How effective was maritime quarantine in Australia during the influenza pandemic of 1918-19?

Punya Alahakoon¹, Peter G. Taylor¹, James M. McCaw¹,²

¹School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia.
²Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia.

Abstract

The influenza pandemic of 1918-19 was the most devastating pandemic of the 20th century. It killed an estimated 50–100 million people worldwide. In late 1918, when the severity of the disease was apparent, the Australian Quarantine Service was established. Vessels returning from overseas and inter-state were intercepted, and people were examined for signs of illness and quarantined. Some of these vessels carried the infection throughout their voyage and cases were prevalent by the time the ship arrived at a Quarantine Station. We study four outbreaks that took place on board the Medic, Boonah, Devon, and Manuka in late 1918. These ships had returned from overseas and some of them were carrying troops that served in the First World War. By analysing these outbreaks under a stochastic Bayesian hierarchical modeling framework, we estimate the transmission rates among crew and passengers aboard these ships. Furthermore, we ask whether the removal of infectious, convalescent, and healthy individuals after arriving at a Quarantine Station in Australia was an effective public health response.

1 Introduction

The influenza pandemic of 1918-19 was the most devastating pandemic in the 20th century (Chandra, 2013; Curson & McCracken, 2006; Patterson & Pyle, 1991; Tomkins, 1992; Trilla, Trilla, & Daer, 2008). The pandemic spread across the world in three consecutive waves: March 1918, September–November 1918, and early 1919 (Taubenberger & Morens, 2006). It has been estimated that the pandemic infected one-third of the world’s population and killed an estimated 50–100 million people worldwide (Short, Kedzierska, & van de Sandt, 2018; Taubenberger & Morens, 2006) with a relatively high mortality rate among young adults (Collins, 1931; Langford, 2002). These estimated figures may not be accurate as the recorded number of infections and deaths may be an understatement due to “misdiagnosis, non-registration, missing records, and non-medical certification” (N. P. Johnson & Mueller, 2002).

Caused by an H1N1 influenza virus with an avian gene history, it is commonly believed that the 1918 influenza strain may have originated in the United States, spread through army camps, and eventually...
across the world (Taubenberger & Morens, 2006) via troop ships and battlefields (Patterson & Pyle, 1991), coinciding with the end of First World War (Dennis Shanks et al., 2010). The spread of the disease beyond port cities may have been further amplified by local transport networks such as railways (Patterson & Pyle, 1991; Short et al., 2018). The high levels of global population mixing may have contributed to the rapid global spread of the disease, along with other societal disadvantages such as poverty and overcrowding (Pearce, Pallaghy, McCaw, McVernon, & Mathews, 2011). Studies of influenza data from cities in England and Wales and the United States army camps suggest that prior immunity from exposure to other influenza-like diseases among the older age groups in urban areas (and not isolated and disadvantaged countries and communities) may have reduced pandemic attack rates (Mathews, McBryde, McVernon, Pallaghy, & McCaw, 2010). Furthermore, the waning of that immunity (Mathews et al., 2010), changes in the phenotype virus (Bolton, McCaw, McVernon, & Mathews, 2014), immunity acquired through previous waves (Barry, Viboud, & Simonsen, 2008), behavioural changes, temperature changes and school closures (He, Dushoff, Day, Ma, & Earn, 2013) all may have contributed to the multi-wave behaviour of the pandemic. During the first wave of the pandemic, the disease was of a mild character and the mortality rates were not unusual although a large number of young adults were still affected (N. P. Johnson & Mueller, 2002; Short et al., 2018). The second wave was more virulent and infected patients suffered from high fever, cyanosis, and fluid accumulation in the lungs. When it was apparent that the 1918 influenza strain was severe, many countries adopted interventions to limit the spread. Some of these included use of face masks, improved hygiene, limiting of mass gatherings, and imposing strict maritime quarantine measures (Short et al., 2018).

Maritime quarantine measures were implemented by many countries in 1918. However, these measures were generally unsuccessful as the restrictions were imposed too late, quarantine measures were breached, or the virus was already circulating in the community (Short et al., 2018). Australia, however, remained an exception. Their quarantine measures were successful in protecting Australians from the second wave until December 1918 when the measures were finally breached (Curson & McCracken, 2006; McLeod et al., 2008). Furthermore, it has been argued that Australia’s quarantine measures indirectly helped in protecting Pacific Islands that depended on Australian supply ships (Crosby, 2003; N. Johnson, 2006; Shanks & Brundage, 2013; Shanks, Wilson, Kippen, & Brundage, 2018; Short et al., 2018).

Apart from its successful quarantine measures, Australia’s maritime isolation from the rest of the world also contributed to the delay of the pandemic reaching Australia. This was helpful in understanding the nature of the disease, learning which countries were mostly impacted by the pandemic, and also gave time for preparation of the quarantine officers to impose additional quarantine measures on vessels that had influenza during their voyages. This strategy was led by J. H. L. Cumpston, Director of Quarantine, who later became Australia’s first Commonwealth Director-General of Health (Cumpston, 1919; Smallman-Raynor, Smallman-Raynor, & Cliff, 2004). This quarantine programme started in early October 1918 and lasted for six months until April 1919. Through this service, 228 incoming vessels, overseas or interstate, were intercepted (Cumpston, 1919; Smallman-Raynor et al., 2004). Medical officers on board were required to record occurrences of infections that took place during the ship’s voyages. Quarantine Stations, located near most ports in Australia, also documented infections within the Quarantine Station as well as aboard a ship.
once it had initiated its quarantine period. This resulted in a service publication [Cumpston, 1919] that contains extensive details of the dynamics of outbreaks that took place on board ships which form the focus of this study.

We studied the outbreaks of influenza that occurred in late 1918 that took place on board the Medic, Boonah, Devon, and Manuka. The Medic, Boonah, and Devon transported Australian troops who served in influenza-affected parts of the world during the First World War [Cumpston, 1919; Smallman-Raynor et al., 2004]. While Medic and Boonah recorded the removal of infectious, convalescent, and healthy individuals after arriving at the first Australian Quarantine Station, Devon and Manuka did not record these removals. In this study, we modeled each outbreak using a ship-specific stochastic two-group (crew and passenger) metapopulation model that captured the dynamics of a ship’s journey and its time at an Australian Quarantine Station until the outbreak died out. We used a Bayesian hierarchical modeling approach to estimate model parameters. We demonstrated that generally, in the ships that transported troops, the transmission rates within crew and passengers were higher than those between the crew and passengers. We further demonstrated, through a counterfactual analysis, that the removal of individuals from aboard the Medic reduced the spread of infection. If all persons had remained aboard, we estimated an additional 18 (median) [(5, 31) quartile range] infections would have occurred. In contrast, removals from the Boonah were estimated to have had a negligible impact on the outbreak aboard the vessel.

2 Materials and methods

2.1 A ship’s journey

The common characteristics of the Australian ships and their journey is as follows. As influenza and other infectious diseases were prevalent during this time, some Australian ships already had hospitals on board designed specifically to treat infectious individuals. In some situations when hospital accommodation was inadequate or absent, isolation areas were introduced during the ship’s journey. On some occasions, infectious individuals were disembarked at overseas ports and the rest of the ship’s population continued on their way to Australia. Furthermore, some of the ships’ infectious cases were not confirmed as influenza although they had influenza-like symptoms (high fever, pneumonia, etc.). Some of the passengers, mostly troops, were also vaccinated before or after their journey. However, the vaccine, developed by the Commonwealth Serum Laboratories (CSL) in Australia, was a mixed bacterial vaccine (the influenza virus was unknown to science at the time) and there is no evidence that it was effective in reducing transmission [Tout-Smith, 2021]. Some evaluations suggested that the vaccines were partially effective in preventing deaths [Cumpston, 1919].

When the ship reached an Australian port, the ship’s population was required to perform a seven or three day quarantine period depending on the nature of the infection, prevalent cases at the time of arrival in Australia, and the port of presumed source of infection. On arrival at the Australian port, infectious individuals, if present, were taken to the Quarantine Station hospital to be treated. Daily thermometer parades were held on the remaining ship’s population and any person showing an elevated temperature was separately isolated for observation. On some occasions, other intervention measures such as inoculation with
the vaccine or inhalation of a zinc sulphate solution were undertaken. There is no evidence that zinc sulphate (or opium, salt water, alcohol) was effective in reducing transmission (Short et al., 2018). If the ship did not reach its final destination at the first Quarantine Station, the remaining personnel and the ship sailed in quarantine to the next Australian port where the same quarantine measures were taken on the remaining population of the ship. This quarantine procedure was taken until the ship reached its final destination.

2.2 Data

In the service publication by Cumpston (1919), individuals aboard seventy-nine ships were identified to have acquired influenza prior to or during an overseas voyage. Ninety-two outbreaks were recorded as influenza acquisition via inter-state travel. There were also records of ships that did not record any infections during their voyages. From these voyages, we chose to study four outbreaks. We selected these outbreaks depending on the availability of time-series data such as daily new case numbers, daily prevalence, incidence, the final size of the epidemic with comparison to the total population of the ship, the availability of sufficient qualitative information for the model formulation of the outbreak, and adequate representation of outbreaks that occurred while traveling overseas.

The ships we considered were the Medic, Boonah, Devon, and Manuka. Of the Medic’s 989 population, there were 829 troops. The rest of the population consisted of 4 civilians and 156 crew. Boonah’s population consisted of 916 troops and 164 crew, a total of 1080. Of the Devon’s 1096 population, 920 were troops, 66 were civilians, and 110 were passengers. Manuka’s record does not mention the transportation of troops. Of its population of 203, 95 were crew and 108 were assumed to be civilians. Table 1 provides a summary of the details of each ship’s population, voyage, quarantine details, and outbreak characteristics. Figure 1 shows a snapshot of the data available for the Medic. Supplementary Material 1 S1.2 presents visual illustrations for the other three ships.

Table 1: A summary of the ships’ details

<table>
<thead>
<tr>
<th>Ship</th>
<th>Crew size</th>
<th>Passenger size (Civilian and/or troops)</th>
<th>Departure date at the port of presumed source of infection</th>
<th>Port of presumed source of infection</th>
<th>Arrival date in Australia</th>
<th>First arrived Quarantine Station</th>
<th>Total number of infections</th>
<th>Total number of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medic</td>
<td>156</td>
<td>833</td>
<td>Nov 11, 1918</td>
<td>Wellington, New Zealand</td>
<td>Nov 21, 1918</td>
<td>Sydney</td>
<td>313</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nov 24, 1918</td>
<td>Durban, South Africa</td>
<td>Dec 11, 1918</td>
<td>Fremantle</td>
<td>470</td>
<td>16</td>
</tr>
<tr>
<td>Boonah</td>
<td>164</td>
<td>916</td>
<td>Oct 13, 1918</td>
<td>Suez, Egypt</td>
<td>Nov 15, 1918</td>
<td>Fremantle</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>Devon</td>
<td>110</td>
<td>986</td>
<td>Nov 7, 1918</td>
<td>Wellington, New Zealand</td>
<td>Nov 13, 1918</td>
<td>Sydney</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>Manuka</td>
<td>95</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For all four ships, the data mostly consisted of the number of new infections that occurred during the time period of the voyages and their quarantine periods. For some outbreaks, the time-series data did not contain the details of the newly infected person’s group (that is, whether they were a crew member or a passenger). However, for all four outbreaks, the total number of infections among each group and the total number of deaths due to influenza were recorded. Supplementary Material 1 S1 provides complete details of the recorded data we have gathered.
2.3 Modeling disease outbreaks

To model the voyage of a ship, we considered the time the ship started its journey from the port of the presumed source of infection to the time when the number of infections on board reached zero (or almost zero). We modeled the dynamics of (1) new infections occurring from the start of the journey to the arrival at an Australian Quarantine Station, and (2) the new infections occurring among the ships’ personnel during the quarantine period. The latter type of dynamics may or may not have been observed depending on the ship. When the dynamics of the epidemic on a ship needed to be modeled during its time at the port of quarantine, we only considered the new infections that occurred on board the ship, disregarding the infections that took place in the quarantine station among the quarantine staff and among the healthy (who may have been exposed or pre-symptomatically infectious) people who had been removed from the ship for the purpose of isolation or quarantine.

During a ship’s journey, we examined two groups: crew and passengers. Passengers may include civilians and/or troops. The groups may not have had identical mixing behaviour and their health conditions may have varied. We used stochastic metapopulation model structures to model the dynamics of the outbreaks where each group’s model structure, but not parameters, is identical.

Let $N(t)$ be the total size of the population of the ship at time t and $N_i(t)$ be the size of the ith ($i = 1, 2$) group (crew and passengers) at time t. We assumed that initially in Group i, individuals were fully susceptible (S_i) at the port of the presumed source of infection or where the vessel started its journey. Following exposure to an infectious individual, a susceptible person (S_i) may have become infected, entering the exposed (E_i) class, before becoming either asymptomatic (A_{1i} and A_{2i}) or pre-symptomatic (P_{ip}), and then, symptomatic and infectious. A symptomatically infectious person may have suffered severe illness while infectious (I_{iS}) or mild illness while infectious (M_i), and following their infectious period, entered a symptomatic but non-infectious compartment (C_i or C_{Mi} respectively), before recovering (R_i). We assumed that all asymptomatic infections recovered (R_{Ai}). We also modeled deaths (denoted with parameter d_i) due to influenza occurring in I_{iS} and C_i compartments. The parameters relating to the transitions between the disease states and their explanations are included in Supplementary Material 1 S2.

Apart from the transition between different disease compartments, we also modeled the removal of healthy people (in susceptible, exposed, asymptomatic, recovered, pre-symptomatic compartments at rates ϵ_i) and cases (individuals in severely infectious, mildly infectious, or recovering compartments at rates ζ_i). The number of individuals that were removed from the ship generally varied by day, and therefore, we assumed these parameters were time-dependent. In particular, these rates were zero while the ship was at sea and once the ship arrived at the quarantine station, we assumed that the removal parameters were constant throughout the day and changed with the start of the next day.

The record of Medic does not differentiate between those deaths that took place on board the ship and those deaths that took place after disembarkation from the ship. On the other hand, Boonah’s record implied that most of the deaths occurred at the Quarantine Station after the individuals had disembarked. We account
for deaths both on and off the ship by modeling the disease dynamics of the severely infectious/infected (I_{iS} and C_i compartments) persons after they have been removed from the ship. An infectious person with severe illness (I_{iS}) who was taken to the Quarantine Station immediately entered the severely infectious and quarantined (I_{iQ}) compartment and then the quarantined symptomatic but non-infectious compartment (C_{iQ}) following their infectious period. Furthermore, a non-infectious person with severe illness (C_i) who was taken to the Quarantine Station immediately entered the C_{iQ} compartment. A person in the C_{iQ} compartment recovered (R_{iQ}). Death could take place on board the ship (from the I_{iS} and C_i compartments) and in the Quarantine Station (from the I_{iQ} and C_{iQ} compartments). Supplementary Material 1 S3 provides more details on how we generated sample paths with this model structure.

Our model structures for Group i of the ships are shown in Figure 2. When modeling the dynamics of Medic, we used this full model structure. However, for Boonah, Devon, and Manuka, we did not model the transition between pre-symptomatic infectious to mildly infectious compartments as the records did not differentiate between severe and mild infections. We did not model the removal of healthy, infectious, or infected individuals for Devon and Manuka as there were no records of removals for these ships. Supplementary 1 S4 describes the dynamics related to these ships and the assumptions we made in relation to the available data.

![Figure 2: Proposed models for Medic, Boonah, Devon and Manuka.](attachment:image.png)

Figure 2: Proposed models for Medic, Boonah, Devon and Manuka.
2.4 Model assumptions

While addressing the challenges of the available data and constructing a viable parameter estimation process, we made the following model assumptions. We assumed that the rates of transmission between asymptomatic (β_{ijA}) and symptomatic infectious (β_{ijI}) are the same, denoted β_{ij}. We assumed that except for transmission parameters β_{ij}, all the other parameters across the groups were equal. We assumed that time-dependent parameters relating to the removal of healthy and infectious/infected for a particular day were the same across both groups. We assumed that the initial conditions of the outbreaks were known. Supplementary Material 1 S4 details the assumptions made for the four ships and provides further explanations and details.

2.5 Estimation framework

We used a Bayesian hierarchical modeling framework (Gelman & Hill, 2006; McElreath, 2020; McGlothlin & Viele, 2018; Royle & Dorazio, 2008) to study the outbreaks that took place on board the ships. Under this framework, we modeled each outbreak using the stochastic models introduced in Section 2.3. Each stochastic model was formulated as a continuous-time Markov chain with transition rates described in Figure 2. Under the hierarchical framework, we assumed that the transmission rates (between and within crew and passengers) are sampled from a common truncated multivariate normal distribution. We assumed that all the other model parameters were ship specific only. Supplementary Material 2 provides details about the construction of the hierarchical model for the outbreaks. We used the two-step algorithm of Alahakoon, McCaw, and Taylor (2022) to estimate the parameters under the hierarchical framework. This algorithm makes use of Approximate Bayesian Computation (ABC) methods where the parameters are estimated by generating sample paths from the model and matching them with observed data under specified distance criteria and tolerance values. Supplementary Material 2 provides an explanation for the choice of prior distributions and describes the calibration of the algorithm. Supplementary Material 2 S4 presents the estimates of the parameters.

2.6 Studying the effects of quarantine measures

By the time Medic and Boonah arrived at Sydney and Fremantle Quarantine Stations respectively, a number of infectious and convalescent individuals were present on board. Furthermore, as a result of the quarantine measures at the time, infectious, convalescent, and healthy people were removed from the ship to the Quarantine Stations. We were interested in identifying if these interventions were beneficial in reducing the number of infections on board the vessel. We addressed this by posing two questions for each ship. First, we asked by how much the interventions on the ships Medic and Boonah were estimated to have changed the final size of the epidemic. We addressed this by studying sample paths that were close to the observed data which we will describe as conditional re-sampled paths. We generated these paths during the parameter estimation stage (Step 2 of the two-step algorithm). For each proposed sample from the joint posterior, we repeatedly generated sample paths along with the corresponding counterfactual path, along which there were no disembarkations, until a sample path (with disembarkations) satisfied the ABC acceptance/rejection criteria as used for the hierarchical estimation. We recorded the accepted samples from
the joint posterior and the accepted paths along with their corresponding counterfactual paths to generate an estimate of the benefit (or otherwise) of the intervention.

Next, we asked if the disembarkations would have been expected to reduce the total infections on ships/voyages with properties as estimated for Medic and Boonah. To answer this question, we generated sample paths with interventions and counterfactual paths from the joint posteriors. Unlike when addressing the first question, the ABC acceptance/rejection step was not applied. This method is similar to the posterior predictive check (Berkhof, Van Mechelen, & Hoijtink, 2000), and in this study, we will describe these simulated paths as re-sampled paths.

Further explanation on generating the conditional re-sampled and re-sampled paths is provided in Supplementary Material 1 S5.

3 Results

Figure 3 illustrates and compares the conditional re-sampled paths from the hierarchical estimation and re-sampled paths from the estimated parameters from the models in Figure 2 for the ships Medic, Boonah, Devon, and Manuka.

The conditional re-sampled paths of Medic corresponded well with the observed data. As expected, the re-sampled paths, while in agreement with the observed data, have more variation than the conditional re-sampled paths.

While the general trajectories of the conditional re-sampled paths of Boonah were congruent with the observed data throughout the ship’s journey, a notable difference is clear following arrival at the Quarantine Station, presumably due to some phenomena or activity that is not structurally captured in our model. For the conditional re-sampled paths and re-sampled paths, we calculated the median of the predicted peak day to be 13 [(12, 14) 25% and 75% quantiles] and 9 [(7, 11) 25% and 75% quantiles] respectively. The observed peak was on day 13. Within the observed outbreak, the infections on board started to appear after the fifth day of departure from the port of the presumed source of infection. However, even with our initial condition of one exposed person, the re-sampled paths implied that the outbreak most likely would have taken off as soon as the ship departed that port, and the outbreak most likely would have died out by the time the ship reached the Quarantine Station. Our hypotheses for these discrepancies in the conditional re-sampled and re-sampled paths are explored in the Discussion.

For Devon, the general trajectory for conditional re-sampled paths was in agreement with the observed data and the re-sampled paths have more variation. Furthermore, as time-series data for both crew and passengers for the ship were available, we were able to separately visualise and compare these paths with the observed data for the two groups (see Supplementary Material 1 S5.1).

For Manuka, time-series data were only available after the ship arrived at the Quarantine Station, that is, from day 8. The day of the observed peak or the peak size is not available. From day 8, the conditional
re-sampled paths corresponded well with the observed data and the re-sampled paths display more variation. Both types of re-sampled paths indicate that the epidemic likely took off as soon as *Manuka* left its port of the presumed source of infection. The median peak infection size was 8 [(5, 11) 25% and 75% quantiles] and 8 [(7, 9) 25% and 75% quantiles] for conditional re-sampled re-sampled paths respectively, and the median peak day was 5 [(4, 7.5) 25% and 75% quantiles] and 5 [(4, 6) 25% and 75% quantiles] for conditional re-sampled and re-sampled paths respectively.

Figure 3: Conditional re-sampled paths (in green) by the hierarchical estimation algorithm and re-sampled paths (in purple) by the estimated parameters. Black lines are the observed data.

Figure 4 illustrates the posterior distributions of the transmission rates of the outbreaks. Table 2 shows the posterior medians and the corresponding 95% Highest Posterior Density (HPD) intervals. The transmission rates within the crew (β_{CC}) were similar among all four ships with a slightly higher transmission rate in *Manuka*. These posterior medians were 1.739 [(0.005, 4.551) 95% HPD], 1.658 [(0.016, 4.200) 95% HPD], 1.560 [(0.001, 3.488) 95% HPD], and 1.969 [(0.431, 4.161) 95% HPD] for *Medic*, *Boonah*, *Devon* and *Manuka* respectively. Furthermore, transmission rates from passengers to crew (β_{CP}) were very small (less than 0.6) and *Devon* had the smallest transmission rate [median 0.212 (0.003, 1.503) 95% HPD]. Similarly, transmission rates from crew to passengers (β_{PC}) were small (less than 0.6) and *Manuka* had the smallest transmission rate [median 0.182 (0.004, 0.849) 95% HPD]. The transmission rates within the passengers (β_{PP}) were higher for *Medic* [median 1.759 (0.072, 4.019) 95% HPD], *Boonah* [median 1.582 (0.462, 2.887) 95% HPD], and *Devon* [median 1.889 (0.628, 3.487) 95% HPD], compared to that of *Manuka* [median 0.608 (0.010, 1.370) 95% HPD]. Overall, transmission patterns aboard *Medic*, *Boonah*, and *Devon* were similar.
Furthermore, transmission rates within a group were higher than the transmission rates from one group to another. Supplementary Material 2 S4 presents the estimates of the other model parameters.

Figure 4: Posterior distributions of the transmission rates under the hierarchical analysis.
Diagonal: The marginal posterior distributions.
Lower triangle: Scatter plots between the transmission rates.
Upper triangle: 2-D posterior density plots between the transmission rates.
Bottom row: Histograms of the posterior distributions of the transmission rates.
Right column: Box-plots of the posterior distributions of the transmission rates.

Table 2: Posterior medians and 95% HPD intervals of the within and between transmission rates of crew and passengers in the ships

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Medic</th>
<th>Boonah</th>
<th>Devon</th>
<th>Manuka</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{CC}</td>
<td>Median (0.005, 1.739)</td>
<td>Median (0.005, 1.658)</td>
<td>Median (0.001, 1.560)</td>
<td>Median (0.001, 1.469)</td>
</tr>
<tr>
<td>β_{CP}</td>
<td>Median (0.005, 0.559)</td>
<td>Median (0.009, 0.500)</td>
<td>Median (0.003, 0.445)</td>
<td>Median (0.004, 0.583)</td>
</tr>
<tr>
<td>β_{PC}</td>
<td>Median (0.001, 0.484)</td>
<td>Median (0.003, 0.524)</td>
<td>Median (0.002, 0.445)</td>
<td>Median (0.004, 0.182)</td>
</tr>
<tr>
<td>β_{PP}</td>
<td>Median (0.072, 1.759)</td>
<td>Median (0.462, 1.582)</td>
<td>Median (0.628, 1.889)</td>
<td>Median (0.010, 0.608)</td>
</tr>
</tbody>
</table>

R_0 | Median (3.96, 6.38) | Median (2.07, 2.53) | Median (2.78, 4.46) | Median (1.87, 2.45)
We further estimated the basic reproduction number, R_0, from the estimated parameters (Figure 5). The calculation details for R_0 can be found in Supplementary Material 1. The Medic had the highest R_0 [median 6.38 (3.96, 11.06) quartiles]. The median of the estimated R_0 for Devon was 4.46 [(2.78, 8.97) quartiles], for Boonah was 2.53 [(2.07, 3.25) quartiles], and for Manuka was 2.45 [(1.87, 3.96) quartiles].

![Figure 5: Estimated log(R_0) for the ships](image)

We then studied the impact of implementing quarantine measures on Medic and Boonah we described in Section 2.6.

3.1 Medic

Panels (A), (B), and (C) of Figure 6 illustrate the diagnostics performed to identify by how much the interventions on Medic changed the total number of infections. We addressed this question by studying the conditional re-sampled paths. If interventions had not taken place during the quarantine period of Medic, the median total number of infections throughout the epidemic would have increased by 18 [(5, 31) lower and upper quartiles] (see Table 3). The overall relative change in the increase of cases would have been 6.99% [(2.03, 11.49)% lower and upper quartiles]. This increment most likely would have been due to the infections that would have taken place among the passengers (that is, troops, see Supplementary Material 1 S5.2 for a breakdown of the cases). We calculated that a median of 2 [(-2,7) lower and upper quartiles] more deaths would have taken place if no interventions were implemented for the Medic (see Supplementary Material 1 S5.2).
Panels (D), (E), and (F) of Figure 6 illustrate the diagnostics performed to identify if interventions would have reduced the number of infections for a ship that had similar properties to Medic, that is, another voyage. We tackled this question by studying the re-sampled paths. Similar to the previous setting, we did not observe a substantial increase in the total number of infections if no interventions were implemented for a ship that had similar properties as Medic. The median of the total infections would have increased by 11 [(1, 23) lower and upper quartiles], a relative increase of 4.54% [(1.14, 8.96)% lower and upper quartiles]. Furthermore, we evaluated that a ship with similar characteristics such as Medic would not have avoided any additional deaths [(-3,3) lower and upper quartiles] when interventions were in place (see Supplementary Material 1 S5.2).

Figure 6: Interventions vs. no interventions for Medic during their quarantine periods in Australia. Panels (A) and (D): Black solid line: Observed time-series data. Sample paths in Grey: Trajectories up to the time the ship arrived at the quarantine Station. Sample paths in Green: Conditional re-sampled paths. Sample paths in purple: re-sampled paths. Sample paths in yellow: Counterfactual paths of no interventions corresponding to conditional re-sampled or re-sampled paths.

Table 3: Difference between no interventions and interventions (total infections throughout the epidemic) for Medic

<table>
<thead>
<tr>
<th></th>
<th>Median (25, 75)%</th>
<th>% of relative change</th>
<th>Proportion of positive difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditional re-sampled paths</td>
<td>18 (5, 31)</td>
<td>6.99 (2.03, 11.49)</td>
<td>0.821</td>
</tr>
<tr>
<td>Re-sampled paths</td>
<td>11 (1, 23)</td>
<td>4.54 (1.14, 8.96)</td>
<td>0.759</td>
</tr>
</tbody>
</table>
3.2 **Boonah**

For **Boonah**, our analysis indicate that the measures had minimal influence. No substantial increase in infections is likely to have occurred had the quarantine station not implemented any interventions (see Figure 7 and Table 4). The relative change in cumulative cases ranged from 0% to 1.83%. Noting the expected early take-off in re-sampled paths, and so, minimal epidemiological activity by the time of arrival at the Quarantine Station, this percentage is estimated to be zero if a ship with properties similar to **Boonah** had travelled.

![Figure 7](image)

Figure 7: Interventions vs. no interventions for **Boonah** during their quarantine periods in Australia.

Panels (A) and (D):

- **Black solid line**: Observed time-series data.
- **Sample paths in Grey**: Trajectories up to the time the ship arrived at the quarantine Station.
- **Sample paths in Green**: Conditional re-sampled paths.
- **Sample paths in purple**: re-sampled paths.
- **Sample paths in yellow**: Counterfactual paths of no interventions corresponding to conditional re-sampled or re-sampled paths.

Table 4: Difference between no interventions and interventions (total infections throughout the epidemic) for **Boonah**

<table>
<thead>
<tr>
<th></th>
<th>Median (25, 75)%</th>
<th>% of relative change</th>
<th>Proportion of positive difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditional re-sampled paths</td>
<td>1 (0, 5)</td>
<td>0.53 (0, 1.83)</td>
<td>0.629</td>
</tr>
<tr>
<td>Re-sampled paths</td>
<td>0 (0, 0)</td>
<td>0 (0, 0)</td>
<td>0.201</td>
</tr>
</tbody>
</table>
4 Discussion

We have studied the 1918 influenza outbreaks that took place on board the ships Medic, Boonah, Devon and Manuka.

We modeled each outbreak using a ship-specific two-group stochastic metapopulation model within a hierarchical statistical framework. The conditional re-sampled paths and re-sampled paths of Medic, Devon, and Manuka were comparable to the observed time-series data of the outbreaks. However, the general trajectory of the conditional re-sampled paths of Boonah did not correspond well with the observed data after the 17th day, the day of arrival at the Quarantine Station. Within the observed outbreak, once a ship arrived at the Quarantine Station, the ship’s population was tested, and therefore, a greater fraction of infectious cases than what had been identified during the voyage may have been identified, increasing case ascertainment. These additional cases may also have included infectious cases with mild symptoms. This change may have altered the tail-end of the course of the epidemic since arriving at the Quarantine Station. However, this cannot be accounted for in our model, as it does not capture nor differentiate between mild and severely infectious persons since this aspect of the epidemic was not mentioned in the record.

We estimated that the transmission within crew and passengers were higher than the transmission between crew and passengers. In ships such as Medic, Boonah, and Devon where the majority of the passengers were troops, the transmission within the crew and passengers were similar. However, Manuka’s transmission rate within the passengers was lower. Compared to the high population sizes in Medic, Boonah, and Devon, Manuka’s population size was smaller, specifically the number of passengers who were likely to be civilians. Therefore, less crowded settings aboard Manuka may have resulted in lower transmission among the passengers.

We estimated that the R_0 for the Medic and Devon were higher than Boonah and Manuka. The values of 6.38 (3.96, 11.06) for Medic and 4.46 (2.78, 8.97) for Devon, while large compared to population-level estimates of R_0 for the 1918 pandemic [Bootsma & Ferguson, 2007; Gani et al., 2005; Mills, Robins, & Lipsitch, 2004; Sertsou, Wilson, Baker, Nelson, & Roberts, 2006], are consistent with estimates from other closed settings, including boarding schools [Camacho et al., 2011; Mathews et al., 2010; Mathews, McCaw, McVernon, McBryde, & McCaw, 2007].

When modeling possible interventions for the outbreaks, we examined the interventions that took place once a ship reached a Quarantine Station, that is, the removal of infectious, convalescent, and healthy individuals. These interventions took place on board Medic and Boonah. For these two ships, we evaluated if these interventions were estimated to have been effective public health measures. For Medic, both for the actual voyage and possible voyages, we determined that the measures taken had a clear impact on the outbreak. If the interventions had not been put in place, approximately 7% and 4.5% more infections would have occurred respectively (Table 3). In contrast, for the Boonah, our analyses indicate that the impact was negligible. Boonah arrived at the Quarantine Station when the outbreak had passed its peak, and therefore the implementation of quarantine measures provided limited benefit.
The records concerning *Medic* and *Boonah* describe the presence of hospitals on board, and the adoption of early intervention measures such as adding isolation areas on board or using other decks to expand the hospital area, early detection of cases through temperature checking and restricting the interactions between the ships’ population and the people on shore (Cumpston, 1919). These factors may have contributed to controlling the epidemic to a greater extent and it may be of interest to quantify their effect on the progression of the epidemic by the time a ship arrived at a Quarantine Station. Unfortunately, data to capture these factors are limited.

The record of *Manuka* mentions that the removal of individuals did not take place at the Sydney Quarantine Station due to a lack of capacity. It was further recorded that all the unwell individuals were therefore initially isolated in their own cabins. As the records did not further explain these dynamics, we were not able to model this to assess its impact.

We note that improved estimates and insights into the outbreaks on board ships during the 1918 influenza pandemic may be obtained if more outbreaks were studied. Other potentially suitable outbreaks that may be of interest are those that took place onboard *Niagara, Nestor, Ceramic*, and *Makura*.

Another possible scenario that can be explored from this study is the impact on the Australian community if maritime quarantine measures had not taken place. In such a setting, one may need to be mindful of different mixing patterns among different communities/states as well as the prevalence of infections in 1918-19 in Australia.

We employed a hierarchical estimation framework. This framework was instrumental in improving the overall parameter estimates in comparison to studying each outbreak independently (see Alahakoon et al. (2022) for an explanation). Through this study, we showed that when using a hierarchical framework, it is possible to capture the dynamics of each outbreak using a ship-specific stochastic model while still allowing for a common model structure across the outbreaks. We have assumed that the transmission rates have a hierarchical framework. Further improved parameter estimates may be obtained by constructing a full hierarchical model with all the model parameters that are common to the four outbreaks.

The data we studied were challenging in the sense that the records do not contain complete details of the dynamics of the outbreaks nor of interventions deployed. It may be of interest to apply this estimation framework to study the recent COVID-19 outbreaks that have taken place on board cruise ships.

5 Acknowledgements

Unless otherwise mentioned, computations were done in MATLAB or R across 32 clusters. All the computations were carried out by the use of the Nectar Research Cloud (project Infectious Diseases), a collaborative Australian research platform supported by the National Collaborative Research Infrastructure Strategy (NCRIS). All the plots were generated with ggplot2 (Wickham, 2016) in R. The codes are publicly available (see Supplementary Material for details).
6 Funding

Punya Alahakoon is supported by a Melbourne Research Scholarship from the University of Melbourne. P.G. Taylor would like to acknowledge the support of the Australian Research Council via the Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS).
References

