Toxicity-specific peripheral blood T and B cell dynamics in anti-PD-1 and combined immune checkpoint inhibition

Mick J.M. van Eijs,¹,²# Rik J. Verheijden,¹ Stefanie A. van der Wees,² Stefan Nierkens,²,³ Anne S.R. van Lindert,⁴ Karijn P.M. Suijkerbuijk¹,#, Femke van Wijk,²,* on behalf of the UNICIT Consortium

¹ Department of medical oncology, University Medical Center Utrecht, Utrecht, the Netherlands
² Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
³ Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
⁴ Department of pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands

*Contributed equally
Corresponding author: Mick. J.M. van Eijs; Internal mail no. KC.02.085.2, P.O. Box 85090, 3508 AB, Utrecht, the Netherlands; m.j.m.vaneijs-2@umcutrecht.nl

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background Immune checkpoint inhibitors (ICI) have revolutionized the treatment landscape of advanced malignancies, but come with a diverse spectrum of immune-related adverse events (irAEs). Studies into irAE mechanisms are needed to make a transition from expert-opinion to evidence-based irAE treatment strategies.

Methods We aimed to longitudinally characterize peripheral blood T and B cell dynamics in ICI-treated patients developing irAEs and remaining irAE-free. PBMCs were immunophenotyped and functionally assessed with multicolor flow cytometry at baseline, after ±3 weeks and ±6 weeks or upon clinically relevant irAEs. Additionally, serum cytokine concentrations for 23 analytes were measured by multiplex immunoassay at the same timepoints.

Results We analyzed samples from 44 ICI-treated patients (24 anti-PD-1 monotherapy, 20 combined anti-PD-1 and anti-CTLA-4; cICI), of whom 22 developed clinically relevant irAEs, and 10 healthy donors. IrAEs after cICI were characterized by significantly enhanced proliferation of Th1-associated, mainly effector memory T cells, as well as Th17-associated and possibly antibody-mediated immune responses. The latter response was reflected in cICI toxicity by rising CXCL13 and IL-21 levels, but without changes in CD21lo, memory, class-switched or newly activated B cell subsets. Anti-PD-1 monotherapy-inflicted irAEs were associated with a modestly enhanced Th1-associated response compared to irAE-free patients, only reflected by increasing serum CXCL9 and CXCL10, but without cellular changes in Th1/Tc1 subsets. PD-1+LAG-3+ double-positive (DP) CD8+ T cells retained their proinflammatory potential in all treatment groups, regardless of irAE development. Especially DP CD8+ T cells showed enhanced cytotoxic capacity in patients with irAEs after cICI. In all patients with irAEs, highly cytotoxic CD57+ CD8+ T cells were abundant.

Conclusions Peripheral blood immune responses are substantially different between cICI and anti-PD-1 monotherapy-treated patients. ICI-induced toxicity is clearly dominated by an enhanced Th1-associated response, but in cICI we also found evidence for Th17-associated and possibly antibody-mediated responses. CD4+ effector memory T cells were the principal cycling cells in irAEs after cICI. Together, our data add to the growing body of evidence that irAEs may be antibody-mediated and driven by newly activated CD4+ helper T cells, specifically after cICI.
Background

Immune checkpoint inhibitors (ICI) have realized unprecedented survival improvements in a selection of patients with advanced malignancies, but comes with a broad spectrum of immune-related adverse events (irAEs) [1]. To date, recommendations for irAE management are largely based on multidisciplinary expert consensus [2-4]. In quest of rationally developed treatment strategies, it has been suggested to draw on experience with specific autoimmune diseases (AD) these irAEs mimic, assuming shared pathophysiology [1]. Despite similarities, immune-related toxicity should clinically be considered a separate disease entity. This is, for instance, illustrated by the more acute onset, the possibility of complete irAE reversibility with adequate therapy and shorter time-to-response of biologicals [5]. Together with the concern that targeted immunosuppression may thwart antitumor immunity [6, 7], these observations underscore that evidence-based irAE treatment requires more profound biological understanding of specific mechanisms underlying ICI-induced toxicity.

Many efforts have been undertaken to predict irAEs at baseline or early on-treatment based on peripheral blood immune cells, cytokines, auto-antibodies and gut microbiome, as extensively reviewed in Hommes et al. [8]. Relatively higher blood lymphocyte count at baseline has been associated with development of irAEs [8]. Several studies that further characterized T and B cells at baseline and on-treatment reported a multitude of factors associated with irAE development, such as lower regulatory T cell function, baseline Th17 dominance and early increase in CD21+ B cells [9-13]. However, most of these findings still warrant replication and they do not reflect a mechanism common to all irAEs [13]. Particularly effector memory CD4+ T cells (CD4EM) have recently been suggested as drivers of irAEs [11, 14, 15]. CD4+ T cell clonal expansion preceding irAEs [11, 16] and indications for epitope sharing between tumor and irAE-affected tissue [17, 18] suggests a role for T cell auto-reactivity in irAE development [11, 14]. However, the concept of genuine autoimmunity does not seem to completely recapitulate the pathophysiology of irAEs.

Although pathophysiological understanding has drastically improved over recent years, longitudinal studies into general irAE mechanisms comparing different ICI regimens are lacking, but urgently needed to improve irAE treatment strategies [19]. Besides, the role of B cells in irAEs has received little attention. Therefore, we interrogated peripheral T and B cell dynamics and cytokine production from baseline to several weeks on-treatment and upon immune-related toxicity in anti-PD-1 monotherapy and combined anti-CTLA-4 and anti-PD-1 (cICI) treated patients.

Methods

Study population and design

We included patients from the UNICIT biobank study conducted within the University Medical Center Utrecht, Utrecht, the Netherlands. Adult patients undergoing a first regimen of ICI with anti-PD-1 monotherapy, combined anti-CTLA-4 and anti-PD-1 (cICI), or anti-PD-(L)1 in combination with chemotherapy for a solid malignancy are...
prospectively enrolled in this biobank, with >450 patients currently included and recruitment ongoing. Stool and blood samples are collected at baseline, 3-4 weeks and 6-8 weeks after treatment initiation, and upon onset of irAEs prior to initiation of immunosuppressive therapy. Furthermore, stool and blood samples are collected after every new line immunosuppression administered for irAEs. If patients undergo diagnostic procedures for suspected immune-mediated toxicity, extra biopsies of irAE affected tissue are obtained. Tumor response to ICI per RECIST 1.1 [ref. 20], irAE incidence and severity per CTCAE version 5 [ref. 21], as well as doses and duration of all immunosuppressives administered for irAEs are continuously recorded.

Samples from patients treated with cI CI or anti-PD-1 monotherapy (without chemotherapy) were used in the present study. We included peripheral blood mononuclear cell (PBMC) and serum samples collected at baseline, at 3-4 weeks for patients who were irAE-free at that time, and at 6-8 weeks for patients without clinically relevant irAEs (NOTx) or at onset of irAEs for patients with clinically relevant toxicity (TOX). ‘Clinically relevant toxicity’ was defined as CTCAE v5 grade ≥2 irAEs leading to 1) temporary or permanent ICI discontinuation, and 2) demanding hospitalization and/or ≥0.5 mg/kg daily prednisone as first-line immunosuppression. Blood samples for healthy donor PBMCs were obtained from the University Medical Center Utrecht Mini Donor Service.

Blood sample processing

Blood was collected in clot-activating or sodium heparinized vacutainers (VACUETTE®, Greiner Bio-One, Austria).

Serum was isolated and frozen at -80°C within 4 hours after blood collection. PBMCs were isolated using Ficoll-Paque (GE Healthcare, Chicago, IL) based density-gradient centrifugation, frozen in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco, Grand Island, NY) supplemented with 2 mM L-glutamine (L-glu; Gibco), 100 IU/ml penicillin-streptomycin (p/s; Gibco), 20% fetal bovine serum (FBS; Invitrogen, Carlsbad, CA) and 10% dimethyl sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO) and stored in the liquid phase of nitrogen until further use.

Flow cytometry

PBMCs were thawed in a 37°C water bath, washed twice and resuspended in RPMI 1640 medium supplemented with 2 mM L-glu, 100 IU/ml p/s and 10% FBS and plated in round bottom 96-wells plates at a concentration of 0.5–1.0×10⁶ cells per well. After restimulation of cytokine-containing panels (described below), cells were stained with eBioscience Fixable Viability Dye eFluor 506 (Invitrogen) diluted 1/1,000 in phosphate buffered saline (PBS; Sigma-Aldrich) and incubated for 30 minutes at 4°C. Then, cells were washed, stained with the surface antibody mix (Supplementary Table 1) in FACS buffer (PBS supplemented with 2% FBS and 0.1% sodium azide) and incubated for 25 minutes at 4°C. On-treatment PD-1 expression was measured indirectly using biotinylated anti-human IgG4.

Restimulation probably led to dissociation of nivolumab/pembrolizumab from PD-1, resulting in apparently diminished PD-1 expression on-treatment. Therefore, in restimulated panels we stained PD-1 in on-treatment samples with both anti-IgG4 and anti-PD-1 (clone EH12.2H7) as described previously [22]. After primary surface
staining and two washes, cells from on-treatment timepoints were stained with Brilliant Violet 711 conjugated streptavidin and incubated for 30 minutes at 4°C. Following two washes, cells were fixed and permeabilized using eBioscience fixation/permeabilization reagent (Invitrogen) and incubated for 30 minutes at 4°C. After two washes, cells were stained with intracellular and intranuclear antibody mix (Supplementary Table 1), incubated for 30 minutes at 4°C, washed again and finally stored in FACS buffer at 4°C. Longitudinal samples from the same patient were processed in one batch, healthy donors were included in each batch and patient samples were randomized over batches with respect to IC regimen and toxicity status. Prior to every measurement, Sphero™ Rainbow Calibration beads (BD Biosciences, San Jose, CA) were measured to confirm stable cytometer settings (Supplementary Fig. 1A). FlowJo software was used to analyze data; gating strategies are in Supplementary Fig. 6A-B.

PBMC stimulation

For flow cytometry panels that included cytokine staining, cells were stimulated prior to staining with 20 ng/ml phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich) and 1.0 μg/ml ionomycin (Sigma-Aldrich). Golgistop (containing 0.26% monensin; BD Biosciences) 1/1,500 was added 30 minutes after PMA/ionomycin. Cells were then incubated (37°C, 5% CO₂) in the presence of PMA/ionomycin and Golgistop for another 3.5 hours.

Multiplex immunoassay

Concentrations of 23 soluble factors (Supplementary Table 2) were measured in serum collected at the same timepoints as PBMCs by an in-house developed and validated immunoassay based on Luminex technology (xMAP, Luminex Austin, TX) at the Multiplex Core Facility (University Medical Center Utrecht) as described previously [23, 24]. Aspecific heterophilic immunoglobulins were preabsorbed with heteroblock (Omega Biologicals, Bozeman, MT) and acquisition was performed with the Biorad FlexMAP3D (Biorad laboratories, Hercules, USA) in combination with xPONENT software (v4.2, Luminex). Data was analyzed by 5-parametric curve fitting using Bio-Plex Manager software (v6.1.1, Biorad). Serum samples from 10 healthy donors other than PBMC healthy donors were obtained from the University Medical Center Utrecht Mini Donor Service (median age 35 years, range 26-61; 60% male sex). For one patient no serum was available. Values below the limit-of-detection (LOD) were replaced with 0.5×LOD. Original (extrapolated) values were kept for traceable analytes below LOD but above 0.5×LOD. No values were out-of-range above maximal detectable levels.

Unsupervised analysis

All statistical analyses were performed with R version 4.2.0. For principal component analysis (PCA), missing data were imputed with the population median per parameter and PCA was performed using prcomp() in stats (v3.6.2) on all 159 read-out parameters across all panels (Supplementary Table 1). t-Distributed stochastic neighbor
embedding (t-SNE) projections for the T cell cytotoxicity panel (panel 2, Supplementary Table 1) were created using Rtsne (q=0.5; v0.16) for pre-gated alive CD3⁺ singlets in a concatenated file containing a subset of 10% of all cells randomly drawn from samples upon timepoint 3, toxicity or healthy donor. All cluster of differentiation proteins except CD3 were used as input parameters for t-SNE. Self-organizing map (SOM) visualizations were created on the same concatenated file (with 100% of the cells and the same parameters as used for t-SNE) using FlowSOM (v2.4.0) [ref. 25], clustered by k-means clustering, and finally overlaid with manual gating results to confirm gating strategy accuracy.

Statistical analysis

Longitudinal continuous data were analyzed by linear mixed effects models using the nlme package (v3.1-158). Random intercept for subject models with fixed effects for ICI regimen, toxicity status and their interaction with time were fit by restricted maximum likelihood. Significance for fixed effects was evaluated with Satterthwaite approximations, to achieve conservative estimates in mixed effects models with relatively small sample size [26]. Model output was visualized as predicted population estimates with 95% confidence intervals (CIs). Mean and 95% CI (by one-sample t-test) for healthy donor values was plotted as solid and dashed grey lines, respectively.

Continuous variables were analyzed with one-sample t tests for single groups, or a Wilcoxon rank sum test (for unpaired) or Wilcoxon signed-rank test (for paired data) between two groups. More than two groups were compared with the Kruskal-Wallis test followed by Dunn’s post-hoc test with Benjamini-Hochberg false discovery rate correction. P values <0.05 (two-sided) were considered statistically significant.

Ethical approval

The UNICIT biobank study was not considered subject to the Dutch Medical Research with Human Subjects Law by the medical research ethics committee of the University Medical Center Utrecht. The biobank review committee of the University Medical Center Utrecht approved the UNICIT biobank protocol (TCbio 18-123) and granted permission for use of human biospecimens for the present study (TCbio 19-704). All participants provided written informed consent in line with the Declaration of Helsinki.

Results

Patient characteristics

Longitudinal blood samples collected at baseline, at ±3 weeks (Timepoint 2) and at ±6 weeks or upon irAEs before immunosuppression (Timepoint 3/Toxicity) from 44 ICI-treated patients (12 anti-PD-1 monotherapy with clinically relevant irAEs [TOX], 12 anti-PD-1 monotherapy without clinically relevant irAEs [NOTx], 10 combined ICI [cICI] TOX and 10 without TOX [cICI NOTx]) were included, along with 10 healthy donors (HD) (Fig. 1, Table 1, Supplementary Table 3). As expected for cICI TOX, these patients had more concomitant, earlier-onset and more...
Table 1. Characteristics of patients and healthy donors

<table>
<thead>
<tr>
<th></th>
<th>Anti-PD-1 NOTx (N=12)</th>
<th>Anti-PD-1 TOX (N=12)</th>
<th>cICI NOTx (N=10)</th>
<th>cICI TOX (N=10)</th>
<th>Healthy donor (N=10)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr) Median (IQR)</td>
<td>63.5 (58.5-69.25)</td>
<td>72.5 (65.5-76.25)</td>
<td>71.0 (58.25-75)</td>
<td>49.5 (45.5-62.75)</td>
<td>56.0 (38.75-60.75)</td>
<td><0.01</td>
</tr>
<tr>
<td>Sex (male), N (%)</td>
<td>8 (66.7)</td>
<td>9 (75.0)</td>
<td>10 (100)</td>
<td>8 (80.0)</td>
<td>3 (30.0)</td>
<td>0.012</td>
</tr>
<tr>
<td>Primary tumor, N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td>9 (75.0)</td>
<td>10 (83.3)</td>
<td>3 (30.0)</td>
<td>8 (80.0)</td>
<td>N/A</td>
<td><0.01</td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td>0 (0.0)</td>
<td>1 (8.3)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Renal cell carcinoma</td>
<td>1 (8.3)</td>
<td>0 (0.0)</td>
<td>6 (60.0)</td>
<td>2 (20.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urothelial cell carcinoma</td>
<td>2 (16.7)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0 (0.0)</td>
<td>1 (8.3)*</td>
<td>1 (10.0)*</td>
<td>0 (0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor stage, N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>4 (33.3)</td>
<td>5 (41.7)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>N/A</td>
<td>0.011</td>
</tr>
<tr>
<td>IV</td>
<td>8 (66.7)</td>
<td>7 (58.3)</td>
<td>10 (100)</td>
<td>100 (100.0)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Number of toxicities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
<td>9 (75.0)</td>
<td>N/A</td>
<td>5 (50.0)</td>
<td>N/A</td>
<td>0.044</td>
</tr>
<tr>
<td>2</td>
<td>N/A</td>
<td>3 (25.0)</td>
<td>N/A</td>
<td>2 (20.0)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N/A</td>
<td>0 (0.0)</td>
<td>N/A</td>
<td>2 (20.0)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>>3</td>
<td>N/A</td>
<td>0 (0.0)</td>
<td>N/A</td>
<td>1 (10.0)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Highest grade (CTCAE v5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>N/A</td>
<td>9 (75.0)</td>
<td>N/A</td>
<td>0 (0.0)</td>
<td>N/A</td>
<td><0.01</td>
</tr>
<tr>
<td>III</td>
<td>N/A</td>
<td>2 (16.7)</td>
<td>N/A</td>
<td>6 (80.0)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>N/A</td>
<td>1 (8.3)</td>
<td>N/A</td>
<td>2 (20.0)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Preexistent autoimmune disease, N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>N/A</td>
<td>0 (0.0)</td>
<td>N/A</td>
<td>0 (0.0)</td>
<td>N/A</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Table 1

severe irAEs than anti-PD-1 TOX patients (Table 1). Baseline absolute eosinophil count, monocyte-to-lymphocyte and neutrophil-to-lymphocyte ratios derived from complete blood counts were equal between TOX and NOTx patients, as well as T cell-to-monocyte (TMR) ratio assessed by flow cytometry. Healthy donors had higher baseline TMR than patients (P = 0.012).

CD4EM T cell proliferation is strongly associated with irAEs in combined ICI

We extensively characterized the dynamics of peripheral T and B cell immunity during ICI treatment and towards the manifestation of toxicity using multicolor flow cytometry. No batch effects were observed (Supplementary Fig. 1). To explore shared features among subjects, we performed principal component analysis (PCA) with all 159 readout parameters from the measured panels in Supplementary Table 1 pooled together. cICI TOX patients, especially on-treatment timepoints, partially separated from all other subjects, including healthy donors, mainly through principal component 2 (Fig. 2A, Supplementary Table 4).

Based on the expression of CD27 and CD45RA, distributions of CD4+ and CD8+ T effector memory (EM, CD27-CD45RA-), central memory (CM, CD27+CD45RA-), terminally differentiated effector memory re-expressing CD45RA (EMRA, CD27-CD45RA+) and naive (CD27+CD45RA+) subsets were analyzed. Although pre-treatment CD4EM frequency has been reported as irAE predictor [11], baseline proportions of CD4+ and CD8+ T subsets were
similar between TOX and NOTx patients (Supplementary Fig. 2A). Compared to ICI-treated patients, healthy donors had fewer CD4\textsubscript{EM} T cells and more naive CD8+ T cells (Supplementary Fig. 2A). During ICI treatment, and even upon onset of irAEs, relative frequencies of naive/memory subsets remained unchanged, except for an increase in CD8\textsubscript{EM} T cells in cICI TOX (Supplementary Fig. 2B). However, group-specific differences in proliferation (based on Ki67) over time were present. A significant increase in CD4\textsubscript{EM} proliferation from baseline to Timepoint 2 was observed in all cICI TOX patients, but not in cICI NOTx patients (Fig. 2B). To enable comparison of all five groups (TOX or NOTx in anti-PD-1 monotherapy or cICI and healthy donors) simultaneously and over time, we graphically summarized patient-level data by plotting group-specific linear mixed models. cICI TOX, but not NOTx or anti-PD-1-treated patients showed significantly increased proliferation in CD4\textsubscript{EM}, CD4\textsubscript{CM}, CD8\textsubscript{EM}, CD8\textsubscript{CM} and CD8\textsubscript{EMRA} T cells (Fig. 2C,D, Supplementary Fig. 2C-E).

While the latter effects pertain to the (early) effects of ICI treatment, we were also interested in baseline parameters associated with irAE development. Higher CD4\textsubscript{EM} proliferation before the first ICI administration was associated with shorter time-to-toxicity (\(\rho = -0.53, P = 0.013\)), but this association was entirely driven by the cICI group (\(\rho = -0.67, P = 0.034\), Fig. 2E). In most cICI treated TOX patients, the increase in Ki67 expression reached a plateau at 3 weeks after ICI initiation (Fig. 2B). Both cICI TOX patients with longest time-to-toxicity developed hypophysitis, a presumably complement-mediated irAE with distinct pathogenesis from most other toxicities [27]. This further strengthens the association of baseline CD4\textsubscript{EM} proliferation with early-onset toxicity after cICI.

Th1- and Th17-associated immune responses primarily delineate irAEs after combined ICI, while anti-PD-1 TOX features only a modest Th1-associated response

Expanding further on the CD4+ compartment, we investigated immune response skewing by the percentages of CXCR3+CCR4-, IFN-\(\gamma-\) and IL-17+ CD4+ T cells. Relative abundance of all three subsets remained constant over time and neither correlated with ICI regimen, nor with toxicity development (data not shown). Although we found no differences in the percentage of IFN-\(\gamma-\) CD4+ T cells over time (Fig. 3A), cycling CXCR3+CCR4- (Th1-associated) CD45RO+ memory CD4+ T cells were dominant in cICI TOX relative to all other groups (Fig. 3B). Correspondingly, we observed increased proliferation of CXCR3+ CD45RO+ memory CD8+ T cells in cICI TOX patients (Supplementary Fig. 3A). These findings were corroborated by serum multiplex data, which showed increased serum levels of Th1-associated cytokines IL-12, TNF-\(\alpha\) and IFN-\(\gamma\) in cICI TOX, and CXCL9 and CXCL10 both in anti-PD-1 and cICI TOX upon Timepoint 3/Toxicity (Fig. 3C,D, Supplementary Fig. 3B,C).

We further characterized the kinetics of IL-17 producing CD4+ T cells, which is especially relevant since inhibition of Th17 differentiation by the IL-6 receptor blocker (IL-6RB) tocilizumab is clinically being tested to uncouple ICI toxicity from efficacy [28]. After the first treatment cycle, cICI TOX, but not anti-PD-1 TOX or NOTx patients demonstrated a vast increase in IL-17+ T cells (Fig. 3E, Supplementary Fig. 3D). Ki67 expression in IL-17+ CD4+ T cells was non-significantly higher in TOX compared to NOTx across all timepoints, including baseline,
regardless ICI regimen (Supplementary Fig. 3E). The relative decrease of IL-17+ T cells from timepoint 2 to irAE onset in cICI TOX is likely due to relative expansion of other subsets, as serum concentrations of Th17-associated cytokines IL-6, IL-23 and IL-17 remained stable or even increased for most cICI TOX patients from Timepoint 2 towards irAE onset (Fig. 3C, Supplementary Fig. 3B,C).

Together, our data confirm that cICI TOX is largely Th1/Th17 driven, while anti-PD-1 TOX only features modest Th1 enhancement relative to anti-PD-1 NOTx as assessed by serum multiplex data. Furthermore, these human data suggest that IL-6RB therapy to mitigate ICI toxicity may be more effective in cICI than in anti-PD-1 monotherapy, although preclinical models have demonstrated its efficacy both in anti-CTLA-4 and anti-PD-1 monotherapies [28].

PD-1+LAG-3+ CD8+ T cells bear intact inflammatory and cytotoxic potential regardless development of irAEs

Next, we investigated the cytotoxic potential of CD4+ and CD8+ T cells in relation to co-inhibitory receptor expression. We used CD95 expression to select for the antigen-experienced CD8+ T cell pool [29], which largely overlaps with CD45RO+ memory cells but also includes TEMRAS (Fig. 4A). First, we created t-SNE and FlowSOM visualizations on a representative sample of alive CD3+ singlets from Timepoint 3/Toxicity across all patients and healthy donors to explore the variety of subsets in an unbiased way. Proinflammatory cells with high potential for IFN-γ production were represented mainly across the CD8+ compartment (Fig. 4B). Within the CD8+ compartment, granzyme B production was especially high in the subset expressing senescence marker CD57 (Fig. 4B). Although this subset appeared brighter in the anti-PD-1 and cICI TOX density plots (Fig. 4B), we found no statistical difference in CD57+ CD8+ T cell abundance between groups at Timepoint 3/Toxicity. Labels assigned based on manual gating matched unsupervised clustering results, demonstrating that our gating strategy adequately covers relevant biological variation (Supplementary Fig. 4A).

Subsequently, we investigated co-expression patterns of classical exhaustion markers PD-1 and LAG-3. At baseline, PD-1+LAG-3+ double-positive (DP) CD8+ T cells were least prevalent across groups, while DP CD4+ T cells were higher and made up the largest fraction of CD4+ T cells in both TOX and NOTx patients, compared to healthy donors (Fig. 4C). We found no differences in expression patterns of PD-1 and LAG-3 occurring between TOX and NOTx post-treatment (Supplementary Fig. 4B).

Since merely expression of inhibitory receptors is not indicative of differentiation or functional status, we assessed proinflammatory and cytotoxic capacity by measurement of IFN-γ and granzyme B production after restimulation with PMA and ionomycin. Compared to double-negative (DN) T cells, a much larger proportion of DP (and to a lesser extent PD-1+LAG-3+) CD8+ T cells produced IFN-γ (Fig. 4D,E). This indicates preserved proinflammatory potential of DP cells and is supported by transcriptomic data in circulating PD-1+TIGIT+ CD8+ T cells, mostly co-expressing LAG-3, in melanoma and Merkel cell carcinoma [30]. In contrast, we found that granzyme B production was drastically lower in DP relative to DN CD8+ T cells, regardless timepoint or the
development of irAEs (Supplementary Fig. 4C,D). Still, clCI TOX featured a profound increase in CD8+ granzyme B production over time relative to other groups, especially in the DP subset (Fig. 4F, Supplementary Fig. 4E,F).

In conclusion, our data suggest remaining cytokine production potential in supposedly senescent CD57+CD8+ T cells. Moreover, PD-1+LAG-3+DP CD8+ T cells retain their proinflammatory and cytotoxic potential, while towards irAEs after clCI the fraction of granzyme B producing cells increases especially in this DP subset.

No changes in B cell subsets are observed, but serum cytokine levels indicate germinal center activation in combined ICI TOX

Then we set out to analyze the CD19+ B cell compartment over time. Although early increase in CD21lo B cells (mainly representing a memory subset) has been associated with irAEs following clCI [12, 31], we found no changes in CD21lo B cells following ICI, while CD27+ memory B cells in clCI TOX even decreased (Fig. 5A,B). Moreover, we observed no B cell activation, measured by CCR6 expression (Supplementary Fig. 5A). The fraction of IgM- class-switched B cells also remained unchanged over time in all groups (Supplementary Fig. 5B). Despite lacking indications for B cell activation and maturation based on flow cytometry data, increasing serum levels of APRIL, CXCL13 and IL-21 towards toxicity suggest germinal center activity or tertiary lymphoid structure (TLS) formation, again especially in clCI TOX (Fig. 5C, Fig. 3C, Supplementary Fig. 3B,C). Besides, higher CD27+CD38hi plasmablast abundance at baseline was associated with shorter time-to-toxicity in clCI TOX (Fig. 5D). In sum, these data support a role for adaptive humoral immunity following clCI that is more pronounced in TOX than NOTx, although no changes of B cell abundances were observed in peripheral blood.

Regulatory activity by Tregs is preserved upon systemic inflammation in the context of irAEs

Finally, we sought to characterize the response of regulatory T (Treg) cells after ICI treatment. While anti-CTLA-4 antibodies have been shown to preferentially deplete intra-tumoral CTLA-4hi Tregs, their peripheral abundance is maintained with anti-CTLA-4 treatment [32]. Abundance of forkhead box protein 3 (FOXP3)+ CD25+ CD4+ Tregs increased over time, especially in clCI TOX patients (Fig. 6A). Already at baseline, Tregs from patients showed higher expression of T-box transcription factor TBX21 (T-bet) compared with healthy donors (Fig. 6B). This may be indicative of a more activated Th1-polarized state, even before the introduction of ICI. To assess whether Tregs can adequately respond to systemic inflammation inflicted by ICI, we compared expression levels of co-inhibitory and co-stimulatory receptors. At Timepoint 3/Toxicity, mainly clCI TOX patients clustered together, marked by upregulation of CTLA-4, ICOS and TIGIT (Fig. 6C). Notably, the only two clCI TOX patients with grade 4 irAEs clustered distinctly, characterized by Tregs that failed to upregulate CTLA-4 or TIGIT. In sum, these findings indicate that peripheral Treg function upon systemic inflammation is generally preserved after ICI, while Treg dysfunction may contribute to more severe irAEs.
Discussion

Longitudinal studies into mechanisms underlying irAEs can importantly contribute to establishing evidence-based treatment strategies. Therefore, we studied lymphocyte dynamics in peripheral blood of healthy donors and ICI-treated patients, including patients that developed irAEs, from baseline to several weeks into treatment. Key findings are that cycling Th1-associated effector memory CD4+ T cells appear important drivers of acute irAEs, specifically in clCl. Besides, Th17- and Th2-associated responses contribute to the development of irAEs following clCI, but no changes in abundance or activation of B cell subsets were found. In contrast, anti-PD-1-associated irAEs were characterized by a modestly enhanced Th1 response compared to anti-PD-1-treated patients without irAEs. This likely relates to the less acute nature of anti-PD-1 associated toxicity. We showed that peripheral blood PD-1+LAG-3+ CD8+ T cells retained their proinflammatory potential and that especially within this DP subset the fraction of granzyme B producing cells increases towards clCl TOX relative to other patient groups.

ICI may reinvigorate antitumor responses in different non-terminally exhausted cell populations. PD-1+LAG-3+ (DP) T cells constitute one of these subsets. We showed that these cells produced highest amounts of IFN-γ after restimulation with PMA and ionomycin, which may indicate intact proinflammatory potential in vivo. Several aspects need to be considered to this end. First, the compartment at study (i.e., peripheral blood, lymphoid or peripheral tissue) is crucial, as phenotypically similar T cells exert differential function when comparing tumor-free tissue T cells to tumor-infiltrating lymphocytes [33]. Second, pan-cancer cytotoxic T cell transcriptomic studies indeed show overlap of proinflammatory genes and exhaustion markers [34, 35], but ifng translation may be hampered through posttranscriptional processes in dysfunctional T cells [36]. In addition to IFN-γ production, clCl TOX featured a profound increase in granzyme B production over time, especially in DP CD8+ T cells. This relative expansion may be due to reinvigoration of dysfunctional cells, which already express co-inhibitory receptors.

Alternatively, cells may be activated de novo, leading to co-inhibitory receptor upregulation portraying the acute phase of activation. In sum, our study presents DP T cells as most potent proinflammatory and cytotoxic cells, but to what extent this potential is deployed in vivo is likely dependent on ICI regimen and warrants further investigation.

CD57+ terminally differentiated effector CD8+ T cells form another subset that has been implicated in the response to ICI. We found that CD57+ CD8+ T cells were non-significantly higher in ICI-treated patients (especially in those with toxicity) compared to healthy donors, probably indicating cancer-induced T cell senescence. However, percentages CD57+ CD8+ T cells remained unchanged over time. This is line with a study by Fehlings et al. who reported that CD57+ fractions were similarly abundant before and after ICI treatment [37]. The latter study showed that a circulating CD57+ cluster with enhanced cytotoxicity exhibited increased clonality and more often shared TCR clonotypes with tumor tissue after ICI than other CD8+ populations [37]. Since CD57+ (CD8+) cells may be sustained by self-renewal capacity independent of TCR engagement or co-stimulation [38], this population possibly contributes to irAE development independent of CD4 help.
PD-1+CD8+ T cells are the primary cells proliferating in response to ICI [39, 40], and proliferative response is further enhanced with co-expression of multiple inhibitory receptors [40]. In cICI TOX we observed ongoing proliferation in the CD8+ and, most prominently, CD4+ memory pools. Actually, our study may have underestimated the effect of ICI on peripheral T cell proliferation. Cycling CD8+ T cells have namely been shown to peak at seven days after anti-PD-1 treatment before they gradually return towards baseline levels three weeks post-treatment [41], possibly because of migration of proliferating cells into tissues. Our results are in line with other studies indicating increased CD4+ and CD8+ clonal expansion and repertoire diversification in patients with irAEs [11, 16, 42-44]. Moreover, CD4EM T cell expansion in patients with irAEs parallels CD4 memory abundance in classical autoimmune disease [11]. Together, these data reinforce the hypothesis that cross- or autoreactive CD4EM clones may be unleashed upon ICI treatment in some, especially early, irAEs.

Helper T cells may also provide help to autoantibody-producing B cells. In line with an antibody-mediated etiology, our serum cytokine data (including CXCL13 and IL-21) suggest germinal center activation or TLS formation both in cICI and anti-PD-1 monotherapy irAEs. CD4EM T cells have been shown to contribute to thyroiditis development in anti-PD-1 treated mice with preexisting autoimmunity following anti-thyroglobulin immunization [14]. This underscores that autoantibodies are likely at stake in some irAEs, including those affecting the thyroid gland [45]. Recent work by Johannet et al. showed that baseline serum autoantibody signatures are predictive of severe irAEs (not limited to thyroiditis) with adjuvant anti-PD-1 and/or anti-CTLA-4 [46], which presents further evidence that preexistent subclinical autoimmunity may be at the root of various irAEs. Importantly, CXCL13 increase does not per se indicate TLS formation, as tumor-reactive T cells identified through CXCL13 expression can also be a source that expands upon treatment in ICI-responders [47].

The role of B cells in irAE development is further solidified by human data on increasing CD21+ B cells in association with irAEs in the setting of cICI [12, 31]. We were not able to reproduce these findings, but this may be due to different timing in blood collection and B cells migrating quickly into peripheral tissues following activation. A recent study found that aged anti-PD-1-treated mice developed TLS-like aggregates in irAE-affected tissue in a CXCL13-dependent fashion and that B cell depletions could attenuate ICI-inflicted toxicity [48]. So far, the use of rituximab for irAE management is limited to case reports [49]. These data together with our work reinforce B cells as a potential target for irAE treatment. However, caution is warranted with such strategy as TLS activation has also been strongly associated with clinical response to ICI [50].

Strengths of our study include the longitudinal design with multiple on-treatment timepoints, the stratified analysis for anti-PD-1 and combined ICI treated patients and the variety of T and B cell related parameters that were measured. This allowed investigation of very early treatment-specific immunological effects that precede irAE onset. Therefore, our study importantly contributes to causal understanding of irAE mechanisms. Main limitations are the uneven distribution of age and sex over groups, heterogeneity in type of irAEs and the restriction to the peripheral blood compartment.
In conclusion, we show that the peripheral blood immune response substantially differs between patients treated with cICI and anti-PD-1 monotherapy, and between cICI-treated patients with and without irAEs. Toxicity is clearly dominated by enhanced Th1-associated immunity, but we showed that the Th17 pathway and possibly antibody-mediated immunity also contribute to cICI toxicity. In this way, our study provides rationale to guide irAE treatment schemes based on ICI regimen and to deploy specific T-cell-directed (second-line) strategies, such as anti-IL-6R, especially in cICI-associated irAEs.

Ethics approval and consent to participate: This study was approved by the University Medical Center Utrecht biobank committee (TCbio 18-123). All participants provided written informed consent in line with the Declaration of Helsinki.

Competing interests: KPMS has advisory relationships with Bristol Myers Squibb, Novartis, MSD, Pierre Fabre, AbbVie, received honoraria from Novartis, MSD and Roche and received research funding from BMS, Philips and TigaTx. FW has advisory relationships with Janssen and Takeda, and received research funding from Takeda, Galapagos, BMS, Sanofi, and Leo Pharma.

Availability of data and material: Data and scripts for statistical analysis are available upon reasonable request.

Funding: This investigator-initiated study received funding from Bristol-Myers Squibb.

Authors’ contributions: Conception: FW, KPMS, MJME. Patient accrual and biobanking: RJV, MJME, ASRL, KPMS. Experiments: MJME, SAW. Original draft preparation: MJME. Writing and reviewing: all authors.

Acknowledgements: We thank the patients, their families and caregivers, healthy donors, clinical staff and UNICIT consortium members. We would like to thank the Multiplex Core Facility of the University Medical Center Utrecht for performing the multiplex immunoassays.

Figure captions

Figure 1. Design of multicolor longitudinal flow cytometry study. Peripheral blood mononuclear cell (PBMC) and serum samples from immune checkpoint inhibitor (ICI)-treated patients developing or remaining free of clinically relevant immune-related adverse events (irAEs) were included at baseline, ±3 weeks into treatment and at ±6 weeks or upon irAE onset. Healthy donor PBMCs and serum were included for comparison. Created with BioRender.com.

Figure 2. Effector memory CD4+ T cell proliferation increases over time in combined-ICI treated patients with toxicity, relative to other groups, and is at baseline associated with early irAE onset. (A) Plot showing clustering of different groups in principal component analysis (PCA) with pooled flow cytometric data including all 159 readout parameters across panels. (B) Individual patient trajectories of the percentage Ki67+ of CD4+ effector
Figure 3. Both Th1- and Th17-associated immune responses are observed in combined-ICI treated patients with toxicity, whereas only enhanced Th1-associated immunity is associated with anti-PD-1 associated toxicity. (A, B) Percentage IFN-γ of total CD4+ T cells (A) and percentage proliferating of CXCR3+CCR4+ Th1-associated CD4+ T cells (B) over time. Only significant coefficients from mixed-effects models for the interaction term with time (‘B’), indicating statistically significant change compared to other groups, are shown. Gray solid and dashed lines indicate mean healthy donor level with 95% confidence interval. (C) Heatmap showing serum levels of cytokines and chemokines by in vivo treatment (left), showing relative increase in serum protein levels at Timepoint 3/Toxicity in all patients with irAEs (TOX; anti-PD-1 and cICI combined) versus all patients without irAEs (NOTx). Data are scaled to individual proteins across timepoints (see Supplementary Fig. 3B, C), enabling direct comparison of individual proteins between three timepoints. Unsupervised clustering of patients by Manhattan distance. (D) Volcano plot showing relative increase in serum protein levels at Timepoint 3/Toxicity in all patients with irAEs (TOX; anti-PD-1 and cICI combined) versus all patients without irAEs (NOTx). Full protein names are in Supplementary Table 2. (E) Fold-change in percentage IL-17+ of CD4+ T cells relative to baseline in cICI-treated patients without irAEs (left; NOTx) and with (right; TOX) irAEs. irAE: immune-related adverse event, NS: not significant, w/o: without. * P<0.05

Figure 4. PD-1+LAG-3+ double positive CD8+ memory T cells retain their inflammatory potential regardless of the development of toxicity. (A) Representative flow cytometry plot of CD95 and CD45RO expression in CD8+ T cells. (B) t-SNE visualizations for a random 10% subset of all CD3+ T cells from all patients at Timepoint 3/Toxicity and healthy donors, with relative abundance shown in density plots (top) and expression of lineage markers, IFN-γ and granzyme B in overlay plots (bottom). (C) Baseline percentages of CD45RO+ CD8+ (left) and CD95+ CD8+ (right) T cells positive for PD-1 alone or PD-1 and LAG-3. Comparisons by Kruskal-Wallis tests. (D, E) Percentages of CD95+CD8+ T cells producing IFN-γ after PMA/ionomycin stimulation, depending on inhibitory receptor expression pattern, in patients without (D) or with irAEs (E) stratified by time of sample collection; anti-PD-1- and cICI-treated patients are combined. Comparisons by pairwise paired Wilcoxon tests with Benjamini-Hochberg correction for multiple testing. (F) Percentage of granzyme B producing PD-1+LAG-3+CD95+CD8+ T cells over time. Significant coefficient (interaction term with time; ‘B’) from mixed-effects model is shown. Gray solid and dashed lines indicate mean healthy donor level with 95% confidence interval. cICI: combined ICI, irAE: immune-related adverse event, NS: not significant, w/o: without. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001.
Figure 5. Increasing serum CXCL13 levels and higher baseline plasmablast abundance in patients with early toxicity suggest a role for antibody-mediated immunity in toxicity after combined ICI. (A-C) Percentages of CD21^{lo} (A) and CD27^{+} memory (B) B cells of total B cells and serum level (in pg/ml) of CXCL13 (C) over time. Only significant coefficients (interaction terms with time; 'B') from mixed-effects models are shown. Gray solid and dashed lines indicate mean healthy donor level with 95% confidence interval. (D) Correlation between baseline percentage CD27^{+}CD38^{hi} plasmablasts of total B cells and time-to-toxicity, stratified by ICI-regimen (by Spearman correlation). irAE: immune-related adverse event, w/o: without.

Figure 6. Peripheral regulatory T cell abundance and function are generally preserved upon toxicity. (A) Percentage of CD25^{+}FOXP3^{+} CD4^{+} Tregs cells of total CD4^{+} T cells over time. Significant coefficient (interaction term with time; 'B') from mixed-effects model is shown. Gray solid and dashed lines indicate mean healthy donor level with 95% confidence interval. (B) Comparison of median fluorescence intensity (MFI) of T-bet in Tregs at baseline between healthy donors and all ICI-treated patients, by Wilcoxon test. (C) Expression levels (by MFI) of inhibitory and costimulatory receptors in Tregs (for patients Timepoint 3/Toxicity), hierarchically clustered by Euclidean distance. irAE: immune-related adverse event, w/o: without.

References

Figure 1

Combined ICI

Healthy donors (1 timepoint)

Anti-PD-1 monotherapy

10

10

12

12

T1 (baseline)

T2 (± 3 weeks)

T3 (± 6 weeks)/Toxicity

Median 5.0 (3-12) weeks

Median 8.5 (3-20) weeks

CC-BY-NC-ND 4.0 International license. It is made available under a perpetuity. is the author/funder, who has granted medRxiv a license to display the preprint in which was not certified by peer review) preprint The copyright holder for this this version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.20.23284818 doi: medRxiv preprint
Figure 2

A

Timepoint
- 1 (Baseline)
- 2
- 3/Toxicity
- Healthy donors

Group
- Anti–PD-1 w/o irAEs
- Anti–PD-1 with irAEs
- Combi–ICI w/o irAEs
- Combi–ICI with irAEs
- Healthy donors

B

Group
- Combi–ICI w/o irAEs
- Combi–ICI with irAEs

Moment
- No or pre–irAE
- Upon irAE

C

D

E

Group (TOX only)
- Anti–PD-1
- Combi–ICI
Figure 4.

(A) Pre-gated on alive CD8+ T cells

![Flow cytometry dot plot showing the percentage of eFluor 450 CD95+ CD8+ T cells](image)

- Pre-gated on alive CD8+ T cells: 18.6% CD95+ and 31.3% CD95-.

(B) t-SNE visualization of CD45RO expression

- Anti-PD-1 NOTx
- Anti-PD-1 TOX
- Healthy donors

(C) CD45RO expression across different conditions

- Healthy donors
- Will remain w/o irAEs
- Will develop irAEs

(D) Timepoint analysis without irAEs (NOTx)

![Graph showing % IFN-γ+ of CD95+ CD8+ T cells](image)

- Timepoint 1
- Timepoint 2
- Timepoint 3

(E) Timepoint analysis with irAEs (TOX)

![Graph showing % IFN-γ+ of CD95+ CD8+ T cells](image)

- Timepoint 1
- Timepoint 2
- Timepoint 3

(F) Correlation of granzyme B+ and IFN-γ+ expression

- Group: Anti-PD-1 w/o irAEs
- Combi-ICI w/o irAEs
- Anti-PD-1 with irAEs
- Combi-ICI with irAEs

Statistical Analysis:

- B = 2.27; p = 0.016
- **Statistical Significance:**
 - B = 2.27; p = 0.016
 - NS
 - ***
 - ****
 - **
 - *