Prediction of \textit{BRCA1} and \textit{BRCA2} mutations by the BODICEA and BRCAPRO models and NCCN criteria in Libyan breast cancer women

Eanas Elmaihub1,\textasteriskcentered a, Inas Alhudiri2, Adam Elzagheid2, Fakria Elfagi3 and Elham Hassen1,\textasteriskcentered 4\textdagger

1Department of Molecular biology, Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia.

2Department of Genetic Engineering, Libyan Biotechnology Research Centre, Tripoli, Libya.

3Department of Oncology, National Cancer Institute, Sabratha, Libya.

4Laboratory of Molecular Immuno-Oncology, Faculty of Medicine, Monastir University, Monastir, Tunisia.

aDepartment of Molecular biology and Biochemistry, Faculty of Sciences, Sabratha University, Sabratha, Libya.

\textdagger} Corresponding author: Elham Hassen

E-mail: elhamhassen@ismbm.rnu.tn

All rights reserved. No reuse allowed without permission.
Abstract

The BRCA mutation spectrum of familial breast cancer in Libya remains unknown. Several genetic models developed to predict the probability of BRCA1/2 mutations have not been applied in Libya, where the NCCN criteria are used for highly penetrating breast cancer susceptibility genes. We aimed to predict BRCA1/2 mutation probability in familial breast cancer and eligibility for genetic testing by using BOADICEA and BRCAPRO models and NCCN criteria. BRCA1/2 mutations were retrospectively predicted in 62 unrelated women with familial breast cancer between 2018 and 2021. Logistic regression, ROC analysis and AUC were used to compare NCCN referral criteria with the BRCAPRO and BOADICEA scores. Of 62 breast cancer patients, 32 (51.6%) (mean age 43.5±8 years) were predicted by both models as BRCA mutation carriers. BRCAPRO predicted BRCA1 and BRCA2 mutations in 27.4% and 41.9% of the women, respectively. BOADICEA predicted 8% for BRCA1 and 29% for BRCA2. At least one NCCN criterion was met by 50/62 women (80.6%). Only two criteria were statistically significant predictors in BRCAPRO and BOADICEA: breast cancer at ≤ 50 years with one or more close blood relatives with breast cancer, and breast cancer patient with a close relative of male breast cancer. For the two respective criteria, sensitivity was 0.78 and 0.89, specificity 0.33 and 0.39, AUC 0.72 and 0.75, PPV 78% and 27.5%, and NPV 67% and 97%. BODICEA and BRCAPRO models are suitable for recommending genetic testing for BRCA gene mutations. The NCCN criteria are too broad.

Keywords: Breast cancer, NCCN criteria, BRCAPRO, BOADICEA, BRCA1, BRCA2
Introduction

Women with germline mutations in the breast cancer susceptibility genes BRCA1/2 have a 45‒65% lifetime risk of developing breast cancer (BC) [1], and the prevalence of BRCA mutations in breast cancer patients is estimated to be 5‒10% [2-7]. The lifetime risk in the presence of germline mutations is probably tenfold greater than in the general population. This risk may be reduced by surgical interventions such as bilateral prophylactic mastectomy, which reduces the risk of BC by more than 90% [7-10]. Cancer susceptibility gene testing can identify individuals who are most likely to benefit from risk-reduction interventions.

Genetic testing of BRCA1 and BRCA2 is costly and difficult to interpret, particularly in families with a low likelihood of having a mutation. Therefore, it is important to estimate the likelihood that a family carries a BRCA1/2 gene mutation before a genetic test is done [11].

In several countries, a clinical standard for identifying hereditary breast/ovarian cancer has been developed and data have accumulated [2, 8]. This has resulted in the development of various models [3, 12-14] that can more precisely estimate BRCA1/2 mutation carrier probabilities based on both genetic and empirical models that calculate the probability of mutation by using predictor variables derived from cancer family history. The BRCAPRO software [13, 15] and the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) are examples of such tools [16, 17]. BOADICEA was founded by women and families from the United Kingdom, as well as a few other countries, and Africans are not represented.
Furthermore, BRCAPRO is based on mutation rates and penetrance in women of Ashkenazi Jewish and European ancestry [4, 18].

Libya lacks genetic testing for familial and non-familial mutations in cancer patients, including breast cancer [19], and most of those who require it must travel abroad. Consequently, familial breast and ovarian cancer patients in Libya are assessed based on the National Comprehensive Cancer Network (NCCN) criteria for highly penetrating breast cancer susceptibility genes. In addition, the BRCA1/2 gene testing is typically recommended only for patients who are triple-negative and have a family history of breast/ovarian cancer. Despite the utility of the NCCN criteria for referral to genetic assessment, they lack specificity for accurately excluding people with low a priori risk [20]. In light of these issues, the logical step would be to develop local protocols that are efficient, practical, and beneficial to those specific patients.

To the best of our knowledge, BRCA1/2 mutation prediction models have not been applied in people of North African ethnicity. Hence, we aimed to retrospectively predict BRCA1/2 mutation probability in Libyan women with BC by using the BOADICEA and BRCAPRO models, and to compare how the NCCN high risk assessment criteria perform in referring BC patients for genetic evaluation in comparison to the two risk assessment models.

Methods

Ethics Statements
The study was approved by the Research Ethics Committee of the National Cancer Institute (NCI), Sabratha, Libya. Verbal informed consent was obtained from each patient before recruitment in the study.

Patients and criteria

The study included 62 unrelated women with BC who were followed up at the outpatient clinic of the National Cancer Institute in Sabratha, Libya from 2018 to 2021. The patients were selected based on a family history of breast, ovarian or other cancer in one or more first-, second- or third-degree relatives regardless of the age of onset.

Data were collected from the patients in a self-administered questionnaire during their visits to the clinic. The medical records of the patients were reviewed.

Study tools

To calculate the probability of a patient being a BRCA1/2 mutation carrier, we used the BRCAPRO CancerGene software program (v6, BayesMendel R package) (http://www4.utsouthwestern.edu/breasthealth/cagene) and BOADICEA CanRisk v2.2.0 (https://www.canrisk.org/).

BRCAPRO uses statistical ideas that go back to Bayes and Mendel [15]. It analyzes data from patients and all their relatives, including their age at diagnosis, current age, age at death, ethnicity, BC markers such as estrogen, progesterone and HER2 receptor scores, and other risk factors such as the woman's age at first live birth, and mammographic density. The computations make use of information on breast, ovarian, and other cancer occurrences among first- and second-degree relatives.
BOADICEA uses information such as lifestyle, women's health, number and sex of children, breast screening, mammographic density, reproductive factors, and medical and family history. The medical history of the patients included age at diagnosis of breast or ovarian cancer. The family history included age at diagnosis of breast, ovarian, pancreatic or prostate cancer in first or second-degree relatives. In our study, ethnicity of all the patients was marked as "unknown" in BRCAPRO and as "other" in BOADICEA because of insufficient research on the ethnic groups living in North Africa.

Based on the probability calculation scores in the two models, ≥ 10% was considered a high-risk subgroup that would benefit from genetic testing [21].

The patients were also assessed using the National Comprehensive Cancer Network NCCN criteria (v2.2022) for referral to genetic risk evaluation [22]. NCCN does not provide a percent probability of mutation, whereas the models calculate carrier probability scores for the BRCA1 and BRCA2 genes separately.

We compared each of the NCCN referral criteria to the BRCAPRO and BOADICEA scores of our breast cancer patients to determine how each of the NCCN criteria performed.

Statistical analysis

We summarized the clinical characteristics of the study participants as medians for continuous variables and frequencies for categorical variables. Logistic regression was used in conjunction with receiver operating characteristic (ROC) analysis to determine which NCCN criteria were statistically significant predictors of high-risk patients, and the BRCAPRO and/or BOADICEA were used as the reference standards to evaluate the
sensitivity and specificity of the patient’s criteria. Area under the curve (AUC), a
general indicator of accuracy, was measured using ROC curves and the calculations
were made for both positive predictive values (PPV) and negative predictive values
(NPV). A test that is perfect has an area of 1, whereas an area of 0.5 means that the
test is useless. We examined each of the NCCN referral criteria in relation to the
BRCAPRO and BOADICEA results of our breast cancer patients to see how each of the
NCCN criteria performed. The clinical significance of each NCCN criterion was
determined by BRCAPRO and/or BOADICEA scoring. All statistical analyses were
performed with IBM SPSS Statistics v20.

Results

The clinical characteristics of the 62 BC women who participated in the study are
summarized in Table 1. Forty-eight (77%) of them were ≤ 50 years old at diagnosis,
with an average of 44.8 years. Thirty-eight women (61.2%) had a family history of BC
in first-degree relatives and 13 (21%) in second-degree relatives.

From the BRCAPRO and BOADICEA model scores based on the information provided
by the patients, the highest prediction rates were 90.8% for BRCA2 and 75.7% for
BRCA1. The mean carrier probability for all mutations in BRCAPRO was 8.1% for BRCA1
and 18.7% for BRCA2. For BOADICEA it was 4.8% for BRCA1 and 12.3% for BRCA2.

Using a cutoff of ≥ 10%, BOADICEA identified 5/62 (8%) of the patients as having a high
risk of BRCA1 mutations and 18/62 (29%) as high-risk for BRCA2 mutations, whereas
BRCAPRO identified 17/62 (27.4%) for BRCA1 and 26/62 (41.9%) for BRCA2.

Consequently, 32/62 (51.6%) of the patients were identified as high risk by BOADICEA.
and/or BRCAPRO and therefore eligible for genetic testing. Four individuals had high risk in both models of *BRCA1*, 13 had high risk in BRCAPRO only, and 1 had high risk in BOADICEA only. For *BRCA2*, 15 patients were positive in both models at the same threshold, 11 were positive in BRCAPRO, and 3 were positive in BOADICEA.

Table 1 Patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>(%) Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 50 y</td>
<td>48 (77)</td>
</tr>
<tr>
<td>Family history of breast cancer in</td>
<td></td>
</tr>
<tr>
<td>1st degree relatives</td>
<td>38 (61.2)</td>
</tr>
<tr>
<td>2nd degree relatives</td>
<td>13 (21)</td>
</tr>
<tr>
<td>3rd degree relatives</td>
<td>8 (13)</td>
</tr>
<tr>
<td>Family history of ovarian cancer in</td>
<td></td>
</tr>
<tr>
<td>1st degree relatives</td>
<td>1 (1.6)</td>
</tr>
<tr>
<td>Family history of prostate or pancreas cancer</td>
<td>4(6.4)</td>
</tr>
<tr>
<td>Family history of endometrium cancer in</td>
<td>4(6.4)</td>
</tr>
</tbody>
</table>

The average ages (mean ± SD) of patients classified as high risk for *BRCA1* mutations by BRCAPRO and BOADICEA were, respectively, 42.5 ± 9.5 years and 43.6 ± 14.8 years. For both models together, it was 42.7 ± 9.2 years. The mean age of patients identified as having low risk of *BRCA1* mutations by these models was 45.1 ± 8.9 years (p = 0.7). On the other hand, the average ages of patients with high risk of *BRCA2* mutation by BRCAPRO, BOADICEA, both models and low risk *BRCA2* mutations were 42.12 ± 7.8 years, 43.5 ± 9.6, 43.6 ± 8.4 and 45.8 ± 9.2, respectively (p = 0.8).

Table 2 shows the results for 50/62 (80.6%) patients who met at least one NCCN criterion. Using logistic regression, one NCCN criterion (BC patient at age ≤ 50 with one or more BC close blood relatives) was a statistically significant predictor of
patients identified as high risk for BRCA1 and BRCA2 mutations by either BRCAPRO or BOADICEA score \((p = .011 \text{ and } p = .005 \text{ respectively})\) in with sensitivity of 0.78, specificity of 0.33, and area under the ROC curve of 0.72 (Fig 1). PPV was 78% and NPV was 67%. The criterion of BC patient with relative male BC was statistically significant in patients at high risk of BRCA2 mutations \((P = .023)\), with sensitivity of 0.89, specificity of 0.39, and area under the ROC curve of 0.75 (Fig 2). PPV was 27.5 % and NPV was 97%.

Table 2 BRCAPRO and BODICEA models against NCCN criteria for prediction of mutation risk in BRCA1/2 genes

<table>
<thead>
<tr>
<th>NCCN Criteria</th>
<th>No. of patients</th>
<th>BRCAPRO patients score ≥ 10</th>
<th>BODICEA patients score ≥ 10</th>
<th>High score by BRCAPRO or BOADICEA</th>
<th>P value for high score by BRCAPRO or BOADICEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A woman with BC diagnosis meeting any of the following:</td>
<td></td>
<td>N = 17</td>
<td>N = 26</td>
<td>N = 5</td>
<td>N = 18</td>
</tr>
<tr>
<td>BC at age ≤ 50 and ≥ 1 close blood relative with B or O C age ≤ 50</td>
<td>35</td>
<td>14</td>
<td>22</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>At age 45 ≤</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Double primary BC/OC</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Male BC relative</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>≥ 1 relative with prostate or pancreatic cancer</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Triple negative (ER, PR, Her2-) BC diagnosed ≤60 years old

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>.336</th>
<th>.420</th>
</tr>
</thead>
</table>

Twelve patients did not meet any of the NCCN criteria.

Fig 1. ROC curve for NCCN criterion of BC at age ≥ 50 years and one or more close blood relatives with breast or ovarian cancer at age ≥ 50 years as predictor for genetic test eligibility.

Fig. 2 ROC curve for NCCN criterion: BC patients with relatives of male BC as predictor of genetic test eligibility.
Discussion

Despite recent efforts by Libyan health authorities to develop nationwide breast cancer screening programs [23], the unavailability of genetic diagnostics for people with familial breast and ovarian cancer remains a concern. Prediction of BRCA mutations in Libyan women has not been practiced, and this is the first study to use the BRCAPRO and BOADICEA scoring (≥ 10%) to predict BRCA1/2 gene mutations in women with BC who have a strong family history of BC, and to evaluate the efficacy of NCCN criteria.

Based on the BRCAPRO and BOADICEA scoring systems, our calculated frequency of patients at high risk of being carriers of BRCA1 and BRCA2 mutations was 29% and 46.8% for the respective scoring systems. If these high-risk patients were to test positive for BRCA1/2 mutations, this estimate would be consistent with studies showing that BRCA2 mutations are more common than BRCA1 mutations in the Arab region [24], though this pattern is not observed in the majority of other populations [25]. We also found that the occurrence of both breast and ovarian cancer in one patient was related to a high risk of a BRCA1 mutation, as reported in Sweden [26]. This patient had the highest probability of BRCA1 mutation in the BODICEA model.

We employed BRCAPRO and BOADICEA because they have been shown to be the most reliable in predicting mutant carrier probability when compared to other scoring models [27]. BRCAPRO predicted that 27.4% of the patients had BRCA1 mutations and 41.9% had BRCA2 mutations, which are slightly greater than the percentages predicted by BOADICEA (8% for BRCA1 and 29% for BRCA2). The BRCAPRO model is...
similar to BOADICEA in that BRCA1 and BRCA2 are modeled independently. The
differences between them can be explained in part by their use of different mutation
rates and allele frequencies. In particular, in BRCAPRO, the mutations are assumed to
be more common in BRCA1 than in BRCA2, but BOADICEA finds that BRCA1 and BRCA2
mutations have similar population frequencies, though BRCA2 was more common
[28]. The benefit of using two predictive models instead of one was that we were able
to identify more high-risk patients who needed genetic testing, and based on score
results from either or both scoring systems, we recorded 13 more BRCA1 and 11 more
BRCA2 high risk patients compared to using either system alone.

The overall mutation prevalence in patients identified as high risk by BRCAPRO and
BOADICEA was lower than would be expected based on the NCCN criteria. The NCCN
criteria that correlated best with the scoring systems for identifying high-risk patients
were BC patients at age ≥ 50 years and one or more close blood relatives with cancer
at age ≥ 50 years and BC patients with relatives of male BC which had high sensitivity
of %78 and 89% and low specificity 33% and 39% in respectively. This could result in a
large number of patients with a low likelihood of having a BRCA mutation being
referred for a genetic test. Though the P value of BC patients with BRCA2 at age ≥45
years was .032 it had a poor area under the ROC curve (0.4), indicating that the
criterion may not differentiate between high- and low-risk BRCA mutation carriers,
especially because it depends on patient age alone. The other criteria (double primary
BC, one or more relatives with prostate or pancreatic cancer, and triple-negative BC)
were not significant, possibly due to small sample size.
Our study has some limitations. We hypothesized that a BRCAPRO or BOADICEA cutoff of $\geq 10\%$ would be enough to predict the presence of a $BRCA$ mutation in patients who require a genetic test with acceptable false-negative rates. We also could not compensate for the fact that none of our patients had a genetic test. However, this study aims to make a pretest prediction of $BRCA1$ and $BRCA2$ carrier mutations. We also had low number of patients with double primary BC, double primary BOC, BC patients with relatives who had prostate or pancreatic cancer, and triple negative (ER, PR, Her2) BC patients at the age of 60. As a result, increasing the number of patients who meet the rarer criteria will improve the statistical analysis of that criterion.

Conclusion

The NCCN criteria for making decisions on genetic testing have shortcomings because some of them are too general. Based on our results, we believe that using $BRCA$ risk calculator models such as BRCAPRO and BODICEA will be advantageous for identifying high risk patients.

Acknowledgement

We appreciate the help received from the Sabratha Research Unit of the National Cancer Institute and the Oncology Department.

Author contributions

Conceptualization: Eanas Elmaihub, Inas Alhudiri

Data curation: Eanas Elmaihub, Fakria Elfagi

Formal analysis: Eanas Elmaihub
Investigation: Eanas Elmaihub, Fakria Elfagi

Methodology: Eanas Elmaihub, Inas Alhudiri

Supervision: Elham Hassen, Adam Elzagheid

Writing – original draft: Eanas Elmaihub

Writing – review & editing: Elham Hassen, Inas Alhudiri

Funding None

Competing interests None declared.

References

14

Fig 1. ROC curve for NCCN criterion of BC at age ≥ 50 and one or more close blood relatives with breast cancer at age ≥ 50 years as predictor for genetic test eligibility.
Fig. 2 ROC curve for NCCN criterion: BC patients with relatives of male BC as predictor of genetic test eligibility.

Diagonal segments are produced by ties.