Men have approximately 2- to 3-fold greater overdose mortality than women for synthetic opioids, heroin and psychostimulants including cocaine across the lifespan:

Analysis of state-level CDC data for 2020-2021

Eduardo R. Butelman, Yuefeng Huang, Rita Z. Goldstein, Nelly Alia-Klein

Neuropsychoimaging of Addiction and Related Conditions Research Program
Department of Psychiatry, Icahn School of Medicine at Mount Sinai

Corresponding Author:
E.R. Butelman Ph.D.
Neuropsychoimaging of Addiction and Related Conditions Research Program
Department of Psychiatry
Icahn School of Medicine at Mount Sinai
One Gustave L. Levy Place
Box 1217
New York, NY 10029-6574

Email: eduardo.butelman@mssm.edu
Phone: 212 241-6500

Abbreviations:
95%CI: 95% confidence interval
DF: degrees of freedom
CDC: Centers for Disease Control and Prevention
MOP-r: μ-opioid receptor
NS: not significant
SUD: Substance use disorders

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Drug overdoses are an escalating cause of mortality in the United States, with potential sex differences across the lifespan. The objective of this study was to use state-level nationally representative data that includes the COVID-19 pandemic period to determine overdose mortality for specific drug categories across the lifespan of men and women. We used Centers for Disease Control and Prevention (CDC) Multiple Cause of Death 2020-2021 data on overdose mortality, for 50 states and District of Columbia, across 10-year age bins (age range: 15-74). The outcome measure was sex-specific crude overdose death rate (per 100,000) for: synthetic opioids excluding methadone (ICD-10 code: T40.4; e.g., fentanyl), heroin (T40.1), psychostimulants with abuse potential (T43.6; e.g., methamphetamine), and cocaine (T40.5). Multiple regression analyses adjusted for ethnic-cultural background and household net worth from Census data, and sex-specific rate of misuse of the relevant substances, from the National Survey on Drug Use and Health (2019-2020). For each of these major drug categories, men had greater overall overdose mortality than women. Although overall rates of mortality differed across jurisdictions, the sex ratio of mortality for each drug category was relatively stable (≈2- to 3-fold greater mortality in men vs women). These findings survived adjustment for state-level ethnic-cultural and economic variables, and for sex-specific misuse of each drug type (especially in the 25-34, 35-44, 45-54 and 55-64 age bins). These findings underscore the need for research into sex- and gender-based mechanisms underlying differential vulnerability in overdose mortality for these drugs, based on their diverse pharmacodynamics and pathophysiology.
Introduction

Overdose deaths due to the use of opioids [μ-opioid receptor (MOP-r) agonists such as fentanyl and heroin], or psychostimulants such as methamphetamine and cocaine, have increased considerably in recent years in the United States [1-3]. Starting in 2020, and following the onset of the COVID-19 pandemic, there has been a further increase in overdose mortality for some substances (e.g., synthetic opioids such as fentanyl or the psychostimulant methamphetamine), but not others (e.g., heroin and other opiates) [4-6].

Identification of vulnerability to overdose mortality in the population at risk is crucial for targeted prevention and intervention efforts and for saving lives. A large number of experimental studies (in preclinical models and humans) examined sex differences, including the potential role of ovarian hormones, in abuse liability of MOP-r agonists or psychostimulants, with conflicting results [7-11]. While some preclinical studies report that females show greater responsiveness to the reinforcing effects or escalation of MOP-r agonists or psychostimulants, other studies do not show such sex differences [7,9,12-16]. Similarly, some cohort studies in humans show that women escalate their intake of MOP-r agonists or psychostimulants more rapidly than men, but this is not found in all studies [17-23]. As indicated by an extensive recent review of preclinical and clinical data, sex differences in vulnerability to withdrawal and relapse-like behaviors for MOP-r agonists or psychostimulants were also not robust overall, particularly in humans [11]. However, given methodological and ethical reasons, experimental investigations do not typically examine overdoses directly [8,11,24].

Nevertheless, epidemiological studies have shown gaps in overdose mortality between men and women. A recent report from the CDC, summarizing data from 2019 and 2020, including the COVID-19 pandemic, for 25 states and the District of Columbia, showed an overall increase in overdose mortality for all drugs combined, with a greater rate in men versus women [25]. Similarly, a United States nation-level analysis of mortality data, stratified as ages 15-34 or 35-64, found that overdoses from synthetic opioids (including fentanyl but not heroin) and psychostimulants (including methamphetamine but not cocaine) increased from March 2018 to March 2021 (i.e., covering the onset of the COVID-pandemic [4]), again with highest mortality was in men with minority status (e.g., African-American) [4]. Prior to the COVID-19 pandemic, a national-level
report of CDC data from 2017-2018 showed that men compared to women had greater overdose mortality for all opioids combined, and also for prescription opioids (e.g., oxycodone) [6].

Given the differential pharmacodynamics and pathophysiology underlying these different types of drugs, it is important to examine their associated overdose mortality separately. Acute overdose mortality caused by MOP-r agonists is primarily attributed to respiratory depression mediated by several brainstem nuclei [26,27]. Ascribed in part to greater rapidity of onset or chest rigidity, recent studies suggest that fentanyl may pose greater overdose risk than heroin or morphine derivatives [28-30]. It is unclear if there is sexually dimorphic vulnerability or resilience to the respiratory depressant effects of MOP-r agonists in humans [31-34].

By contrast, acute overdose mortality caused by psychostimulants such as methamphetamine and cocaine is primarily attributed to cardiovascular events, strokes, or seizures [35,36]. Psychostimulants primarily target transporters for the monoamines dopamine, serotonin and norepinephrine [37,38]. Methamphetamine acts both to increase monoamine release and inhibit reuptake through these transporters [24], whereas cocaine primarily functions through the latter mechanism [37], and there is greater neurotoxicity caused by methamphetamine than cocaine exposure [37,39,40]. Sex differences have been observed in the cardiovascular effects of cocaine in some, but not all experimental studies in humans [12,41-43]. Thus, cocaine increases heart rate and blood pressure of both men and women [44], and a subset of studies reported that women had either more prolonged or greater cardiovascular effects than men [41,42,45,46], possibly varying due to route of administration [12,47]. Sex differences in methamphetamine-induced cardiovascular effects such as hypertension and cardiac function also depend on variables studied and methodological factors [24,43].

As mentioned above, there has been an increase in overdoses due to synthetic opioids during recent years, especially 2020 and thereafter, coinciding with the COVID-19 pandemic [1,4,48]. COVID-19 mortality, which is greater in men versus women, also involves respiratory distress [49-51], and the presence of specific SUD is also noted as a risk factor for COVID-19 infection [51,52]. However, we are not aware of studies that examined if COVID-19 infection per se is involved in the increases in opioid-induced overdoses at the patient
level (as opposed to the system-wide impact of multiple environmental, healthcare and patient-level changes that occurred during the pandemic) [51,53-57].

Opioid or psychostimulant use disorders can have long-term trajectories over the lifespan [19,58-60], and sex differences in overdose vulnerability may change through adolescence, adulthood and menopause or aging, potentially depending on multiple underlying mechanisms [12,24,35]. Also, men and women could differ in their risk of overdose mortality based in part on gendered factors that may also change over the lifespan, such as family and social interactions and related trauma [61,62], risky behaviors (e.g., injecting alone) [63], and interaction with healthcare systems [64-69]. We therefore studied the potential for a sexually dimorphic overdose mortality risk as a function of selected drug categories across the lifespan. We also considered environmental differences as reflected across states, as these could encompass illicit drug market supply, socioeconomic factors, and availability of evidence-based care [70-74]. Overall, using state-level nationally representative CDC data for 2020-2021, the goal of this study was to determine if there are stable sex differences in overdose mortality across the lifespan for synthetic opioids, heroin, psychostimulants and cocaine, studied as mutually exclusive categories.

Patients and Methods

This was an observational study of de-identified publicly available data from the CDC “multiple cause mortality” data, obtained from the CDC WONDER platform (https://wonder.cdc.gov/mcd.html), which provides information based on death certificates in the United States. Values that were “suppressed” (due to n<10 per cell) or deemed “unreliable” in CDC WONDER were considered missing. Data were analyzed in October-December 2022.
Data set: The main analyzed outcome was crude death rates per 100,000 population for Drug Poisonings (ICD-10 codes for overdoses; unintentional X40-X44, suicide X60-X64, homicide X85, undetermined Y10-Y14). Data were obtained separately for: synthetic opioids other than methadone ("synthetic opioids" hereafter; this includes fentanyl and its analogs but also compounds from other scaffolds; T40.4) [55], heroin (T40.1), psychostimulants with abuse potential ("psychostimulants" hereafter; including methamphetamine; T43.6) and cocaine (T40.5). Data were stratified by sex and by six consecutive 10-year age bins (i.e., 15-24, 25-34, 35-44, 45-54, 55-64 and 65-74) obtained for 51 jurisdictions (50 states and the District of Columbia) for 2020-2021 (2021 includes provisional data) [75,76]. To minimize the number of cells with suppressed data, analysis with greater granularity (e.g., county level) was not attempted.

Data Analyses: All analyses were carried out with GraphPad Prism V.9, using jurisdiction-level data. Univariate analyses included four Spearman correlations on raw overdose mortality data (crude death rate/100,000) for men and women, per jurisdiction. Univariate mixed effects ANOVAs (sex x age bin) then analyzed log-transformed overdose mortality rate across the lifespan, stratified in six consecutive 10-year age bins; significant effects were followed by post-hoc Bonferroni tests. Outliers (>1.96 standard deviations from the mean) were excluded from the ANOVAs. If there were less than 10 jurisdictions in which data were available for both men and women for a given age bin and drug category, the whole age bin was excluded from the ANOVA, in order to maintain representativeness of sex comparisons. The overall alpha level of significance was set at the p=0.05 level.

Separately for each drug category and age bin, multivariate analyses were then carried out with multiple linear (least squares) regressions, to assess the effect of sex and selected potential covariates on the outcome, log-transformed death rates. Thus, the independent variables included: sex (M/F), percent of the population who is white, percent of the population who is black (from the 5-year American Community Survey for 2020 from the U.S. Census Bureau; from https://worldpopulationreview.com/states/states-by-race), and median household net worth in 2020 (www.census.gov/data/tables/2020/demo/wealth/state-wealth-asset
Using data from the National Survey on Drug Use and Health (NSDUH) for the years 2019-2020, we also controlled for overall levels of misuse of the relevant drugs (https://rdas.samhsa.gov/#/survey/NSDUH-2019-2020-RD02YR). Thus, the multiple linear regressions for both synthetic opioids and heroin included percent of the population who reported past year misuse of opioids (item OPINMYR in the NSDUH survey). Likewise, the regressions for psychostimulants or cocaine included the percent in the population who reported past year misuse of these types of drugs (items AMMEPDPYMU and COCMYR in the NSDUH survey, respectively). In all the multiple regressions, outliers (>1.96 standard deviations from the mean of the outcome value), were removed. As above, multiple regressions for a given age bin are not reported if there were less than 10 jurisdictions in which data were available for both men and women. In a supplementary follow-up analysis, we also examined analogously overdoses caused by both synthetic opioids and psychostimulants (a common poly-drug pattern of overdose) [3,77].

Results:

Overall overdose mortality profiles (all ages combined): With all ages combined, there was a broad range of raw overdose mortality rates for all four drug categories, across jurisdictions (i.e., individual symbols in Figure 1). There were positive Spearman correlations, nearing unity, in the rate of overdose mortality for men and women in the same jurisdiction, for the different drug categories (Spearman r-values ranged from +0.94 to +0.97; all p<0.0001) (see Figure 1). Simple linear regressions provided a strong fit for these within-jurisdiction data (R² values of 0.95, 0.88, 0.92 and 0.95, for synthetic opioids, heroin, psychostimulants and cocaine respectively). Importantly, the mean ratios for mortality in men:women (all ages combined) across jurisdictions exhibited a relatively small range, 2.4 to 2.9 for the four drug categories. Thus, the mean ratio of mortality in men:women was 2.5 (95%CI 2.4-2.7) for synthetic opioids, 2.9 (95%CI: 2.7-3.1) for heroin, 2.4 (95%CI: 2.3-2.5) for psychostimulants and 2.8 (95%CI: 2.6-2.9) for cocaine.
Univariate analyses across the lifespan: Analyzes were then stratified over six consecutive 10-year age bins (Figure 2), using log-transformed mortality rates as the outcome, after excluding age bins for which insufficient data was available (see Methods and Table 1). Separate 2-way mixed effects ANOVAs (sex X age bin) were carried out for each drug category. For synthetic opioids, psychostimulants and cocaine, there were significant main effects of sex and age bin, and also sex x age bin interactions (see Table 1). For heroin, there were significant main effects of sex and age bin, but the interaction was non-significant. Post-hoc Bonferroni tests for gender at each age bin (Table 1 and Figure 2) showed that with few exceptions (typically for the youngest and oldest age bins, 15-24 and 65-74 years), men had greater mortality than women. Furthermore, women did not have significantly greater mortality than men for any of the age bins, in any of the drug categories, based on these post-hoc tests.

Multivariate analyses across the lifespan: Multiple linear regressions for log overdose mortality rate were carried out for each drug category separately, per age bin. Significant beta parameters (±95%CI), p-values and overall model R², as well as effect size for sex (eta²) [78,79] are provided (Table 2). For all the available multiple regressions, sex remained a significant factor after adjustment for jurisdiction-level demographic variables (ethnic-cultural group and median household net worth) and for percent of men and women reporting past year misuse of the relevant drugs. Of note, sex also remained a significant factor in overdose mortality for all drug categories in the 55-64 age bin, a post-menopausal range [80].

Supplementary analysis of overdoses caused by both synthetic opioids and psychostimulants: We also analyzed overdoses caused by a commonly reported pattern of poly-drug use (combining synthetic opioids and psychostimulants; i.e., ICD-10 codes T40.4 and T43.6 as multiple causes of death) [3,77,81]. Overdose mortality due to this poly-drug combination generally followed a similar sex profile across the lifespan, with men having greater mortality than women in the age range 25-64 (see Supplementary data at the bottom of the document).
Discussion

To our knowledge, this is the first state- and age- specific examination of differences between men and women in overdose mortality due to synthetic opioids, heroin, and psychostimulants including cocaine, using a nationally representative sample, for 2020-2021 (thus covering the COVID-19 pandemic period). This analysis showed that across these four mutually exclusive drug categories in CDC data, and across the lifespan, men are dying from overdoses at an approximately 2-3 greater rate than women, as generalized across geographical jurisdictions, and controlling for demographics (household net worth and ethnic-cultural group) and past-year drug misuse.

This robust pattern of greater mortality in men across the lifespan, for each of these drug categories, was observed for all but the youngest and oldest age bins (15-24 and 65-74; which were also the bins with lowest overdose mortality overall). Greater overdose mortality in men versus women was also observed in the 55-64 age bin, for all drug categories. Since women typically reach menopause before the age of 55 [80,82], fluctuations in ovarian hormones are unlikely to account for this sex difference in overdose mortality. However, potential post-menopausal effects of progesterone cannot be fully excluded [12,83,84]. It should also be noted that the age trajectory of these SUD typically commences earlier in the lifespan [19,20,60], and that the lower mortality occurring in post-menopausal women could be a “carryover” of sexually dimorphic bio-behavioral factors that occur prior to menopause.

Since MOP-r agonists and psychostimulants including cocaine produce overdoses by different pharmacological and pathophysiological mechanisms [29,35,85,86], it is unlikely that a single underlying biological mechanism could account for sexual dimorphism in overdose mortality across the lifespan for these drug categories. Furthermore, even within these major categories, the pharmacodynamics and pathophysiological effects of fentanyl vs heroin and other μ-agonists [29,30,87], or methamphetamine vs cocaine [36,39,88], are not necessarily identical. Instead, multiple sex- or gender- related mechanisms, potentially with different expressions/contributions, could underlie the risk of overdose mortality, at different stages in the life-long trajectories of these substance use disorders [24,35,89-93]. At a behavioral level, men
could more frequently reach patterns of drug exposure associated with greater overdose risk (e.g., due to high doses, or frequency of use) despite negative consequences such as withdrawal (e.g., sex differences in positive or negative reinforcement) [94,95]. There could also be gendered differences in protective factors such as the impact of family and social relationships [96,97], or vulnerability factors such as injecting drugs alone and other risky behaviors [63,98].

Limitations: We focused separately on each of these four mutually exclusive major drug categories, because they are involved in a large number of overdoses in the United States, and because of their different pharmacological and pathophysiological effects [3,4,24,99,100]. Analogous examination for other drug categories would also be valuable, for example prescription opioids [6]. Overall, epidemiological studies from other countries would also be important, to understand how generalizable these findings are. As a further potential limitation, it cannot be fully excluded that some of the sex differences in overdose mortality are due to reporting bias [101-103].

As mentioned in the Introduction, there have been increases in overdose mortality for both synthetic opioids and psychostimulants during the COVID-19 pandemic period [1,4,51]. Furthermore, mortality due to COVID-19 is also greater in men versus women [50,104], and substance use disorders have been detected as a comorbidity with this viral infection [51,56]. In a follow-up to this study, we found that COVID-19 (ICD-10 code: U07.1) was infrequently reported as one of “multiple causes of mortality” in the overdoses reported here for synthetic opioids or psychostimulants (not shown). Therefore, based on these data, it does not appear that these overdoses were principally due to an acute interaction of pathophysiological effects of these drugs and COVID-19 infection *per se* [51,56].

Conclusions: This state-level analysis of recent nationally representative data showed that, compared to women, men have approximately 2-3 fold greater rate of overdose mortality from synthetic opioids, heroin and psychostimulants including cocaine. Notably, these sex differences were relatively invariant across jurisdictions and across the lifespan (especially in the range of 25-64 years of age), even after controlling for major ethnic-cultural and economic factors, and levels of drug misuse. Together with the recent escalating
trends in mortality, these findings suggest that sex and gender differences are important targets for investigation at multiple biological and behavioral levels, potentially leading to optimized and drug-specific prevention and intervention approaches to mitigate risk of overdose mortality across the lifespan.

Author Contributions: All authors contributed to the writing and editing process, including text and data analysis quality, and approved submission of the manuscript. All authors agree to be accountable for all aspects of the manuscript, including accuracy and integrity, and investigation and resolution of any potential discrepancies.

Funding: This work was supported by NIDA U01DA053625 (ERB), and NIDA 1RO1DA048301-01A1 (RZG).

Competing Interests: The authors have nothing to disclose.
Table 1: Univariate mixed effects ANOVAs (sex x age bin) to examine sex-related overdose mortality for specific drug categories across the lifespan (analysis of data in Figure 2, after log transformation).

<table>
<thead>
<tr>
<th>Drug Category</th>
<th>Sex Main effect</th>
<th>Age bin Main effect</th>
<th>Interaction (Sex x Age bin)</th>
<th>Significant post-hoc tests for sex x age bin</th>
</tr>
</thead>
</table>
| Synthetic opioids | F (1, 209) = 2291; p<0.0001 | F (5, 248) = 31.9; p<0.0001 | F (5, 209) = 6.35; p<0.0001 | Male>Female at age bins:
- 15-24
- 25-34
- 35-44
- 45-54
- 55-64
- 65-74 |
| Heroin (excluded 15-24 and 65-74 age bins*) | F (1, 77) = 1209; p<0.0001 | F (3, 134) = 4.85; P=0.0031 | F (3, 77) = 2.06; NS | N/A (sex x age bin interaction not significant) |
| Psychostimulants (excluded 65-74 age bin*) | F (1, 160) = 1736; p<0.0001 | F (4, 201) = 30.44; p<0.0001 | F (4, 160) = 16.35; p<0.0001 | Male>Female at age bins:
- 15-24
- 25-34
- 35-45
- 45-54
- 55-64 |
| Cocaine (excluded 65-74 age bin*) | F (1, 119) = 1295; p<0.0001 | F (4, 170) = 17.62; P<0.0001 | F (4, 119) = 5.29; p=0.0006 | Male>Female at age bins:
- 15-24
- 25-34
- 35-45
- 45-54
- 55-64 |

*Age bins excluded from analysis if there were less than 10 jurisdictions with available data in both men and women (see Methods).
Table 2: Multiple linear regressions for state-level log mortality rate for specific drug categories, by age bin*

<table>
<thead>
<tr>
<th>Age bin</th>
<th>Synthetic Opioids</th>
<th>Significant β (beta) parameter Estimates [95%CI] and p-value</th>
<th>Model R² (DF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-24</td>
<td>Sex (Men); Women as reference</td>
<td>State Median Household Net Worth</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>β=0.31 [0.22-0.38] p<0.0001 eta²=0.42</td>
<td>β=0.010 [0.0022-0.018] p=0.013</td>
<td>β=0.012 [0.0028-0.021] p=0.010</td>
</tr>
<tr>
<td>25-34</td>
<td>β=0.37 [0.26-0.47] p<0.0001 eta²=0.33</td>
<td>β=0.013 [0.0062-0.021] p=0.004</td>
<td>β=0.017 [0.0084-0.026] p=0.002</td>
</tr>
<tr>
<td>35-44</td>
<td>β=0.37 [0.24-0.49] p<0.0001 eta²=0.26</td>
<td>β=0.014 [0.0046-0.023] p=0.0039</td>
<td>β=0.019 [0.0092-0.030] p=0.004</td>
</tr>
<tr>
<td>45-54</td>
<td>β=0.36 [0.23-0.49] P<0.0001 eta²=0.25</td>
<td>β=0.013 [0.001-0.024] p=0.034</td>
<td>NS</td>
</tr>
<tr>
<td>55-64</td>
<td>β=0.35 [0.21-0.48] p<0.0001 eta²=0.24</td>
<td>β=1.77 X 10⁻⁶ [4.12 X 10⁻⁷ - 3.14 X 10⁻⁶] P=0.012</td>
<td>β=0.013 [0.0009-0.025] p=0.036</td>
</tr>
<tr>
<td>65-74</td>
<td>β=0.47 [0.30-0.64] p<0.0001 eta²=0.40</td>
<td>β=0.018 [0.0034-0.032] p=0.016</td>
<td>NS</td>
</tr>
</tbody>
</table>

*Outcome: Log mortality rate

*a State level of past year opioid misuse was from NSDUH, Restricted-Use Data Analysis System, item “OPINMYR” (2019-2020), per sex.

beta² for sex (i.e., sum of squaresgender / sum of squarestotal); to measure effect size for the main variable of interest [78].
<table>
<thead>
<tr>
<th>Age bin</th>
<th>Sex (Men); Women as reference</th>
<th>State Median Household Net Worth</th>
<th>State %White</th>
<th>State %Black</th>
<th>State and sex past year opioid misuse (%)<sup>a</sup></th>
<th>β<sup>b</sup></th>
<th>[95%CI]</th>
<th>p-value</th>
<th>Model R<sup>2</sup> (DF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-24</td>
<td>Insufficient data for regression<sup>c</sup></td>
<td>N/A</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
<td>0.51 (53)</td>
</tr>
<tr>
<td>25-34</td>
<td>β=0.38 [0.28-0.48] p<0.0001 eta<sup>a</sup>=0.50</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.38</td>
<td>[0.28-0.48]</td>
<td><0.0001</td>
<td>0.51 (53)</td>
</tr>
<tr>
<td>35-44</td>
<td>β=0.40 [0.28-0.51] p<0.0001 eta<sup>a</sup>=0.49</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.40</td>
<td>[0.28-0.51]</td>
<td><0.0001</td>
<td>0.52 (50)</td>
</tr>
<tr>
<td>45-54</td>
<td>β=0.38 [0.25-0.51] p<0.0001 eta<sup>a</sup>=0.39</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.38</td>
<td>[0.25-0.51]</td>
<td><0.0001</td>
<td>0.46 (47)</td>
</tr>
<tr>
<td>55-64</td>
<td>β=0.46 [0.29-0.63] p<0.0001 eta<sup>a</sup>=0.42</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.46</td>
<td>[0.29-0.63]</td>
<td><0.0001</td>
<td>0.53 (33)</td>
</tr>
<tr>
<td>65-74</td>
<td>Insufficient data for regression<sup>c</sup></td>
<td>N/A</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>

^aState level of past year opioid misuse was from NSDUH, Restricted-Use Data Analysis System, Item “OPINMYR” (2019-2020), per sex.

^bLess than 10 States had available data in both men and women (see Methods).
<table>
<thead>
<tr>
<th>Age bin</th>
<th>Sex (Men); Women as reference</th>
<th>State Median Household Net Worth</th>
<th>State %White</th>
<th>State %Black</th>
<th>State and sex past year stimulant misuse (%)<sup>d</sup></th>
<th>Model R² (DF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-24</td>
<td>β=0.22 [0.11-0.33] p<0.0001 eta²=0.25</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.34 (44)</td>
</tr>
<tr>
<td>25-34</td>
<td>β=0.33 [0.24-0.42] p<0.0001 eta²=0.36</td>
<td>β=-1.62 X 10⁶ [-8.45 X 10⁻⁷ -2.40 X 10⁶] p=0.0001</td>
<td>β=0.0076 [0.00066-0.015] p=0.032</td>
<td>NS</td>
<td>NS</td>
<td>0.60 (58)</td>
</tr>
<tr>
<td>35-44</td>
<td>β=0.35 [0.24-0.46] p<0.0001 eta²=0.34</td>
<td>β=-1.64 X 10⁶ [-7.34 X 10⁻⁷ -2.55 X 10⁶] p=0.0006</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.52 (59)</td>
</tr>
<tr>
<td>45-54</td>
<td>β=0.38 [0.24-0.51] p<0.0001 eta²=0.29</td>
<td>β=-1.74 X 10⁶ [-6.22 X 10⁻⁷ -2.87 X 10⁶] p=0.0029</td>
<td>NS</td>
<td>β=0.019 [-0.029 -0.008] p=0.0006</td>
<td>NS</td>
<td>0.51 (58)</td>
</tr>
<tr>
<td>55-64</td>
<td>β=0.37 [0.24-0.50] p<0.0001 eta²=0.25</td>
<td>β=-1.78 X 10⁶ [-5.87 X 10⁻⁷ -2.97 X 10⁶] p=0.0041</td>
<td>β=0.012 [-0.021 -0.0036] p=0.0066</td>
<td>β=0.028 [-0.039 -0.017] p>0.0001</td>
<td>NS</td>
<td>0.51 (58)</td>
</tr>
<tr>
<td>65-74</td>
<td>Insufficient data for regression<sup>c</sup></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

^cLess than 10 States had available data in both males and females (see Methods).

^dState level of past year stimulant misuse was from NSDUH, Restricted-Use Data Analysis System, item “APPEPDPMU” (2019-2020), per sex.
Table 2.4 Cocaine

<table>
<thead>
<tr>
<th>Age bin</th>
<th>Sex (Men); Women as reference</th>
<th>State Median Household Net Worth</th>
<th>State %White</th>
<th>State %Black</th>
<th>State and sex past year cocaine misuse (%)</th>
<th>Model R² (DF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-24</td>
<td>α=0.26 [0.15-0.38] p<0.0001 eta²=0.29</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.58 (30)</td>
</tr>
<tr>
<td>25-34</td>
<td>α=0.20 [0.10-0.37] p=0.011 eta²=0.064</td>
<td>β=1.23 X 10^6 [2.30 X 10^-7 -- 2.99 X 10^6] p=0.017</td>
<td>β=0.015 [0.0059-0.025] p=0.0020</td>
<td>β=0.017 [0.0055-0.028] P=0.0039</td>
<td>β=0.25 [0.075-0.42] p=0.0056</td>
<td>0.43 (61)</td>
</tr>
<tr>
<td>35-44</td>
<td>α=0.22 [0.047-0.39] p=0.013 eta²=0.069</td>
<td>NS</td>
<td>β=0.020 [0.0084-0.031] p=0.0009</td>
<td>β=0.023 [0.01-0.035] p=0.0006</td>
<td>NS</td>
<td>0.34 (62)</td>
</tr>
<tr>
<td>45-54</td>
<td>α=0.28 [0.12-0.44] p=0.0011 eta²=0.11</td>
<td>β=1.44 X 10^6 [2.38 X 10^-7 -- 2.64 X 10^6] p=0.020</td>
<td>β=0.017 [0.0059-0.027] p=0.0029</td>
<td>β=0.022 [0.011-0.034] p=0.0003</td>
<td>NS</td>
<td>0.44 (61)</td>
</tr>
<tr>
<td>55-64</td>
<td>α=0.28 [0.13-0.43] p=0.0012 eta²=0.11</td>
<td>β=1.95 X 10^6 [8.66 X 10^-7 -- 3.04 X 10^6] p=0.0007</td>
<td>β=0.015 [0.0051-0.0258] p=0.0037</td>
<td>β=0.025 [0.014-0.035] p=0.0001</td>
<td>β=0.20 [0.039-0.36] P=0.016</td>
<td>0.54 (53)</td>
</tr>
<tr>
<td>65-74</td>
<td>Insufficient data for regression</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Less than 10 States had available data in both males and females (see Methods).

*State level of past year cocaine misuse was from NSDUH, Restricted-Use Data Analysis System, item “COCYR” (2019-2020), per sex.
References

20. Butelman ER, Chen CY, Conybeare RA, Brown KG, Fry RS, Kimani R, Correa da Rosa J, Ott J, Kreek MJ. Are trait impulsivity and exposure to cannabis or alcohol associated with the age of trajectory of cocaine use? A gender-

26 Baldo BA, Rose MA. Mechanisms of opioid-induced respiratory depression. Archives of Toxicology. 2022.

Shover CL, Falasinnu TO, Dwyer CL, Santos NB, Cunningham NJ, Freedman RB, Vest NA, Humphreys K. Steep increases in fentanyl-related mortality west of the Mississippi River: Recent evidence from county and state surveillance. Drug Alcohol Depend. 2020; 216:108314.

Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in psychology. 2013; 4:863.

O’Donnell J, Gladden RM, Kariisa M, Mattson CL. Using death scene and toxicology evidence to define involvement of heroin, pharmaceutical morphine, illicitly manufactured fentanyl, and pharmaceutical fentanyl in

Figure 1: Overdose mortality per jurisdiction in men and women, due to synthetic opioids, heroin, psychostimulants and cocaine; all ages combined. Each symbol is one jurisdiction (i.e., 50 states and District of Columbia). Note different axis ranges in the panels. Spearman correlations for men and women in each jurisdiction are included. The purple line indicates the best-fit simple linear regression (M: male; F: female in the equation). Dashed black line indicates identity.
Figure 2: Overdose mortality in men and women, due to synthetic opioids, heroin, psychostimulants and cocaine, for consecutive 10-year age bins. Note different Y-axis ranges in the panels. Means and 95%CI are calculated across 51 jurisdictions. Log overdose data were analyzed in univariate mixed-effects effects ANOVAs (gender X age). Bonferroni post-hoc tests for sex at each age bin are shown with black brackets (* is p<0.05; **** is p<0.0001). The label “excl.” indicates that the age bin was excluded from ANOVA analysis due to insufficient available data (see Methods and Table 1).
Supplement: Poly-drug overdose mortality due to both Synthetic Opioids (ICD-10 category T40.4) and Psychostimulants (T43.6)
Supplementary Figure: **Upper panel:** Mortality for poly-drug overdose (synthetic opioids *and* psychostimulants) in men and women, all ages combined. The purple line indicates the simple linear regression (M: male; F: female in the equation). Each symbol is one jurisdiction. **Lower panel:** Mortality for poly-drug overdose (synthetic opioids *and* psychostimulants) in men and women, in 10-year age bins. Log-transformed data were analyzed with a univariate mixed-effects ANOVAs (sex X age) for each drug category. The label “excl.” indicates that the age bin was excluded from analysis due to insufficient data (i.e., less than 10 States had available data in both men and women; see Methods). Main effects of sex (F[1,113]=934.6) and age bin (F[4,160]=19.37 and a sex x age bin interaction (F[4,113]=10.16) were found (all p<0.0001). Bonferroni post-hoc tests are shown for gender x age bin (****; p<0.0001).

- See multiple linear regressions of supplementary data in page below
Supplementary Table: Multiple linear regression of State-level mortality rate for poly-drug overdoses caused by both synthetic opioids *and* psychostimulants

<table>
<thead>
<tr>
<th>Age bin</th>
<th>Sex (Men); Women as reference</th>
<th>State Median Household Net Worth</th>
<th>State %White</th>
<th>State %Black</th>
<th>State and sex past year opioid misuse (%)<sup>a</sup></th>
<th>State and sex past year stimulant misuse (%)<sup>b</sup></th>
<th>Model R² (DF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-24</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.33 (27)</td>
</tr>
<tr>
<td>25-34</td>
<td>β=0.32 [0.20-0.45] 0.001 0.29</td>
<td>β=-1.19 X 10<sup>-6</sup> [-8.75 X 10<sup>-8</sup> -2.30 X 10<sup>-6</sup>]</td>
<td>β=0.012 [0.0020-0.022] 0.020</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.50 (46)</td>
</tr>
<tr>
<td>35-44</td>
<td>β=0.31 [0.17-0.45] 0.0001 0.22</td>
<td>NS</td>
<td>β=0.017 [0.0055-0.028] 0.0044</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.48 (62)</td>
</tr>
<tr>
<td>45-54</td>
<td>β=0.33 [0.19-0.48] 0.0001 0.27</td>
<td>NS</td>
<td>β=0.012 [0.00078-0.024] 0.037</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.47 (44)</td>
</tr>
<tr>
<td>55-64</td>
<td>β=0.28 [0.043-0.51] 0.022 0.14</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.29 (30)</td>
</tr>
<tr>
<td>65-74</td>
<td>Insufficient data for regression<sup>c</sup></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Outcome is log-transformed overdose mortality rate; see Methods; all details as in Table 2

^aState level of past year opioid misuse was from NSDUH, Restricted-Use Data Analysis System, item “OPINMYR” (2019-2020), per sex.

^bState level of past year stimulant misuse was from NSDUH, Restricted-Use Data Analysis System, item “APPEPDPYMU” (2019-2020), per sex.

^cLess than 10 States had available data in both men and women (due to suppression based on low “n”; see Methods).

DF: degrees of freedom