUC17 molecular changes in malignant glioma. To date, only one study has shown that MUC17 mutations predict a favorable prognosis in pediatric-type malignant high-grade glioma41.

Therefore, this work is the first to describe the role of MUC17 mutations and epigenetic modifications in tumor grade, clinical features, and prognosis of adult diffuse gliomas. Here we have shown that MUC17 mutations are responsible for the mutational burden in adult gliomas and that the increase in MUC17 methylation correlates with the increase in glioma grade malignancy. MUC17 mutation correlated with poor prognosis in both LGG and GBM patients, and we analyzed which mutational profile is more associated with poor survival. We thus unveil a new potential biomarker to be explored for the diagnosis and prognosis of diffuse glioma in adults.
2 Material and Methods

2.1 Glioma mutational burden analysis

Data on the most frequently mutated genes in gliomas were collected at the Broad Institute of Massachusetts Institute of Technology (MIT) & Harvard Portal (http://firebrowse.org/)\(^4^2\). Three significance metrics were calculated for each gene using the MutSigCV methods\(^4^3\). These measure the significance of the mutation load. MutSigCV determines the P-value for observing the given quantity of non-silent mutations in the gene, given the background model determined by silent (and non-coding) mutations in the same gene and the neighboring genes of the covariate space. We used the following contextual categories: transitions at CpG dinucleotides, transitions at other C-G base pairs, transversions at C-G base pairs, mutations at A-T base pairs, and indels.

2.2 MUC17 methylation profile in gliomas

The methylation data of MUC17 in gliomas were downloaded at the Chinese Glioma Genome Atlas (CGGA) (http://www.cgga.org.cn/)\(^4^4\). Methylation parameters of the 159 patients accessed were scored from 0 (hypomethylated) to 1 (hypermethylated)\(^4^5\) and were analyzed in both primary and recurrent gliomas. We divided the cohort in different histological identities (oligodendroglioma, astrocytoma, recurrent astrocytoma, anaplastic oligodendroglioma, anaplastic astrocytoma, recurrent anaplastic oligodendroglioma, anaplastic oligoastrocytoma, GBM, recurrent GBM and secondary GBM), different malignant grades (2-4), gender, and age (over or under 38 years old). Methylation graphs were generated on the CGGA portal.

2.3 Data for comparative analysis between LGG and GBM samples

At cBioPortal, we selected the following studies for the composition of the LGG cohort: 530 samples from The Cancer Genome Atlas (TCGA) - GDAC Firehose Legacy (https://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/LGG/20160128/); 514 samples from the TCGA – PanCancer Atlas\(^4^6\)–\(^5^5\); 444 samples from The Glioma
Longitudinal AnalySiS (GLASS) consortium56; 1095 samples sequenced from the MSK-IMPACT platform in two different studies57,58; 61 samples sequenced by exome analysis in a study on LGG evolution59; and 1122 samples sequenced by TCGA60. After study selection, we refine the search for further analysis: 1167 samples of diffuse glioma (31%); 447 specimens of oligodendroglioma (11.9%); 341 samples of anaplastic astrocytoma (9.1%); 282 specimens of astrocytoma (7.5%); 280 samples of oligoastrocytoma (7.4%); 178 specimens of diffuse astrocytoma (4.7%); 78 samples of anaplastic oligoastrocytoma (2.1%) and 71 specimens of anaplastic oligodendroglioma (1.9%). We excluded histology with <1% incidence, covering a total of 32 specimens. Therefore, we analyzed 2884 samples from 2691 LGG patients.

For GBM, the selected studies were: 141 samples from two multiomics studies61,62; 783 samples from two TCGA studies63,64; 619 samples from TCGA - GDAC Firehose Legacy (\url{https://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/GBM/20160128/}) and 592 samples from TCGA – PanCancer Atlas46-55. After selecting the studies, we restricted the classification to further analysis: 634 samples from glioblastoma (29.7%) and 206 samples from glioblastoma multiforme (9.6%). We excluded the specimens classified as “glioma” (N= 1295; 29.75%). Therefore, we used 840 samples from 833 GBM patients.

2.4 Overall survival analysis

Survival data shows the last known day that patient is alive. Survival comparison between selected genes was estimated using the Kaplan-Meier method and the Long-Rank (Mantel-Cox) statistical test on GraphPad Prism (version9). The median survival time was calculated as the smallest survival time for which the survival function is equal to or less than 50%. Overall survival data were obtained at the cBioPortal. First, we compared wild-type MUC17 patients with mutated MUC17 for the 2884 LGG and the 840 GBM patients.

We then analyzed a comparison between patients with MUC17 mutation and patients mutated for clinically important and commonly mutated genes in glioma. For this analysis we used data from 593 LGG samples and 193 GBM samples. In detail, mean survival time was calculated for LGG samples based on mutations in MUC17, ATRX
chromatin remodeler, telomerase reverse transcriptase (TERT), tumor protein p53 (TP53) and isocitrate dehydrogenase 1 (IDH1). For GBM, OS was estimated based on mutations in MUC17, the phosphatidylinositol-4,5-bisphosphate-3-kinase catalytic subunit alpha (PIK3CA), the phosphatase and tensin homologue (PTEN), TP53, and the epidermal growth factor receptor (EGFR). In this analysis, only samples that exclusively had the mentioned mutation were included and the overlapping mutation samples were excluded.

2.5 IDH1 status

Clinical data from glioma patients were obtained from cBioPortal (https://www.cbioportal.org/). IDH mutation status was analyzed in 1130 LGG samples with clinically important mutations (ATRX, IDH1, TERT, TP53) and MUC17 mutation. For the analysis of 146 GBM samples, these status data were not available for comparison. The percent bar chart was created on cBioPortal.

2.6 MUC17 mutation profile

The glioma mutation profile was generated at the Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard Portal (http://firebrowse.org/viewGene.html) via iCoMut Beta. 1115 glioma specimens were profiled and classified into synonymous in-frame indels, other non-synonymous, missense, splice site, frameshift and nonsense mutations.

The MUC17 mutational profile in GBM patients was also created exclusively using data from the Tumor Portal (http://www.tumorportal.org/view?geneSymbol=MUC17). The mutational profile was analyzed in 29 GBM samples with MUC17 mutations. The mutations were classified in synonymous or missense mutations, in-frame insertion or deletion, frameshift insertion or deletion, and nonsense or splice-site mutations. Blue-white-red bars are log2 distributions of somatic copy number alterations ratio (–1 to +1)67. To missense mutations we analyzed the frequency of base pair changes and the median OS of these patients.
3 Results

3.1 MUC17 mutated is a significant gene in gliomas

MUC17 has a 6% mutation frequency in gliomas and is one of the significant mutant genes in these patients, reaching the eighth position, preceded only by IDH1, TP53, ATRX, EGFR, PTEN, CIC, and PIK3CA genes (Figure 1A). In glioma, most mutations in MUC17 are missense, but there is a minority of synonymous mutations (Figure 1A).

Of the patients with MUC17 mutations, 38.38% were classified as WHO grade 4, 31.31% as WHO grade 2, and 30.30% as WHO grade 3 (Figure 1B). Of these, 50.51% were primary LGG patients, 24.24% primary GBM patients, 14.14% recurrent GBM patients, and 11.11% recurrent LGG patients (Figure 1B). Histologically classifying the same cohort of patients with MUC17 mutation, we found the following profile: GBM (24.24%), oligodendroglioma (15.15%), recurrent GBM (14.14%), anaplastic astrocytoma (12.12%), recurrent anaplastic astrocytoma (11.11%), astrocytoma (10.10%), oligoastrocytoma (5.05%), anaplastic oligoastrocytoma and anaplastic oligodendroglioma (4.04%). When we analyzed these patients by (1) gender: 58.58% were male and 41.41% were female; (2) age: 50.50% were under 40 years old and 49.49% were older; (3) survival: 55.67% died and 44.33% lived; (5) Radiotherapy: 83.83% of the patients were treated with radiotherapy. (6) Chemotherapy: 71.71% required chemotherapeutics (Figure 1B).

3.2 MUC17 gene methylation is correlated to glioma staging

When we analyzed the methylation pattern of MUC17 compared to the different histology types, we found that MUC17 methylation increases from recurrent astrocytoma (median 0.37); anaplastic oligoastrocytoma (median 0.62, q1=0.51, q3=0.69); astrocytoma (median 0.71, q1=0.54, q3=0.86); anaplastic astrocytoma (median = 0.70, q1 = 0.62, q3 = 0.82); recurrent anaplastic oligodendroglialoma (median 0.70, q1=0.68, q3=0.71); oligodendroglialoma (median 0.72, q1=0.63, q3=0.87); anaplastic oligodendroglialoma (median 0.77, q1=0.70, q3=0.85); recurrent GBM (median 0.74, q1=0.65, q3=0.80); secondary GBM (median 0.80, q1=0.76, q3=0.83) to highest methylation pattern, GBM (median 0.83, q1=0.77, q3=0.87) (p=0.056) (Figure 2A).
Regarding the MUC17 gene methylation pattern and grading, we observed that it increased significantly in grade 4 glioma (p=0.0097) as follows: grade 2 (median 0.71, q1=0.59, q3 = 0.86); grade 3 (median 0.71, q1 = 0.63, q3 = 0.82); Grade 4 (median 0.81, q1=0.75, q3=0.85) (Figure 2B).

When we performed the analysis using MUC17 methylation and gender data (Figure 2C), we found that there were no differences (p=0.94). The median for women was 0.75 (q1=0.64, q3=0.86) and for men 0.75 (q1=0.64, q3=0.83), also according to WHO 2 (p=0.35), WHO3 (p=0.59) and WHO4 grades (p=0.19). There were also no differences when we compared the MUC17 methylation pattern by age (Figure 2D) over and under 38 years (p=0.43). In patients younger than 38 years old, the median methylation was 0.72 (q1=0.64, q3=0.84) compared to patients older than 38 years with a median of 0.78 (q1=0.66, q3=0, 85). Even when we reanalyzed the same patients for tumor grade, there were no statistical differences: WHO 2 (p=0.95), WHO 3 (p=0.77) and WHO 4 (p=0.86).

3.3 Patients with MUC17 mutation have poorer OS rates than wild-type counterparts in LGG and GBM tumors

When we analyzed a larger cohort of patients and divided them into LGG (Figure 3A) and GBM samples (Figure 3B), we found that patients with MUC17 mutations in both LGG (p=0.0001) and GBM (p = 0.0369) have a worse prognosis than patients with MUC17 wild-type groups. In the LGG cohort, median survival was 39.0 months in mutant patients versus 70.2 months in wild-type patients; and 13.9 versus 14.46 months in GBM patients, respectively.

To observe whether the MUC17 mutation preferentially affects a specific gender or age range, we analyzed these patients in this regard (Figure 3C). We found that among patients without MUC17 mutations, males are the group more affected in both LGG and GBM tumors (p=0.0001). For the mutant MUC17 cohort, there were no differences by gender in LGG and GBM patients (p > 0.05). Regarding age, we separated the LGG cohort in adult patients under and over 40 years old and the GBM cohort in adult patients under and over 60 years old. The result showed that in LGG patients the MUC17 mutation occurs more frequently in patients over 40 years old (58.05%, p < 0.05) and in GBM patients the MUC17 mutation occurs more frequently in patients under 60 years (51.51%, p <0.05).
3.4 MUC17 mutation is clinically relevant in both LGG and GBM cohorts.

When comparing the OS of patients with MUC17 mutation to the most frequently mutated genes in LGG (IDH1, TP53, ATRX and TERT), we found that patients with mutated MUC17 have the second worse OS (p = 0.0001) (Figure 4A) with a median survival of 10.60 months, behind mutant ATRX (6.74 months) and followed by mutant TP53 (15.90 months), TERT (43.50 months), and IDH1 (154.35 months). A similar analysis was performed to compare the patient OS of MUC17 mutant GBM patients (Figure 4B) to those with mutations in clinically relevant genes in GBM (PTEN, TP53, EGFR and PI3KCA). The worse OS mean was found in patients with mutations in EGFR (11.24 months), followed by PIK3CA (13.35 months), MUC17 (14.93 months), PTEN (16.80 months) and TP53 (19.82 months) genes (p=0.0347).

When we analyzed the LGG cohort for IDH status, we found that the percentage of wild-type IDH patients increased from mutant IDH1 patients (0%), to mutated TERT (1.23%), ATRX (50.0%), MUC17 (64.71%) and TP53 patients (72.92%).

3.5 C >T base change was the most abundant and represents the worse prognosis within MUC17 missense mutations

Within GBM patients with MUC17 mutation, 75.86% (22/29) have a missense mutation, 20.69% (6/29) have a silent mutation and 3.45% (1/29) have a splice-site mutation (Figure 5A). We counted the frequency of base change of missense mutations in this GBM cohort and calculated the median OS for each change (Figure 5B). At 40.91%, the base change C >T was the most abundant type in missense mutations, and this was the base change with the worse OS rate (5.16 months). The prognosis increased as follows: C >T (40.91%), OS 5.16 months; G >A (18.18%), OS 7.265 months; A >G (18.18%), OS 12.165; T >C (4.55%), OS 14.93 months; C >G (13.64%), OS 19.66 months; G >C (4.55%), OS 20.38.

In the cohort analyzed, the only conserved mutation was G >A at the position 100,674,926 base pairs in chromosome 7, converting a valine at amino acid position 77 to methionine. This mutation was observed in two patients who had an OS of 3.29 and 2.91 months.
4 Discussion

Diffuse gliomas are glial cell-derived tumors and have historically been classified as LGG and GBM since 1865. In 2016, the 4th edition of the WHO classification of CNS tumors subdivided and ranked diffusely infiltrating gliomas according to histological and molecular features. This classification system was further updated in 2021 to incorporate additional molecular features. These new classifications showed better compatibility between diagnostic and clinical evolution of patients and have opened new therapeutic possibilities.

According to the latest WHO classification, adult diffuse gliomas can basically be divided into three categories: (1) Astrocytoma IDH-mutant represent the IDH-mutated tumors with intact chromosome arms 1p/19q and often with ATRX and/or TP53 mutations. Tumors in this category with significant mitotic activity are assigned to WHO grade 3. Tumors with microvascular proliferation, necrosis and/or homozygous CDKN2A deletion are classified as WHO grade 4. In turn, IDH mutant astrocytomas without these histological or molecular features are classified as WHO grade 2. (2) Oligodendroglioma, IDH-mutant and 1p/19q-codeleted are tumors with mutations in IDH and concomitant loss of chromosome arms 1p and 19q; frequently accompanied by wild-type ATRX and TP53. These tumors are classified as WHO grade 3 if they show microvascular proliferation, necrosis, significant mitotic activity, or a homozygous CDKN2A deletion. In the absence of these features, they are classified as WHO grade 2. (3) Glioblastoma, IDH wild-type refer to diffusely infiltrating IDH wild-type gliomas. They exhibit at least one of the following features: microvascular proliferation, necrosis, EGFR amplification, TERT promoter mutation, and/ or simultaneous chromosome 7 gain and chromosome 10 loss (+ 7/− 10). These tumors have the most aggressive behavior and the worst clinical outcomes.

Despite advances in our understanding of the underlying pathogenesis of gliomas and advances in treatment modalities, diffuse gliomas remain a surgically incurable disease and the 5-year survival rate for GBM remains approximately 6.8%. Therefore, new biomarkers that could support in earlier diagnosis and prognosis of these tumors have been intensively explored.
In this sense, MUC17 has been poorly studied in glioma. To date Hu et al. (2022) examined MUC17 mutations in diffuse hemispheric glioma H3 G34-mutant (G34-DHG), a new type of pediatric diffuse high-grade glioma. These authors found that MUC17 was one of the genes frequently mutated in this type of tumor and that mutated MUC17 tended to indicate a favorable prognosis. Currently is consensus that gaining chromosome 7, where the MUC17 gene is located, predicts a poorer prognosis in adult gliomas. Our work explored for the first time MUC17 mutations in adult diffuse gliomas. We found that the majority of glioma patients with MUC17 mutation were histologically classified as GBM and classified as WHO 4. Most glioma patients were under radiotherapy and chemotherapy and did not survive. Therefore, the scenario we found was that the MUC17 mutation in adult gliomas generally predicts an aggressive behavior of these tumors. Marchocki et al., (2022) compared exonic non-synonymous mutations in pre-neoadjuvant chemotherapy and post-neoadjuvant chemotherapy samples from the same patient with high-grade serous ovarian carcinoma. They found no trends in mutational burden following exposure to neoadjuvant chemotherapy in platinum-resistant versus platinum-sensitive cases. Most of the mutated genes were unique in each case. However, four mutated genes appeared exclusively in the platinum-resistant cases, and MUC17 was one of the genes observed.

In our work, we verified that MUC17 gene methylation status increased in patients with WHO grade 4 compared to lower grades and that methylation was mainly found in GBM histology. Methylation of a gene promoter usually decreases expression of the gene. MUC17 was highly expressed on the surface epithelium and crypts of the colonic mucosa, however, its expression was reduced in hyperplastic polyps (p=0.0003), tubular and tubulovillous adenomas (p<0.0001) and colon cancers (p<0.0001). MUC17 was downregulated in H. pylori-infected gastric cancer (GC) tissues and cells; and associated with poor survival in these patients. MUC17 down-regulation was attributed to DNA methyltransferase 1 (DNMT1)-mediated methylation of the MUC17 promoter, and MUC17 down-regulation was also associated with GC cell proliferation and colony formation.

The first report on MUC17 gene expression by epigenetic regulation such as promoter methylation and histone modification in pancreatic cancer was in 2011. The results indicated that DNA methylation and histone H3-K9 modification in the 5' flanking region play a crucial role in the MUC17 expression. The authors found that the hypomethylation
status of MUC17 was observed in patients with pancreatic ductal adenocarcinomas, and that the status of the MUC17 promoter could be a novel epigenetic marker for the diagnosis of this cancer type40,77.

We found that LGG and GBM patients with MUC17 mutation have a poorer prognosis than patients with MUC17 wild-type status and that mutant MUC17 OS rates are worse than some recognized clinically relevant genes in gliomas. In patients with biliary tract cancer, several mutated genes were found to have negative survival effects, and one of the strongest survival effects belonged to the novel recurrent deletion at 7q22.1 which excises MUC1738. In breast cancer patients, on the other hand, Kaplan-Meier analysis showed that low MUC17 expression was significantly associated with longer survival after chemotherapy. \textit{In vitro} analysis of drug susceptibility, and survival analysis of expression levels in patient cohorts defined MUC17 as a mediator and predictive marker of response to chemotherapy in breast cancer29.

We also found that mutation of MUC17 changed a valine at position 77 to methionine in two GBM patients. Among the metabolic differences studied by normal and tumor cells, to date, GBM tumors’ apparent dependence on exogenous methionine has been a critical factor that is not well understood. Methionine links the tumor microenvironment to cellular metabolism, epigenetic regulation and even mitosis. Further studies are needed in this area78.

Taken together, we describe here for the first time that MUC17 mutations account for the mutational burden of adult gliomas and that MUC17 gene methylation and mutations are associated with poor prognosis in both LGG and GBM cohorts. Further studies are needed to verify the role of these mutations in the pathobiology of adult gliomas. However, we open a new avenue to explore a potential new biomarker that in the future may assist in diagnosis and prognosis in adult patients with diffuse glioma.

Figure Legends

Figure 1. MUC17 is among the significantly mutated genes in glioma patients. (A) The matrix represents individual mutations in patient samples, color-coded by type of mutation, for the significantly mutated genes. The barplot on the left of the matrix shows
the number of mutations in each gene. MUC17 was the eighth more mutated gene in adult glioma patients and contained the most missense mutations and a minority of synonymous mutations (B) Oncoprint obtained from the CGGA cohort. The relative proportions of glioma subtypes, histology, grade, gender, age, OS, censorship (dead = 1, alive = 0) and radiotherapy and chemotherapy status (treatment received = 1, treatment not received = 0). Most mutated MUC17 patients were GBM, grade WHO 4, on chemotherapy and radiotherapy treatment. A = astrocytoma; AA = anaplastic astrocytoma; AO = anaplastic oligodendroglioma; AOA = anaplastic oligoastrocytoma; GBM = glioblastoma; O = oligodendroglioma; OA = oligoastrocytoma; rA = recurrent astrocytoma; rAO = recurrent anaplastic oligodendroglioma; rAOA = recurrent anaplastic oligoastrocytoma; rGBM = recurrent GBM; rO = recurrent oligodendroglioma.

Figure 2. MUC17 methylation is increased in grade IV glioma. (A) Methylation of the MUC17 gene according to the histological pattern of adult diffuse gliomas. There was no significant difference among the different histologic glioma patterns (p = 0.056). O = oligodendroglioma; A = astrocytoma; rA = recurrent astrocytoma; AO = anaplastic oligodendroglioma; AA = anaplastic astrocytoma; rAOA = recurrent anaplastic oligoastrocytoma; GBM = glioblastoma; rGBM = recurrent GBM; sGBM = secondary GBM; NA = not answered. (B) MUC17 methylation status in the different glioma grades. MUC17 methylation is increased in grade 4 glioma (**p = 0.0097). (C) MUC17 methylation in the female and male samples. There were no differences in methylation pattern between the genders (p = 0.94), even when separated by grade status (WHO 2, p=0.35; WHO 3, p= 0.59; WHO 4, p=0.19). (D) MUC17 gene methylation and patient age. There were no differences in methylation pattern between the age groups >38 or <38 (p = 0.43), even when separated by grade status (WHO 2, p=0.95; WHO 3, p= 0.77; WHO 4, p=0.86)

Figure 3. Adult LGG and GBM patients with MUC17 mutation have worse prognosis than wild-type counterparts, regardless of gender. Kaplan-Meyer OS curve of (A) LGG and (B) GBM patients. Patients with mutated MUC17 gene have worse prognosis than their wild-type counterparts in both the LGG (**p = 0.001) and GBM (*p = 0.0369) cohorts. (C) Gender distribution plots in LGG and GBM patients with wild-
type or mutated MUC17. We observed that most patients without MUC17 mutation are male (57.81% in LGG and 53.56% in GBM). But in patients with MUC17 mutation, there is no difference between the genders.

Figure 4. Mutations in MUC17 have clinical significance in LGG and GBM patients.
(A) Analysis of the OS curve in LGG patients with MUC17, ATRX, TERT, TP53 and IDH1 mutations. Worse OS was observed in patients with ATRX mutations (6.74 months), followed by LGG patients with MUC17 (10.60 months), TP53 (15.90 months), TERT (43.50 months), and IDH1 (154.35 months; ****p<0.0001). (B) Analysis of the OS curve in GBM patients with mutations in MUC17, PIK3CA, PTEN, TP53 and EGFR. Worse OS is observed in patients with EGFR (11.24 months), followed by GBM patients with PIK3CA-(13.35 months), MUC17-(14.93 months), PTEN-(16.80 months) and TP53 -mutations (19.82 months; *p=0.0347). (C) Analysis of IDH status in LGG patients with these different gene mutations. 64.71% and 72.92% of samples from patients with MUC17 and TP53 mutations carry IDH wild-type, indicating a poor prognosis in glioma.

Figure 5. Profile of MUC17 mutations in GBM patients. (A) Graph showing the types of MUC17 mutations in GBM cohorts (N=66). Missense green saturation indicates evolutionary conservation of the mutant positions. Blue-white-red bars are log2 distributions of somatic copy number alterations ratio (1 to +1). (B) Table and graph showing the frequency of base changes (single nucleotide polymorphism, SNP) in missense mutations in GBM. C > T was the most common base change (40.91%) and these patients have the worst mean OS (5.16 months).

Acknowledgements

The authors thank all the researchers who have contributed to the TCGA data. Acknowledgements to the researchers who built and maintained the online portals used in this work: cBio Portal; firebrowse (Broad Institute); CGGA and GEPIA.

Authors contributions
G.M and V.F. screened and taken responsibility for the integrity of the data and the accuracy of the data analysis, performed bioinformatic analysis, wrote and edited the manuscript.

References

implication for improved colon surveillance. Oncotarget, 2017, 8:7025–38

Berger TR, Wen PY, Lang-Orsini M, Chukwueke UN. World Health Organization 2021 Classification of Central Nervous System Tumors and Implications for Therapy for Adult-Type Gliomas: A Review. JAMA Oncol, 2022, 8:1493–501

Richardson TE, Walker JM, Abdullah KG, McBrayer SK, Viapiano MS, Mussa ZM, Tsankova NM, Snuderl M, Hatanpaa KJ. Chromosomal instability in adult-type diffuse gliomas. Acta Neuropathol Commun, 2022, 10:115

Sanson M, Hosking FJ, Shete S, Zelenika D, Dobbins SE, Ma Y, Enciso-Mora V,

Figure 2

A

MUC17 gene methylation

Histology

O | A | rA | AO | AA | rAO | AO | GBM | sGBM | NA

p = 0.056

B

MUC17 gene methylation

WHO II | WHO III | WHO IV

** p = 0.0097

C

MUC17 gene methylation

Female | Male

p = 0.94

p = 0.35

p = 0.59

p = 0.19

D

MUC17 gene methylation

<38 | >38

Age Status

p = 0.43

p = 0.95

p = 0.77

p = 0.86
Figure 3

(A) LGG

(B) GBM

*** p = 0.0001

* p = 0.0369

(C) LGG

Wild-type

*** p = 0.0001

Mutated

p > 0.05

GBM

Wild-type

46.44

53.56

Mutated

48.89

51.11

Women

Men

42.19

57.81

50.00

50.00
Figure 4

(A) LGG

(B) GBM

<table>
<thead>
<tr>
<th>Mutated genes</th>
<th>Number of cases, total</th>
<th>Number of events</th>
<th>Median months overall (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUC17</td>
<td>15</td>
<td>12</td>
<td>10.60 (5.54 – NA)</td>
</tr>
<tr>
<td>ATRX</td>
<td>18</td>
<td>9</td>
<td>6.74 (5.85 – NA)</td>
</tr>
<tr>
<td>TERT</td>
<td>70</td>
<td>28</td>
<td>43.50 (24.20 – NA)</td>
</tr>
<tr>
<td>TP53</td>
<td>90</td>
<td>51</td>
<td>15.69 (12.90 – 25.40)</td>
</tr>
<tr>
<td>IDH1</td>
<td>400</td>
<td>65</td>
<td>154.35 (134.27 – NA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mutated genes</th>
<th>Number of cases, total</th>
<th>Number of events</th>
<th>Median months overall (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUC17</td>
<td>7</td>
<td>7</td>
<td>14.93 (5.16 – NA)</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>19</td>
<td>15</td>
<td>13.35 (8.84 – 40.41)</td>
</tr>
<tr>
<td>PTEN</td>
<td>63</td>
<td>46</td>
<td>16.90 (12.92 – 22.19)</td>
</tr>
<tr>
<td>TP53</td>
<td>64</td>
<td>47</td>
<td>10.92 (15.42 – 28.69)</td>
</tr>
<tr>
<td>EGFR</td>
<td>40</td>
<td>33</td>
<td>11.24 (4.67 – 18.60)</td>
</tr>
</tbody>
</table>

(C) LGG

**** p<0.0001
Figure 5

A

B

<table>
<thead>
<tr>
<th>Base changes</th>
<th>Number of cases, total</th>
<th>Percentage</th>
<th>Median months overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>C > T</td>
<td>9</td>
<td>40.91</td>
<td>5.16</td>
</tr>
<tr>
<td>G > A</td>
<td>4</td>
<td>18.18</td>
<td>7.27</td>
</tr>
<tr>
<td>A > G</td>
<td>4</td>
<td>18.18</td>
<td>12.17</td>
</tr>
<tr>
<td>T > C</td>
<td>1</td>
<td>4.55</td>
<td>14.93</td>
</tr>
<tr>
<td>C > G</td>
<td>3</td>
<td>13.64</td>
<td>19.66</td>
</tr>
<tr>
<td>G > C</td>
<td>1</td>
<td>4.55</td>
<td>20.38</td>
</tr>
</tbody>
</table>