Eye Exercises for Myopia Prevention and Control: A Systemic Review and Meta-Analysis

Zhicheng Lin, Feng Xiao, Weiye Cheng

Applied Psychology Program, School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, China (Z Lin PhD, F Xiao BS, W Cheng BS)

Correspondence to:
Dr Zhicheng Lin, Applied Psychology Program, School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, China
zhichenglin@gmail.com

FX and WC contributed equally to this work.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Summary

Background
Myopia has been growing in prevalence and developing at a younger age, a trend accelerated by the COVID-19 pandemic. Eye exercises—a compulsory school policy in mainland China for over 50 years—were emphasized in recent national efforts to combat the epidemic of myopia. We aimed to evaluate the efficacy of eye exercises in the prevention and control of myopia.

Methods
In this systemic review and meta-analysis, we searched nine major databases, both Chinese and English, spanning from database inception to December 15, 2022. We included studies that compared the effects of eye-exercise interventions with controls (no eye exercises) on at least one myopia-related indicator. Studies could be randomized or non-randomized controlled trials. Two coders independently screened records for eligibility; extracted study-level data (study information, sample sizes, interventions, and myopia indicators); and assessed the risk of bias (Cochrane Risk of Bias Tool 2.0) and study heterogeneity (I^2). Using random-effect models and sensitivity analysis, we estimated the effects of eye exercises relative to control in changes in visual acuity, dioptr, and curative effects (axial length was not reported). Visual acuity and dioptr outcomes were evaluated using standardized mean differences (SMDs); curative effects were assessed using the risk ratios (RRs). This study is registered on Open Science Framework (https://osf.io/dr5jk).

Findings
Of the 1765 records identified, 1754 were excluded: 423 were duplicates, 1223 did not have a control group, 16 did not have full-text, and 92 did not fulfill other inclusion criteria. In total, 11 studies were included in the meta-analysis, with a total of 921 participants (399 in the eye-exercise interventions and 522 in control groups). Nine studies had some concerns of bias in at least two domains, and two studies had a high risk of bias in two domains. Seven studies used visual acuity to measure myopia; visual acuity declined after the eye-exercise intervention (SMD=−0.67, 95% CI −1.28 to −0.07, Z=2.17, p=0.03), and it was not better in the eye-exercise intervention than control (SMD=−0.50, 95% CI −1.16 to 0.16, Z=1.49, p=0.14). Two studies used dioptr to measure myopia; the effect of eye-exercise intervention did not differ from control (SMD=−1.74, 95% CI −6.27 to 2.79, Z=0.75, p=0.45). Seven studies reported curative effects; eye exercises had a higher curative effect than control (RR=0.40, 95% CI 0.23–0.71, Z=3.13, p<0.01).

Interpretation
Eye exercises are not effective in preventing or controlling the progression of myopia, as measured by changes in visual acuity and dioptr; a small positive effect is observed in curative effects. Studies have high heterogeneity and potential publication bias, with major weaknesses in design (inadequate measures; small sample sizes; biases; failure to consider side effects; and failure to include established effective interventions as control). There is little evidentiary basis to support the continuing use of eye exercises to manage myopia in schoolchildren.

Funding
Guangdong Basic and Applied Basic Research Foundation (2019A1515110574) and Shenzhen Fundamental Research Program (JCYJ20210324134603010).
Introduction

Myopia is a rapidly growing public health challenge, affecting more than 2 billion people currently—a number projected to grow to 5 billion by 2050, about half of the population worldwide. In East and Southeast Asia, it has become an epidemic where more than 80% of young adults are myopic—a rapid rise from 20–30% in the mid-20th century. As it becomes more prevalent, it is also developing at a younger age. Early onset of myopia is strongly associated with high myopia in adulthood—more than 50% of those with myopia onset at 7 or 8 years of age develop high myopia (versus less than 5% of those with onset at 12 years or older). High myopia is a common cause of vision impairment and blindness, as it heightens the risk of cataract, glaucoma, retinal detachment, and myopic macular degeneration. In economic impact, myopic macular degeneration and uncorrected myopia—the leading cause of vision impairment—were estimated to be responsible for about US$250 billion in lost global productivity in 2015. Myopia thus presents an enormous challenge for health services, from screening and providing spectacles to managing eye diseases.

Because of its rapidly growing prevalence and its societal burden and personal costs (eg, reduced quality of life), myopia control has become a top public health priority in countries such as China. A national survey of ~2.5 million Chinese students reported 52.7% of them to be myopic by the end of 2020: 80.5% in high school students, 71.1% in middle school students, 35.6% in primary school students, and 14.3% in six-year-olds. A large proportion of myopic schoolchildren have no refractive correction, which undermines their school learning and health—for example, according to a recent city-wide study the ratio was about 60% in a southern municipal city, Shantou; the ratio was even higher in migrant children, estimated to be 85%. China recently set up specific, numeric goals for preventing and controlling myopia—goals that became part of evaluation metrics for all provincial and local governments (see appendix p 1 for the timeline of recent national efforts). The target was to reduce the prevalence of myopia by at least 0.5% annually from 2018–2023 (for provinces with high prevalence, at least 1% annually), such that by 2030, the prevalence would be reduced to <70% in high school students, <60% in middle school students, <38% in primary school students, and 3% in six-year-olds. To achieve these goals, a suite of implementation requirements was made at the levels of family, school, medical institute, student, and government agency. Prominent among these were compulsory eye exercises for schoolchildren, to be performed twice a day during school days—a policy that was dated to the 1960s, based on eye acupressure from traditional Chinese medicine (for an introduction of its history and rationale, see appendix p 2). This requirement was reaffirmed in response to the adverse impact of COVID-19 in a renewed concerted national plan issued in 2021.

This compulsory school policy has affected schoolchildren in mainland China for more than half a century. Yet, there has been no meta-analysis of controlled trials to evaluate the efficacy of eye exercises in myopia prevention or control. Long overdue, this important question acquires particular urgency in light of the recent nationwide policy goals and the negative impacts of the COVID-19 pandemic. Even though these goals are considered modest, progress has been stunted because of pandemic lockdown measures from 2020 to 2022. Home confinement has been associated with a substantial myopic shift, particularly in young children (aged 6–8 years); for example, from grade 2 to grade 3, myopia incidence almost doubled from late 2019 to late 2020 (20.8%, with lockdown) compared with the same period from 2018 to 2019 (13.3%, without lockdown). The cumulative effects over the past three years (2020–2022) are likely to be even more pronounced, creating unprecedented challenges for controlling
myopia. Thus, it is now more important and urgent than ever to adopt effective, evidence-based measures to combat myopia development. A challenge in evaluating the effect of eye exercises, however, is that some studies on this topic are published in Chinese that are not indexed in English databases. Here, we aimed to evaluate the overall efficacy of eye exercises in preventing myopia and slowing its progression, by conducting a meta-analysis of studies that compared eye-exercise interventions with controls that did not use eye exercises. We searched nine Chinese and English databases from their inception to December 15, 2022 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.21

Methods
Search strategy and selection criteria
We assessed the effectiveness of eye exercises against myopia onset or progression (figure 1). We searched nine databases, both Chinese (i.e., CNKI) and English (i.e., Web of Science, Google Scholar, EBSCO, PubMed, Cochrane Library, Science Direct, Scopus, and Embase), spanning from database inception to December 15, 2022. The search terms were “eye exercise” AND “myopia” in Chinese for the Chinese database and (“myopia” OR “short sightedness” OR “nearsightedness”) AND (“ocular gymnastics” OR “eye exercises” OR “eye exercise”) for the English database (see appendix p 3 for a full list of the search terms used).

Four coders independently screened the literature: WC and YW from database inception to April 30, 2020; FX and XG from May 1, 2020 to December 15, 2022. The screening started with titles and abstracts first and then the full text, using the following selection criteria. Specifically, to be included, papers must meet all five criteria: (1) available as a journal publication or a dissertation; (2) using eye exercises for intervention; (3) employing a control group that did not use eye exercises; (4) reporting at least one myopia-related indicator (e.g., axial length, visual acuity, diopter, or curative effects); and (5) reporting data that enabled effect size extraction or estimation. Discrepancies between coders were resolved through discussion. All excluded articles during the full-text screening stage are listed in the appendix (pp 4–9). RevMan (version 5.4) was used to screen and organize articles.

Data analysis
The analysis focused on outcome evaluation, risk of bias, and study heterogeneity. For each study, we extracted the article information, sample size, intervention(s), and myopia indicator(s). Of the four myopia indicators, visual acuity and diopter outcomes were evaluated using standardized mean differences (SMDs, with 95% CI), by dividing the mean difference between two groups with the standard deviation. Curative effects were assessed using the risk ratios (RRs, with 95% CI), by calculating the ratio of the risk of developing myopia (or progression) in the eye-exercise group to the risk in the control group. Axial length was not reported in any study.

Risk of bias was independently rated by two coders (FX and XG) using the Cochrane Risk of Bias Tool 2.0 (commonly recommended for randomized trials). Bias was rated across seven domains: random sequence generation; allocation concealment; blinding of participants and personnel; blinding of outcome assessment; incomplete outcome data; selective reporting; and other biases. Discrepancies in ratings were resolved after discussion. Intercoder consistency (reliability) was evaluated using linearly weighted PABAK (prevalence-adjusted, bias-adjusted kappa), which accounted for two characteristics of the ratings: 1) some ratings (e.g., some concerns) were much more prevalent than others (e.g., high risk), and 2) degree of disagreement
differed among the three ratings (e.g., low and high risks were more different than low risk and some concerns).

Study heterogeneity was quantified using the I^2 statistic (range from 0% to 100%, with higher values representing larger heterogeneity). The degree of heterogeneity was defined based on conventional standards: not substantial ($I^2<50\%$) or substantial ($I^2\geq50\%$). When the heterogeneity was substantial, outsized influences of individual studies on the overall results were probed using sensitivity analysis (subgroup analysis was not appropriate given the small number of included papers). Random-effects models were used to summarize effect sizes. Analyses were conducted using RevMan (version 5.4) and R/RStudio (version 2022.07.1). Data and code are available online (https://osf.io/dr5jk/).

Role of the funding source

The funders played no role in the study design, data collection, data analysis, data interpretation, or writing of the paper.

Results

The initial search yielded 1765 articles, of which 1754 were excluded: 423 were duplicates, 1223 did not have a control group, 16 did not have full-text, and 92 did not fulfill other inclusion criteria (as detailed in figure 1). The list of excluded articles during the full-text screening stage is provided in the appendix (pp 4–9). In total, 11 studies (9 in Chinese and 2 in English) were included in the meta-analysis.

Figure 1: Study selection

The 11 included studies$^{22-32}$ were between 1974 and 2021; three were dissertations23,24,29. All were controlled trials, including 2 non-randomized controlled trials and 9 randomized...
controlled trials (table). They assessed three types of outcomes: visual acuity, diopter, and curative effect. In total, the meta-analysis included 921 participants: 399 in eye-exercise groups and 522 in control groups. All studies were conducted in children except one (6 to 26 years old).

Table: Basic characteristics of the included studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Treatment group</th>
<th>Control group</th>
<th>Intervention duration</th>
<th>Outcome variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luo et al (2018)</td>
<td>RCT</td>
<td>n=55 (age 11·71±3·05)</td>
<td>n=55 (age 12·11±2·88): 3D visual training combined with ciliary muscle exercise training</td>
<td>3 months</td>
<td>Visual acuity</td>
</tr>
<tr>
<td>Wu (2013)</td>
<td>RCT</td>
<td>n=20 (age 14·23±3·11, number of eyes=40)</td>
<td>1) n=20 (age 14·45±2·80, number of eyes=40): point massage 2) n=20 (age 14·03±3·08, number of eyes=40): Dazhui vibration 3) n=20 (age 13±3·07, number of eyes=40): Dazhui vibration plus point massage</td>
<td>30 days</td>
<td>Visual acuity, diopter, curative effect*</td>
</tr>
<tr>
<td>Sun (2011)</td>
<td>RCT</td>
<td>n=30 (age 10·67±1·68, number of eyes=60)</td>
<td>n=30 (age 10·73±1·55, number of eyes=60): massage</td>
<td>3 months</td>
<td>Curative effect*</td>
</tr>
<tr>
<td>Lv et al (2014)</td>
<td>RCT</td>
<td>n=47 (age 12±4, number of diseased eyes=90)</td>
<td>n=55 (age 11±3, number of diseased eyes=105): quadruple therapy (traditional Chinese medicine diet, auricular plaster therapy, sticking around the eye, and the fog [undercorrection])</td>
<td>3 months</td>
<td>Curative effect*</td>
</tr>
<tr>
<td>Zhang (1974)</td>
<td>NRCT</td>
<td>n=28 (third-graders)</td>
<td>n=24 (third-graders): no intervention</td>
<td>1 day</td>
<td>Curative effect</td>
</tr>
<tr>
<td>Han & Mu (2015)</td>
<td>RCT</td>
<td>n=25 (age from 7 to 15)</td>
<td>n=25 (age from 7 to 15): badminton training</td>
<td>3 months</td>
<td>Visual acuity, curative effect</td>
</tr>
<tr>
<td>He et al (2014)</td>
<td>RCT</td>
<td>n=68 (age from 7 to 15)</td>
<td>n=68 (age from 7 to 15): yoga eye therapy</td>
<td>3 months</td>
<td>Visual acuity, curative effect</td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>n</td>
<td>Intervention</td>
<td>Duration</td>
<td>Outcome Variable</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>-----------</td>
<td>---</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Ma (2017)²⁹</td>
<td>NRCT</td>
<td>n=62 (third-graders, number of eyes=124)</td>
<td>n=61 (third-graders, number of eyes=122): eyesight gymnastics with physical exercise for health maintenance</td>
<td>4 months</td>
<td>Visual acuity*</td>
</tr>
</tbody>
</table>
| Wang et al (2019)³⁰ | RCT | n=30 (age from 6 to 16) | 1) n=30 (age from 7 to 16, number of diseased eyes=54): eye muscle massage
2) n=30 (age from 6 to 18, number of diseased eyes=55): head and neck massage and scraping
3) n=30 (age from 6 to 16, number of diseased eyes=53): eye muscle massage with head and neck massage and scraping | 30 days | Visual acuity* |
| Wang (2015)³¹ | RCT | n=24 (age 13·51±3·62, number of diseased eyes=39) | n=24 (age 13·17±3·34, number of diseased eyes=42): auricular plaster therapy | 12 weeks | Diopter, curative effect* |
| Hayashi & Du (2021)³² | RCT | n=10 (age 23±2·0) | 1) n=10 (age 25±2·3): facial massage roller
2) n=10 (age 24±2·5): automated eye massager
3) n=10 (age 23±2·4): without interventions | 5 minutes (acute); 2 months (chronic) | Visual acuity |

RCT=randomized controlled trial; NRCT=non-randomized controlled trial. Dazhui refers to the acupuncture point “GV 14”. Studies with asterisks used the number of eyes to calculate the outcome variables. Two of the studies, Hayashi & Du (2021) and Wang (2015), are in English; the rest are in Chinese.

Overall, out of the 11 studies, nine had some concerns of bias in at least two domains, and two studies had high risk of bias in two domains (appendix p 10). Intercoder consistency in bias rating was high for the first five domains: random sequence generation (% of agreement=100%, PABAK=1, 95% CI 1–1, p<0·001); allocation concealment (% of agreement=95·5%, PABAK=0·90, 95% CI 0·67–1, p<0·001); blinding of participants and personnel (% of agreement=77·3%, PABAK=0·49, 95% CI 0·09–0·88, p=0·02); blinding of outcome assessment (% of agreement=90·9%, PABAK=0·80, 95% CI 0·49–1, p<0·01); incomplete outcome data (% of agreement=86·4%, PABAK=0·69, 95% CI 0·20–1, p=0·01). Consistency was low for the final two domains: selective reporting (% of agreement=59·1%, PABAK=0·08, 95% CI –0·38 to 0·54, p=0·71) and other biases (% of agreement=54·5%, PABAK=–0·02, 95% CI –0·25 to 0·21, p=0·83). Thus, to better assess the effect of the eye-
exercise intervention, sensitivity analysis was subsequently conducted with and without the two high-risk studies.25,29

The results from the risk of bias assessments were corroborated by the funnel plots (appendix p 11), which are intended to evaluate the overall publication bias within each outcome measure: visual acuity (within-group and between-group), diopter, and curative effect. Owing to the small number of included studies and the somewhat subjective nature of funnel plots, the results can only be suggestive. Nevertheless, the patterns hint at the presence of publication bias: the distributions are asymmetrical, and the proportion of studies that lie outside the outer lines (where 95\% of studies are expected to stay in the absence of biases and heterogeneity) is high, ranging from 22\% (curative effect) to 100\% (diopter).

Seven studies used visual acuity to measure myopia. Acuity was converted to a common decimal scale. The effect of the eye-exercise intervention was evaluated in one of two ways: 1) within-group changes following intervention (i.e., before and after the eye-exercise intervention); 2) between-group differences following different interventions (i.e., eye-exercise intervention vs. control). For within-group changes (figure 2A), data include 168 participants (218 eyes) from eight experiments. The duration of the intervention ranged from 5 minutes to 4 months. Across experiments, visual acuity declined after the eye-exercise intervention ($SMD=-0.67$, 95\% CI -1.28 to -0.07, $Z=2.17$, $p=0.03$). The study heterogeneity was high ($I^2=93\%$), and one study23 was found to greatly contribute to the high heterogeneity. After excluding this study, the I^2 declined to 8\%, and the combined effect size became not significant ($SMD=-0.12$, 95\% CI -0.28 to 0.04, $Z=1.51$, $p=0.13$). Another study29 was found to be of high bias; after excluding it, the combined effect size was significant ($SMD=-0.81$, 95\% CI -1.56 to -0.07, $Z=2.13$, $p=0.03$). The pattern was the same when both studies were excluded ($SMD=-0.24$, 95\% CI -0.43 to -0.06, $Z=2.54$, $p=0.01$). For between-group differences (figure 2A), data include 208 participants (406 eyes) in the eye-exercise groups and 208 participants (404 eyes) in the control groups from 16 different experiments. Before interventions, the two types of groups had comparable visual acuity in each of the experiments. After interventions, across experiments, visual acuity remained similar between the two types of groups ($SMD=-0.50$, 95\% CI -1.16 to 0.16, $Z=1.49$, $p=0.14$), but was somewhat higher in the eye-exercise groups when the study with adult participants32 was excluded ($SMD=-1.21$, 95\% CI -1.98 to -0.43, $Z=3.04$, $p<0.01$). The heterogeneity was high as well ($I^2=96\%$), but no single study contributed to the heterogeneity. One study29 was found to be of high bias; after excluding it, the combined effect size remained not significant ($SMD=-0.44$, 95\% CI -1.19 to 0.31, $Z=1.14$, $p=0.25$).

Two studies used diopter to measure myopia (figure 2A). Data include 159 eyes in the eye-exercise groups and 162 eyes in the control groups from four experiments. Across experiments, the effects of interventions did not differ from each other ($SMD=-1.74$, 95\% CI -6.27 to 2.79, $Z=0.75$, $p=0.45$). The study heterogeneity was high ($I^2=99\%$), but no single study could be identified to have contributed to it.

Seven studies reported curative effects that evaluated relative risk (figure 2B). Data include 121 participants (309 eyes) in the eye-exercise groups and 117 participants (327 eyes) in the control groups from nine experiments. Across experiments, eye exercises had a higher curative effect than control ($RR=0.40$, 95\% CI 0.23--0.71, $Z=3.13$, $p<0.01$). Again, the study heterogeneity was high ($I^2=94\%$), but no single study could be identified to have contributed to it. One study25 was found to be of high bias; after excluding it, the combined effect size was reduced but remained significant ($RR=0.49$, 95\% CI 0.30--0.79, $Z=2.94$, $p<0.01$).
A. Eye-exercise intervention vs Control

<table>
<thead>
<tr>
<th>Study</th>
<th>VA (within-group)</th>
<th>Control (n)</th>
<th>Random-effects model</th>
<th>SMD (95% CI)</th>
<th>% weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Han & Mu (2015)</td>
<td>25</td>
<td>n.a.</td>
<td></td>
<td>–0.45 (-1.01 to 0.11)</td>
<td>12.6</td>
</tr>
<tr>
<td>He et al (2014)</td>
<td>68</td>
<td>n.a.</td>
<td></td>
<td>–0.15 (-0.48 to 0.19)</td>
<td>13.6</td>
</tr>
<tr>
<td>Luo et al (2018)</td>
<td>55</td>
<td>n.a.</td>
<td></td>
<td>–0.31 (-0.69 to 0.07)</td>
<td>13.4</td>
</tr>
<tr>
<td>Ma (2017)</td>
<td>124</td>
<td>n.a.</td>
<td></td>
<td>0.12 (-0.13 to 0.37)</td>
<td>13.8</td>
</tr>
<tr>
<td>Hayashi & Du (2021): Exp 1</td>
<td>10</td>
<td>n.a.</td>
<td></td>
<td>–0.40 (-1.29 to 0.48)</td>
<td>10.9</td>
</tr>
<tr>
<td>Hayashi & Du (2021): Exp 2</td>
<td>10</td>
<td>n.a.</td>
<td></td>
<td>–0.32 (-1.21 to 0.56)</td>
<td>10.9</td>
</tr>
<tr>
<td>Wang et al (2019): Exp 1</td>
<td>54*</td>
<td>n.a.</td>
<td></td>
<td>–0.16 (-0.54 to 0.22)</td>
<td>13.4</td>
</tr>
<tr>
<td>Wu (2013): Exp 1</td>
<td>40</td>
<td>n.a.</td>
<td></td>
<td>–0.14 (-0.49 to 0.35)</td>
<td>11.4</td>
</tr>
<tr>
<td>Subtotal (F=0.9%, p=0.03)</td>
<td>386</td>
<td>n.a.</td>
<td></td>
<td>–0.67 (-1.28 to 0.07)</td>
<td></td>
</tr>
<tr>
<td>and Wu (2013): Exp 1</td>
<td></td>
<td></td>
<td></td>
<td>–0.24 (-0.43 to 0.06)</td>
<td></td>
</tr>
</tbody>
</table>

B. Eye-exercise intervention vs Control

<table>
<thead>
<tr>
<th>Study</th>
<th>Curative effect</th>
<th>Control (n)</th>
<th>Random-effects model</th>
<th>RR (95% CI)</th>
<th>% weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Han & Mu (2015)</td>
<td>25</td>
<td>25</td>
<td></td>
<td>0.38 (0.22 to 0.64)</td>
<td>11.4</td>
</tr>
<tr>
<td>He et al (2014)</td>
<td>68</td>
<td>68</td>
<td></td>
<td>0.22 (0.13 to 0.36)</td>
<td>11.5</td>
</tr>
<tr>
<td>Lv et al (2014)*</td>
<td>90*</td>
<td>105*</td>
<td></td>
<td>0.07 (0.03 to 0.17)</td>
<td>9.8</td>
</tr>
<tr>
<td>Sun (2011)</td>
<td>60*</td>
<td>60*</td>
<td></td>
<td>0.22 (0.14 to 0.36)</td>
<td>11.6</td>
</tr>
<tr>
<td>Wang (2015): Exp 1</td>
<td>39*</td>
<td>42*</td>
<td></td>
<td>1.01 (0.82 to 1.25)</td>
<td>12.4</td>
</tr>
<tr>
<td>Wu (2013): Exp 1</td>
<td>40*</td>
<td>40*</td>
<td></td>
<td>0.63 (0.44 to 0.92)</td>
<td>12.0</td>
</tr>
<tr>
<td>Wu (2013): Exp 1b</td>
<td>40*</td>
<td>40*</td>
<td></td>
<td>0.59 (0.41 to 0.85)</td>
<td>12.0</td>
</tr>
<tr>
<td>Wu (2013): Exp 1c</td>
<td>40*</td>
<td>40*</td>
<td></td>
<td>0.53 (0.37 to 0.74)</td>
<td>12.1</td>
</tr>
<tr>
<td>Zhang (1974)</td>
<td>28</td>
<td>24</td>
<td></td>
<td>1.14 (0.28 to 4.61)</td>
<td>7.2</td>
</tr>
<tr>
<td>Subtotal (F=0.9%, p=0.01)</td>
<td>430</td>
<td>444</td>
<td></td>
<td>0.40 (0.23 to 0.71)</td>
<td></td>
</tr>
<tr>
<td>Subtotal (F=0.1%, p=0.01)</td>
<td>340</td>
<td>339</td>
<td></td>
<td>0.49 (0.30 to 0.79)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Forest plots for the four comparisons

The dashed line represents a null effect. SMD=standardized mean difference; CI=confidence intervals; n.a.=not applicable; Exp =
Experiment; E=eyes (instead of participants); *=study that contributes to high heterogeneity; #=study of high-risk of bias. In the Hayashi & Du (2021) study, Experiments 1 and 2 refer to acute (short-term) and chronic (long-term) experiments, respectively; letters a, b and c refer respectively to comparisons with the no-intervention control, facial massage roller intervention, and automated eye massage intervention. In the Wang et al (2019) study, letters a, b and c refer respectively to comparisons with the eye muscle massage, head and neck massage and scraping, and combined intervention. In the Wu (2013) study, letters a, b and c refer respectively to comparisons with the point massage, Dazhui vibration intervention, and combined intervention.

Discussion

Compared with control conditions, interventions using eye exercises were not effective in preventing or controlling the progression of myopia, as measured by changes in visual acuity and diopter. In curative effects, the risk in eye-exercise groups was reduced relative to that in control groups. Collectively, these studies were of high heterogeneity and might also suffer from publication bias. Individually, they were infected with five major weaknesses: failure to measure axial length; small sample sizes (most with n<100 per group); some levels of biases; failure to consider side effects; and failure to include established effective interventions as control. The empirical evidence and the weaknesses of the studies provide no evidentiary basis to support the continuing use of eye exercises as a policy to prevent myopia or control its progression in schoolchildren. Policymakers therefore need to consider abandoning this longstanding, ineffective practice and instead seek better, evidence-based solutions that are available.

The current meta-analysis examines controlled trials to provide strong evidence of causal relationships. It builds on previous indirect and observational evidence to suggest a lack of effectiveness of eye exercises in myopia control. Such indirect evidence includes the fact that in mainland China, despite its longstanding nationwide mandatory practice, the rate of myopia in young adults steadily increased from 20–30% in the 1980s to 80–90% today, following the footstep of regions in East Asia and Singapore that did not implement an eye-exercise policy. Indeed, the prevalence of myopia in China is much higher than in regions without such intervention (e.g., Australia). Within China, the myopia rate in urban students is also much higher than that in rural students, despite much better compliance with the policy in the former—roughly 96.6% of the urban students regularly perform eye exercises, compared with 15% in rural students. Similarly, other observational studies provided little evidence for the effectiveness of eye exercises. For example, one study found eye exercises to have a modest effect on relieving near vision symptoms but no effect on reducing myopia; yet the opposite pattern was reported in a different study. Another study found a statistically significant but probably clinically insignificant effect of eye exercises in reducing accommodative lag. Still another study found no association between eye exercises and the risk of myopia onset.

Although the exact etiology of myopia is not yet clear, the behavioral causes of the myopia epidemic likely lie in the changes in lifestyle over the last few decades, particularly decreases in time spent outdoors. Many interrelated risk factors for myopia, including increased near-work time and education pressure, may also exert their effects by reducing outdoor time. Importantly, despite a lack of consensus on the exact mechanisms and, to some degree, its effect on delaying the progression of myopia, there is now robust evidence that spending time outdoors is an effective intervention that protects against developing myopia, both when targeting schools and when targeting families. A distinct advantage of outdoor-time intervention is the added benefit of promoting an active lifestyle that helps to enhance mental
and physical health more generally. Non-lifestyle interventions have also been shown to be effective, such as low-dose atropine and optical interventions in slowing myopia progression.43

Given the lack of an evidentiary basis for the continuing use of eye exercises, and given the robust evidence for the efficacy of interventions such as time outdoors, it is increasingly hard to justify holding on to the eye-exercise policy. One may still argue that students did not perform eye exercises properly—not knowing the correct pressure, the correct location of acupoints, or the basic massage manipulation.38 Even if this were the case, we should then ask: if after more than 50 years of implementation and most students still cannot do it properly, should we fault the students or the intervention? It may also be argued that while eye exercises may not help myopia, they could reduce eye fatigue, or at least pose no harm anyway. This argument ignores potential inflammation and disease spreading from dirty fingers while doing the exercises, and further neglects the opportunity cost of doing health-promoting activities, such as outdoor play, napping, or simply resting. To argue for the status quo, then, requires robust evidence for the effectiveness of eye exercises in myopia control—preferably evidence from studies that measure axial length, use large sample sizes, minimize biases, examine side effects, and use outdoor time as a control intervention.

Our study has several strengths and limitations. Key strengths include the evaluation of studies published in Chinese and English spanning database inception to December 15, 2022. The assessments are based on controlled trials, thus affording better causal inference. Limitations include high heterogeneity, potential publication bias, and weaknesses of the individual studies (such as small sample sizes). There were not enough studies to conduct subgroup analyses of different age groups or of myopia prevention and control separately.

In conclusion, relative to control, eye exercises are not effective in preventing myopia or slowing its progression, as measured by changes in visual acuity and diopter; a small positive effect is observed in curative effects. Considering the overall lack of evidence for the efficacy of eye exercises but robust evidence for alternative interventions (eg, more time outdoors), coupled with the adverse impacts of COVID-19 lockdown measures over the last three years in mainland China, it is time for policymakers to retire the eye-exercise policy in favor of evidence-based interventions—for the well-being of schoolchildren and to achieve the goals of myopia-control policy.

Contributors
ZL conceived and designed the study. WC and FX searched the literature and screened articles. FX and WC analyzed the data, constructed the table, and drew the figures under the supervision of ZL. ZL wrote the manuscript. FX and WC accessed and verified the data. FX and WC contributed equally to this work. Yichen Wu and Xinran Ge contributed to the literature search, screening, and coding; Xiani Jia contributed to the editing of a preliminary draft of methods and results. All authors approved the final version of the manuscript and were responsible for the decision to submit the manuscript.

Declaration of interests
The authors declare no competing interests.

Data sharing
Extracted data and code are available online (https://osf.io/dr5jk/); additional requests may be made to the corresponding author.

Acknowledgments
The study was supported by the Guangdong Basic and Applied Basic Research Foundation (2019A1515110574) and Shenzhen Fundamental Research Program (JCYJ20210324134603010). The funding bodies had no role in the study design, data collection, analysis, and interpretation, report writing, or the decision to submit for publication.
References
20 Hu Y, Zhao F, Ding X, et al. Rates of myopia development in young Chinese schoolchildren during the

23 Wu L. Clinical observation on treating juvenile myopia by Dazhui vibrating manipulation plus point massage. 2013.

24 Sun J. The clinical research of applying tonifying spleen Qi Tuina method in treating spleen Qi deficiency type of pediatric myopia. 2011.

