Title

Association of HLA-class II alleles with risk of relapse in myeloperoxidase-antineutrophil cytoplasmic antibody positive vasculitis in the Japanese population.

Authors

Aya Kawasaki¹,², Ken-ei Sada³,⁴, Premita Ari Kusumawati¹,², Fumio Hirano⁵,⁶, Shigeto Kobayashi⁷, Kenji Nagasaka⁸, Takahiko Sugihara⁵,⁶, Nobuyuki Ono⁹, Takashi Fujimoto¹⁰, Makio Kusaoi¹¹, Naoto Tamura¹¹, Yasuyoshi Kusanagi¹², Kenji Itoh¹², Takayuki Sumida¹³, Kunihiro Yamagata¹⁴, Hiroshi Hashimoto¹⁵, Hirofumi Makino¹⁶, Yoshihiro Arimura¹⁷,¹⁸, Masayoshi Harigai¹⁹, Naoyuki Tsuchiya¹,².

Affiliations

¹Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
²Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.
³Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
⁴Department of Clinical Epidemiology, Kochi Medical School, Kochi University, Nankoku, Japan.
⁵Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
⁶Department of Lifetime Clinical Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
⁷Department of Internal Medicine, Juntendo University Koshigaya Hospital, Saitama, Japan.
⁸Department of Rheumatology, Ome Municipal General Hospital, Ome, Japan.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Department of Rheumatology, Saga University, Saga, Japan

Department of General Medicine, Nara Medical University, Kashihara, Japan.

Department of Internal Medicine and Rheumatology, Juntendo University Faculty of Medicine, Tokyo, Japan.

Division of Hematology and Rheumatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan.

Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.

Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.

Juntendo University School of Medicine, Tokyo, Japan.

Okayama University, Okayama, Japan.

Department of Nephrology and Rheumatology, Kyorin University School of Medicine, Mitaka, Japan.

Department of Internal Medicine, Kichijoji Asahi Hospital, Musashino, Japan.

Division of Rheumatology, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan.

Corresponding authors:

Aya Kawasaki, a-kawasaki@md.tsukuba.ac.jp

Naoyuki Tsuchiya, tsuchiya.nyk@gmail.com
Abstract

Background.
Disease relapse remains a major problem in the management of anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV). In the European populations, HLA-DPB1*04:01 is associated with both susceptibility and risk of relapse of proteinase 3 (PR3)-ANCA positive ANCA-associated vasculitis (AAV). In the Japanese population, we previously reported association of HLA-DRB1*09:01 and DQB1*03:03 with susceptibility to, and DRB1*13:02 with protection from, myeloperoxidase-ANCA positive AAV (MPO-AAV). Subsequently, association of DQA1*03:02, which is in strong linkage disequilibrium with DRB1*09:01 and DQB1*03:03, with susceptibility to MPO-AAV was reported in the Chinese population. However, association of these alleles with risk of relapse has not been reported. Here we examined whether HLA-class II is associated with risk of relapse in MPO-AAV.

Methods.
Firstly, association of HLA-DQA1*03:02 with susceptibility to MPO-AAV and MPA, and its relationship with previously reported DRB1*09:01 and DQB1*03:03 was examined in 440 Japanese patients and 779 healthy controls. Next, association with risk of relapse was analyzed in 199 MPO-ANCA positive, PR3-ANCA negative patients enrolled in previously reported cohort studies of remission induction therapy. Uncorrected P values (P_uncorr) were corrected for multiple comparisons in each analysis using false discovery rate (FDR) method.

Results.
Association of DQA1*03:02 with susceptibility to MPO-AAV and MPA was confirmed in the Japanese population (MPO-AAV: P_uncorr=5.8x10^-7, odds ratio [OR] 1.74, 95% confidence interval [CI] 1.40-2.16, MPA: P_uncorr=1.1x10^-5, OR 1.71, 95%CI 1.34-2.17). DQA1*03:02 was in strong linkage disequilibrium with DRB1*09:01 and DQB1*03:03, and the causal allele could not be determined using conditional logistic regression analysis. Relapse-free survival was shorter with nominal significance in carriers of
DRB1*09:01 (\(P_{\text{uncorr}}=0.049, Q=0.42, \) hazard ratio [HR]:1.87), DQA1*03:02 (\(P_{\text{uncorr}}=0.020, Q=0.22, \) HR:2.11) or DQB1*03:03 (\(P_{\text{uncorr}}=0.043, Q=0.48, \) HR:1.91) when compared with non-carriers in log-rank test. On the other hand, carriers of serine at position 13 of HLA-DR\(\beta_1\) (HLA-DR\(\beta_1\)_13S), including carriers of DRB1*13:02, showed longer relapse-free survival with nominal significance (\(P_{\text{uncorr}}=0.010, Q=0.42, \) HR:0.31). When the presence/absence of DQA1*03:02 and HLA-DR\(\beta_1\)_13S are combined, significant difference was detected between the groups with highest and lowest risk for relapse (\(P_{\text{uncorr}}=0.0055, Q=0.033, \) HR:4.02).

Conclusion.

HLA-class II is associated not only with susceptibility to MPO-AAV but also with risk of relapse in the Japanese population.

Key Words:

ANCA-associated vasculitis, microscopic polyangiitis, MPO-ANCA, relapse, HLA-class II, genetics, polymorphism.
Introduction
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of necrotizing small vessel vasculitides characterized by production of ANCA, mainly directed against proteinase 3 (PR3) or myeloperoxidase (MPO). AAV is classified into microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA), and eosinophilic granulomatosis with polyangiitis (EGPA) according to the European Medicines Agency (EMA) algorithm (1). In AAV, epidemiologic differences between European and Asian populations are well-known. In European populations, GPA and PR3-ANCA positive AAV (PR3-AAV) are predominant, while MPA and MPO-ANCA positive AAV (MPO-AAV) account for the majority of AAV in Japan (2). Such ethnic differences in epidemiology imply that genetic background may play a role in the development of AAV.

Although most AAV patients achieve remission by immunosuppressive therapy (3), a substantial proportion of them suffer from relapse. In the European populations, relapse occurs in approximately half of the GPA patients within 5 years after achieving complete remission (4). Among AAV patients, the risk of relapse has been shown to be higher in GPA and PR3-AAV compared with MPA and MPO-AAV (5). In Japanese observational studies to find risk factors for relapse of AAV, dosage and tapering speed of prednisolone were found to be associated with relapse (6, 7).

With respect to the susceptibility to MPA and GPA, three genome-wide association studies (GWAS) in European populations have been reported thus far (8-10). In GPA and PR3-AAV, the most striking association was identified in the HLA-DP region, which was consistent with previously reported association of GPA with HLA-DPB1*04:01 in the German population (11). Additionally, PRTN3 and SERPINA1 genes, encoding PR3 and α1-antitrypsin, respectively, were identified as susceptibility genes (8,10). With respect to MPA and MPO-AAV, HLA-DQ region was found to be associated with
susceptibility in the GWAS (8,10). In agreement with this, HLA-DRB1*09:01-DQB1*03:03 haplotype has been found to be associated with susceptibility to MPA and MPO-AAV in the Japanese population (12-15). In addition, DQA1*03:02-DQB1*03:03 haplotype was recently reported to be associated with MPO-AAV in the Chinese population (16). HLA-DRB1*09:01-DQA1*03:02-DQB1*03:03 haplotype is common in East Asian general populations, but rare in the European populations. Additionally, DRB1*13:02 has been identified to be associated with protection from MPA and MPO-AAV in the Japanese population (14).

Although several genes have been associated with susceptibility to AAV, genes associated with relapse have not been well-characterized. In the European populations, HLA-DPB1*04:01, the susceptibility allele for GPA, has also been shown to be associated with higher risk of relapse in AAV (17) or in PR3-AAV (18). However, such studies have not been reported from East Asian populations, where MPA and MPO-AAV account for the majority of AAV.

In this study, we focused on MPO-AAV in the Japanese population, and examined whether HLA-DRB1, DQA1, DQB1 and DPB1 alleles are also associated with relapse in MPO-AAV, based on the clinical data in the Japanese nationwide cohort studies on remission induction therapy in AAV, “Remission Induction Therapy in Japanese Patients with ANCA-associated Vasculitides” (RemIT-JAV), registered with the University Hospital Medical Information Network Clinical Trials Registry (UMIN000001648) (19) and “Remission Induction Therapy in Japanese Patients with ANCA-associated Vasculitides and Rapidly Progressive Glomerulonephritis” (RemIT-JAV-RPGN) (UMIN000005136) (20) carried out under the initiatives of Japan Research Committee of the Ministry of Health, Labour, and Welfare for Intractable Vasculitis (JPVAS) and Research Committee of Intractable Renal Disease of the Ministry of Health, Labour, and Welfare of Japan.
Materials and Methods

Patients and controls

We first examined whether HLA-DQA1*03:02, recently reported in the Chinese population (16), is also associated with susceptibility to MPO-AAV and MPA in the Japanese population, and its relationship with DRB1*09:01 and DQB1*03:03 (12-15), in 440 patients with AAV (male: 168, female: 272) and 779 controls (male: 306, female: 473) The breakdown is shown in Table 1. Among these subjects, 362 MPO-AAV patients, 273 MPA patients and 514 controls were included in HLA-DRB1 and DPB1 analyses in our previous study (14).

Genomic DNA samples were recruited from the institutes participating in Japan Research Committee of the Ministry of Health, Labour, and Welfare for Intractable Vasculitis (JPVAS) and Research Committee of Progressive Renal Disease, both organized by the Ministry of Health, Labour, and Welfare of Japan, and research groups organized by Tokyo Medical and Dental University and University of Tsukuba. Among the controls samples, 264 were obtained from the Health Science Research Resources Bank (Osaka, Japan).

Among the patients with MPO-AAV, 88 patients who enrolled in RemIT-JAV (19) and 176 in RemIT-JAV-RPGN (20) were analyzed for relapse-free survival. The characteristics of these cohorts were previously described (19,20). Briefly, the period of enrollment was from April 2009 to December 2010 (RemIT-JAV) and from April 2011 to March 2014 (RemIT-JAV-RPGN). The enrollment criteria were 1) diagnosis of AAV by the site investigators, 2) fulfilling the criteria for primary systemic vasculitis as proposed by the EMA algorithm, and 3) starting immunosuppressive treatment based on the discretion of the site investigators. Among the patients, 214 were MPO-ANCA single positive. To examine the rate of relapse after remission, 199 MPO-ANCA single
positive AAV patients who achieved remission during the observation period were analyzed in this study. The observation period was 730 days from the start of treatment. Eight out of 199 patients died during the observation period. Remission was defined based on the Birmingham vasculitis activity score (BVAS) 2003 (21) of zero on two consecutive occasions at least one month apart (22). Relapse was defined as the recurrence or new onset of clinical signs and symptoms attributable to active vasculitis (6, 23).

Detailed information on the subjects are available in Supplementary Data 1.

Genotyping

In all patients and controls, HLA-DRB1 alleles were determined at the four-digit level using WAKFlow HLA typing kit (Wakunaga Pharmaceutical Co., Ltd., Osaka, Japan) based on polymerase chain reaction-sequence-specific oligonucleotide probes (PCR-SSOP). In 199 MPO-AAV patients, HLA-DQA1, DQB1 and DPB1 alleles were also genotyped using this system.

rs11545686C was used as the proxy for HLA-DQA1*03:02. Genotyping of rs11545686 was conducted by Sanger sequencing using 3130xl Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA, USA). For amplification of HLA-DQA1 region surrounding rs11545686, forward (5’-TTTGGTTTGGGTTGCTTCAGATT-3’) and reverse (5’-AAAGTTGGTTCAGGGAAATTTGAATG-3’) primers (Primer ID: Hs00412887_CE, Thermo Fisher Scientific) were used and cycle sequencing reaction was conducted using the forward primer and the BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific).

Statistical analysis

Comparison of characteristics between the MPO-AAV patients with and without
relapse was performed using Fisher’s exact test in two-by-two tables, except for age which was compared by Mann–Whitney U test.

Relapse-free survival curves were generated using the Kaplan-Meier method and were compared among the patients who were classified into GPA, MPA, EGPA and unclassifiable (UC) based on the EMA classification, among the patients treated with GC alone, GC plus immunosuppressants and immunosuppressants alone, and also between the patients with and without each HLA class II allele (HLA-DRB1, DQA1, DQB1 and DPB1), and each amino acid encoded by these HLA alleles, by log-rank test. Unadjusted hazard ratios [HRs] and adjusted HRs for the EMA classification, treatment (GC alone, GC plus immunosuppressants or immunosuppressants alone), age and sex were calculated by Cox proportional hazard model.

Association of HLA-DQA1*03:02 and DRB1*09:01 with susceptibility to MPO-AAV and MPA was tested by logistic regression analysis under the additive model.

Statistical analyses were performed using R software version 3.5.2. Correction for multiple testing in the analyses of risk of relapse in each HLA locus and amino acid position was performed by controlling false discovery rate (FDR). Q<0.1 was considered significant. The numbers of comparisons were 17 (DRB1 allele), 11 (DQA1 allele), 11(DQB1 allele), 8 (DPB1 allele), 79 (DRβ1 amino acids), 47 (DQα1 amino acids), 71 (DQβ1 amino acids) and 26 (DPβ1 amino acids). The log-rank test for the pairwise comparison between combination of presence/absence of DQA1*03:02 and DRβ1_13S was corrected for six comparisons, namely, combination of 2 out of 4 (4C2=6).

Ethics

This study was reviewed and approved by the Faculty of Medicine Ethics Committee,
University of Tsukuba (approval ID: 122, 123, 180, 227, 268).

In addition, this study was also approved by Ethics Committees of the following institutes which participated in collaboration and/or recruitment of the subjects: Aichi Medical University, Asahikawa Medical University, Ehime University, Fukuoka University, Hamamatsu University, Hokkaido University, Iwate Prefectural Central Hospital, Juntendo University, Kagawa University, Kanazawa University, Kitano Hospital, Kyorin University, Kyoto University, Kyushu University, Nagasaki University, Nagoya City University, Nagoya University, Nara Medical University, National Defense Medical College, Okayama University, Okayama Saiseikai General Hospital, Saga University, Saitama Medical Center Hospital, Shimane University, The University of Miyazaki, The University of Tokyo, Toho University, Tokyo Medical and Dental University, Tokyo Medical University Hachioji Medical Center, Tokyo Metropolitan Geriatric Hospital, and Institute of Gerontology, and Tokyo Women’s Medical University.

This study was conducted in accordance with the principles of the Declaration of Helsinki and Ethical Guidelines for Human Genome/Gene Analysis Research implemented by Ministry of Education, Culture, Sports, Science and Technology, Ministry of Health, Labour and Welfare, and Ministry of Economy, Trade and Industry, of Japan.

This study was performed in accordance with the principles of the Declaration of Helsinki. Written informed consent was obtained from each participant.
Results

Association of HLA-DRB1*09:01-DQA1*03:02-DQB1*03:03 haplotype with susceptibility to MPO-AAV and MPA in the Japanese population

We previously reported that DRB1*09:01 and DQB1*03:03 are associated with susceptibility to, and DRB1*13:02 with protection from, MPO-AAV and MPA in the Japanese population (12-15). Recently, HLA-DQA1*03:02, which is in strong linkage disequilibrium with DRB1*09:01 and DQB1*03:03, has been reported to be associated with MPO-AAV in a Chinese population (16). Because association of DQA1*03:02 with MPO-AAV as well as its relationship with DRB1*09:01-DQB1*03:03 haplotype has not been previously analyzed in a Japanese population, we firstly addressed this issue.

In order to genotype HLA-DQA1*03:02, we used rs11545686 as a tag single nucleotide variant (tagSNV). rs11545686 codes for p.Met18Thr substitution within the signal peptide of the HLA-DQ alpha chain. rs11545686C allele is carried by DQA1*03:02, *03:07, *03:13 and *03:18 based on the IPD-IMGT/HLA Database (Release 3.47.0, https://www.ebi.ac.uk/ipd/imgt/hla/). Except for DQA1*03:02, these alleles are extremely rare in the Japanese population. In fact, rs12722040, previously reported to tag DQA1*03:02 (24), is identical to rs11545686. We confirmed that the DQA1*03:02 genotyping system based on rs11545686 was concordant with the results of high-resolution allele typing using PCR-SSOP in 199 samples, except for one whose DQA1 genotype could not be determined using PCR-SSOP.

Using this genotyping system, we examined association of DQA1*03:02 with MPO-AAV and MPA. DQA1*03:02 was significantly associated with susceptibility to MPO-AAV ($P_{unconditional}=5.8\times10^{-7}$) and MPA ($P_{unconditional}=1.1\times10^{-5}$) (Table 2), which confirmed the recent report on the Chinese population (16).
Strong linkage disequilibrium was observed among DRB1*09:01, DQA1*03:02 and DQB1*03:03 (r^2: 0.92-0.97). When the association was conditioned on each other, none of the association remained significant (Table 2). Therefore, we could not determine the single causative allele among DRB1*09:01, DQA1*03:02 and DQB1*03:03.

Association of HLA class II alleles with relapse-free survival in MPO-AAV

Figure 1 shows the flow chart of the MPO-AAV patients enrolled in the relapse-free survival analysis. Among the 264 AAV patients who enrolled in the cohort studies RemIT-JAV (19) and RemIT-JAV-RPGN (20), more than 80% of the patients were MPO-ANCA positive and PR3-ANCA negative (hereafter referred to as “MPO-ANCA single positive”). Because the frequency of relapse was reported to be higher in AAV patients with PR3-ANCA when compared with those without (5), this study focused on 199 MPO-ANCA single positive patients who achieved remission during the observation period. The characteristics of the patients are shown in Table 3. During the first three months after treatment initiation, 84 (42.2%) received glucocorticoid (GC) alone, 112 (56.3%) were treated with GC plus immunosuppressants, and 3 with immunosuppressants alone (1.5%). In most of the patients, the immunosuppressant used was cyclophosphamide.

The mean observation period from the start of treatment was 676.7 (SD: 147.0) days. Among the 199 MPO-ANCA single positive AAV patients, relapse occurred in 39 patients (19.6%). The mean time to relapse after remission was 228.1 (SD: 173.5) days. No significant difference in sex ratio, age, clinical classification based on the EMA algorithm, the treatment received, and the observation period was observed between the patients with and without relapse (Table 3).
We next tested whether the EMA classification and the treatment modality are associated with risk of relapse using Kaplan-Meier method on the relapse-free survival. GPA patients have previously been shown to be associated with high occurrence of relapse (5). Significant difference in relapse-free survival was not observed among MPO-ANCA single positive AAV patients classified by the EMA algorithm (log-rank test uncorrected P \(P_{\text{uncorr}} \)=0.097) (Figure 2A) nor by the treatment modality (log-rank test \(P_{\text{uncorr}} \)=0.78)(Figure 2B).

The carrier frequency of each HLA-\(\text{DRB1} \), \(\text{DQA1} \), \(\text{DQB1} \) and \(\text{DPB1} \) allele in the MPO-AAV patients with and without relapse is shown in Supplementary Tables S1-S4. Carrier frequencies of \(\text{DRB1}^{*}09:01 \) \((P_{\text{uncorr}}=0.049, Q=0.47, \text{OR}: 2.05, 95\% \text{CI}: 1.01-4.15) \), \(\text{DQA1}^{*}03:02 \) \((P_{\text{uncorr}}=0.020, Q=0.22, \text{OR}: 2.38, 95\% \text{CI}: 1.16-4.87) \) and \(\text{DQB1}^{*}03:03 \) \((P_{\text{uncorr}}=0.048, Q=0.53, \text{OR}: 2.10, 95\% \text{CI}: 1.03-4.28) \) were nominally increased in the patients with relapse (Table 4). With respect to \(\text{DPB1} \) alleles, no trend toward association was observed among MPO-ANCA single positive AAV patients.

We next performed Kaplan-Meier method on the relapse-free survival between the carriers and non-carriers of each HLA allele (Supplementary Tables S1-S4). Nominal association was observed in \(\text{DQA1}^{*}03:02 \) \((P_{\text{uncorr}}=0.020, Q=0.22) \), as well as \(\text{DRB1}^{*}09:01 \) \((P_{\text{uncorr}}=0.049, Q=0.42) \) and \(\text{DQB1}^{*}03:03 \) \((P_{\text{uncorr}}=0.043, Q=0.48) \) which are in linkage disequilibrium with \(\text{DQA1}^{*}03:02 \). In addition, \(\text{DRB1}^{*}08:02 \) \((P_{\text{uncorr}}=0.040, Q=0.42) \) was also found to be nominally associated with relapse.

Relapse-free survival curves and relapse-free survival rates at the end of the observation period in the nominally associated HLA alleles are shown in Figure 3A-3D and Table 5. The hazard ratios [HRs] for relapse were 2.11 (95\% CI: 1.11-4.02) in \(\text{DQA1}^{*}03:02 \), 1.87 (0.99-3.52) in \(\text{DRB1}^{*}09:01 \), 1.91 (1.01-3.61) in \(\text{DQB1}^{*}03:03 \) and
2.30 (1.01-5.20) in DRB1*08:02. No violation of the proportional hazards assumption was observed in these alleles (P>0.05).

When HRs for the associated HLA alleles were conditioned on the EMA classification (MPA, GPA or UC), treatment modality during the initial three months (GC alone, immunosuppressants alone and GC plus immunosuppressants), age and sex using a multivariate Cox proportional hazards model, the associations of DRB1*09:01, DQA1*03:02 and DQB1*03:03 were not affected, while the association of DRB1*08:02 was attenuated after conditioning (Table 5). In this analysis, EGPA was not included in the variables of EMA classification, because none of the patients with EGPA experienced relapse.

We next examined whether specific amino acids in HLA molecules are associated with relapse. The results of log-rank test for each amino acid are shown in Supplementary Data 2. The strongest trend for association was observed in serine residue at position 13 of HLA-DRβ1 (HLA-DRβ1_13S: log-rank $P_{uncorr}=0.010$, $Q=0.42$). Relapse-free survival was longer in the patients carrying HLA-DRβ1_13S (HR: 0.31, 95% CI: 0.12-0.80) (Figure 3E and Table 5).

When the associations of the HLA alleles nominally associated with the risk of relapse and HLA-DRβ1_13S were conditioned on each other, a tendency towards association remained in DRβ1_13S ($P_{conditional}: 0.057$ [conditional on DQA1*03:02] and 0.040 [conditional on DQB1*03:03]) (Table 6).

Finally, the patients were divided into four groups according to the carriage of DQA1*03:02 (as a representative of DRB1*09:01-DQA1*03:02-DQB1*03:03 relapse-risk haplotype) and DRβ1_13S (relapse-protective), and relapse-free survival was compared. As shown in Figure 3F, significant difference in time to relapse was
detected among the four groups (log-rank P=0.027). In the pairwise comparisons, significant difference was observed between the patients with highest risk combination (DQA1*03:02 positive and DRβ1_13S negative) and with lowest risk for relapse combination (DQA1*03:02 negative and DRβ1_13S positive), even after correction for multiple testing (HR: 4.02, 95% CI: 1.39-11.6, P_{uncorr}=0.0055, Q=0.033).
Discussion

In this study, we examined whether HLA class II alleles and HLA amino acids are associated with relapse in MPO-AAV, using the data from two Japanese nationwide cohort studies on remission induction therapy, RemIT-JAV (19) and RemIT-JAV-RPGN (20). We detected that MPO-ANCA single positive AAV patients carrying HLA-DRB1*09:01, DQA1*03:02 or DQB1*03:03 had nominally higher risk of relapse as compared with those without these alleles, while AAV patients carrying serine residue at position 13 of HLA-DRβ1 had a trend toward lower risk of relapse. By combining these two, significant differences were observed in the relapse-free survival among the subgroups of the patients. To our knowledge, this is the first study which demonstrated association of gene and amino acid variations with AAV relapse in the East Asian populations.

We previously identified the association of HLA-DRB1*09:01 and DQB1*03:03 with susceptibility to MPA/MPO-AAV in the Japanese population (12-15). In the present study, we confirmed the association of DQA1*03:02 with susceptibility to MPO-AAV, recently reported in the Chinese population, in the Japanese population (16). Due to tight linkage disequilibrium among these three HLA class II alleles, we could not determine which of the three alleles plays a causative role.

A previous report showed that HLA-DPB1*04:01, the susceptibility allele to GPA, was also associated with an increased risk of relapse of AAV in the Dutch and German populations (17). In this study, GPA and PR3-AAV were predominant among the patients. On the other hand, such association was not observed in a Danish population (25). Although the reason for such discrepancy is unclear, difference in DPB1*04:01 carrier frequency among the patients between these studies (77% (17) and 94% (25), respectively) might play a role. A recent study from the United States also reported association of HLA-DPB1*04:01 with relapse in PR3-AAV, but not in MPO-AAV (18).
With respect to MPO-AAV, a small-scale study on MPO-AAV in a European population did not detect significant association between relapse and HLA-A, -B and -DR antigens (26). In our study, HLA-DRB1*09:01, DQA1*03:02 and DQB1*03:03, the susceptibility alleles to MPO-AAV in East Asian populations (12-16) showed a trend toward higher risk of relapse of MPO-AAV in the Japanese population, possibly suggesting that the susceptibility alleles to AAV may also be associated with relapse in each ethnic group.

Unlike in one of the European studies (17), this study did not detect association of DPB1*04:01 with risk of relapse of AAV. This is probably because this study focused on MPO-ANCA positive AAV, whereas in the European study, 51.7% of the subjects were positive for PR3-ANCA (17). In our data on MPO-AAV, no significant association was detected between DPB1*04:01 and relapse (Supplementary Table S4), which is concordant with the report from the United States (18). This difference may not be explained merely by the low carrier frequency of DPB1*04:01 in the Japanese population, because actually DPB1*04:01 showed a slight tendency toward decrease in patients with relapse (P=0.70, OR: 0.39). In the Japanese population, the protective allele for MPO-AAV susceptibility, DRB1*13:02, is in linkage disequilibrium with DPB1*04:01 (r²=0.44), and the allele frequency of DPB1*04:01 is also decreased in MPO-AAV (P=2.1x10⁻⁴, OR: 0.40) due to linkage disequilibrium with DRB1*13:02 (14). Thus, to evaluate the effect of DPB1*04:01 in the Japanese population, PR3-ANCA positive AAV patients of sufficient sample size need to be investigated in the future.

On the other hand, alleles carrying HLA-DRβ1_13S were found to show a trend toward protection from relapse. HLA-DRβ1_13S is encoded by DR3, DR11, DR13 and DR14. HRs (95% CI) in DRB1*11:01, *13:02, *14:05 and *14:54 were 0.49 (0.07-3.55), 0.31 (0.04-2.24), 0.77 (0.11-5.59) and 0.85 (0.26-2.76), respectively. All these alleles showed a tendency toward protection from relapse, although the differences did not
reach statistical significance. As mentioned above, we previously reported that \textit{DRB1*13:02}, encoding HLA-DRβ1_13S, was protective from development of MPO-AAV (14). HLA-DRB1 position 13 amino acid has been associated with multiple immune system disorders, and was recently shown to be most strongly associated with individual differences in T cell receptor complementarity determining region 3 (CDR3) repertoire (27).

When the combined effect of \textit{DQA1*03:02} and DRβ1_13S was examined, time to relapse was significantly shorter in the highest risk combination (\textit{DQA1*03:02} positive and DRβ1_13S negative) when compared with the lowest risk combination (\textit{DQA1*03:02} negative and DRβ1_13S positive), even after correction for multiple testing (Q=0.033). The HR of 4.02 was higher than the that of \textit{HLA-DPB1*04:01} in the Dutch and the American studies (17,18).

In view of our present results, it could be hypothesized that the susceptibility alleles other than \textit{HLA} may also be associated with risk of relapse in MPO-AAV. To date, no gene other than \textit{HLA} has been established as a susceptibility gene to MPO-AAV in the Asian populations. In the European GWAS, \textit{PTPN22} \textit{rs2476601} was reported to be associated with MPA/MPO-AAV as well as with GPA/PR3-AAV (10), but the risk allele of \textit{PTPN22} is almost absent in the Asian populations. Recently, association of a \textit{BACH2} variant has been identified by target sequencing (28). According to Genome Aggregation Database \textit{(gnomAD)} (\url{https://gnomad.broadinstitute.org/}) (29), the risk allele of \textit{BACH2} is also not detected in the East Asian populations. In the European population, it was reported that -463 A allele (rs2333227) in the \textit{MPO} gene, associated with lower expression of MPO, was also associated with risk of relapse in MPO-AAV patients (30) which needs to be replicated by independent studies.

There are several limitations in this study. AAV is a rare disease, with annual incidence
of 22.6/million in Japan (2). Because of the limited sample size and lack of independent replication cohort, it should be emphasized that this study is of an exploratory nature. In addition, because this study is based on the observational cohort studies conducted between 2009 and 2016 (19,20), potential effects of currently available treatments such as rituximab and avacopan could not be addressed. In this study, relapse was defined as the recurrence or new onset of clinical signs and symptoms attributable to active vasculitis, similarly to the previous studies on the Japanese population (6,23). Although some of the previous studies employed more strict definition including a requirement for treatment escalation (17), we did not use this definition, because we thought that whether treatment is reinforced or not partly depends on each physician’s decision, and might possibly cause a bias. Finally, the classification of AAV is based on EMA algorithm (1), and compatibility of our findings with 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology Classification Criteria (31-33) needs to be validated. These limitations should be addressed in future independent studies.

Conclusion
In the present study, we demonstrated that DRB1*09:01, DQA1*03:02 and DQB1*03:03, the susceptibility alleles to MPO-AAV, are also nominally associated with the risk of relapse in MPO-AAV in the Japanese population. In addition, we found that the carriers of HLA-DRβ1 allele with serine residue at position 13 are nominally associated with lower risk of relapse. By combining these two, statistically significant difference in the time to relapse was detected. These findings may potentially be relevant in detecting high risk individuals for relapse of AAV after remission, and accordingly adjusting treatment.

Contribution to the Field statement
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), a group of rare systemic vasculitis, is classified into myeloperoxidase (MPO)-ANCA positive (MPO-AAV) and proteinase 3 (PR3)-ANCA positive (PR3-AAV) subsets. PR3-AAV accounts for the majority of AAV in the European populations, while MPO-AAV is dominant in the East Asian populations. Different types of human leukocyte antigens (HLA), which play a substantial role in individual’s differences in immune responses, are associated with risk of PR3-AAV and MPO-AAV development. Disease relapse is a major problem in the management of AAV, and biomarkers associated with the risk of relapse constitute unmet needs. HLA type associated with the risk of developing PR3-AAV has also been shown to be associated the risk of relapse in the European populations, but no study has been reported in MPO-AAV prevalent in East Asian populations. Here we reported that the HLA types associated with higher and lower risk for the development of MPO-AAV also showed trend for higher and lower risk for relapse, respectively. When the risk and protective HLA types are combined, the difference reached statistical significance. These findings may provide a clue for biomarkers which predict the risk of relapse of MPO-AAV, and eventually contribute to establishment of precision medicine. (199 words)

Data availability statement
The datasets supporting the conclusions of this article are included within the article, Supplementary Table S1-S4, Supplementary Data 1 and 2 files. Further inquiries can be directed to the corresponding authors.

Conflict of Interest
Dr. Kawasaki has received research grants from Ichiro Kanehara Foundation, Takeda Science Foundation, and Japan College of Rheumatology, and honoraria for lectures
from Chugai Pharmaceutical Co. Ltd.

Dr. Sada has received a research grant from Pfizer Inc., and honoraria for lectures from Glaxo SmithKline K.K.

Dr. Hirano has received honoraria for lectures from Janssen Pharmaceuticals, Ono Pharmaceuticals, and Mitsubishi Tanabe Pharma.

Dr. Kobayashi has received honoraria for the lectures from Novartis Pharma K.K., Eli Lilly Japan K.K., Chugai Pharma, Asahi Kasei Pharma, Gilead Sciences and Janssen Pharma K.K.

Dr. Nagasaka has received speaking fee from Chugai Pharmaceutical Co. Ltd.

Dr. Tamura has received grants from Astellas, Ayumi, Asahi Kasei Pharma, Asahi Kasei Medical, AbbVie, Eisai, Nippon Boehringer Ingelheim, Novartis Pharma, Bayer Yakuhin, Tanabe Mitsubishi, Taisho, and Chugai. Dr. Tamura has received speaker fees and/or consulting fees from AbbVie, Eli Lilly Japan, Eisai, GlaxoSmithKline, Novartis, Bristol Myers Squibb, TanabeMitsubishi, Chugai and Janssen.

Dr. Itoh and Dr. Kusanagi have received grants from Asahi Kasei Pharma, Eizai, Teijin Pharma, and Chugai Pharmaceutical. Dr. Itoh has received honoraria for lectures from Asahi Kasei Pharma and Abbvie.

Dr. Makino has served on advisory boards for Boehringer Ingelheim and Travere Therapeutics.

Dr. Harigai has received grants from AbbVie Japan GK, Boehringer Ingelheim Japan, Inc., Bristol Myers Squibb Co., Ltd., Chugai Pharmaceutical Co., Kissei

Dr. Tsuchiya has received grants from Bristol-Myers Squibb K.K., the Naito Foundation, the Uehara Memorial Foundation, and collaborative research fund from H.U. Group Research Institute G.K.. Dr. Tsuchiya has received award grants from Japan College of Rheumatology and Japan Rheumatism Foundation, and honoraria for lectures from Teijin Ltd.

Other authors have no competing interest to disclose.

Author Contributions

Dr. Kawasaki and Dr. Tsuchiya designed the study, interpreted the data and wrote the manuscript. Dr. Sada, Dr. Yamagata, Dr. Hashimoto, Dr. Makino, Dr. Arimura and Dr. Harigai coordinated the cohorts. Dr. Kawasaki and Ms. Premita Ari performed genotyping and statistical analyses. Dr. Sada, Dr. Hirano, Dr. Kobayashi, Dr. Nagasaka, Dr. Sugihara, Dr. Ono, Dr. Fujimoto, Dr. Kusaoi, Dr. Tamura, Dr. Kusanagi, Dr. Itoh and Dr. Sumida recruited the participants and collected clinical data. All authors read and approved the final version of the manuscript.

Funding:

This work was supported by the grants from the Japan Agency for Medical Research and Development “The Study Group for Strategic Exploration of Drug Seeds for ANCA Associated Vasculitis and Construction of Clinical Evidence [grant number 17ek0109104h0003]”, “The Strategic Study Group to Establish the Evidence for Intractable Vasculitis Guideline [grant number 17ek0109121h0003]”, and “Multitiered
study to address clinical questions for management of intractable vasculitides [grant number 20ek0109360h003"], Ministry of Health, Labour and Welfare [grant number JP20FC1044], Japan Society for the Promotion of Science KAKENHI [grant number JP17K09967, JP21K08435], research grants from Bristol-Myers Squibb K.K., Ichiro Kanehara Foundation, Takeda Science Foundation, the Uehara Memorial Foundation and award grants from Japan College of Rheumatology and Japan Rheumatism Foundation. The funders had no role in the design, analysis, interpretation and paper writing of this study.

Acknowledgements

The authors are grateful to all the patients for participating in this study, and to the clinical staff associated with Japan Research Committee of the Ministry of Health, Labour, and Welfare for Intractable Vasculitis (JVPAS) and Research Committee of Intractable Renal Disease of the Ministry of Health, Labour, and Welfare of Japan for recruiting the patients and collecting clinical information.
References

23. doi:10.1056/NEJMoa1108735

16. Wang HY, Cui Z, Pei ZY, Fang SB, Chen SF, Zhu L, et al. Risk HLA class II alleles...

associated vasculitis: subgroup analysis of nationwide prospective cohort studies.

Table 1. Characteristics of the patients and healthy controls examined for the association of HLA-DRB1*09:01 and DQA1*03:02 with susceptibility to MPO-AAV and MPA.

<table>
<thead>
<tr>
<th></th>
<th>MPO-AAV/MPA</th>
<th>Healthy controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>440</td>
<td>779</td>
</tr>
<tr>
<td>Sex (Male : Female)</td>
<td>168 : 272</td>
<td>306 : 473</td>
</tr>
<tr>
<td>EMA classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPA</td>
<td>305</td>
<td>NA</td>
</tr>
<tr>
<td>GPA</td>
<td>64</td>
<td>NA</td>
</tr>
<tr>
<td>EGPA</td>
<td>36</td>
<td>NA</td>
</tr>
<tr>
<td>Unclassifiable</td>
<td>35</td>
<td>NA</td>
</tr>
<tr>
<td>ANCA specificity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPO-ANCA</td>
<td>428</td>
<td>NA</td>
</tr>
<tr>
<td>PR3-ANCA</td>
<td>18</td>
<td>NA</td>
</tr>
</tbody>
</table>

n, number; SD, standard deviation; MPO-AAV, MPO-ANCA positive ANCA-associated vasculitis; MPA, microscopic polyangiitis; GPA, granulomatosis with polyangiitis; EGPA, eosinophilic granulomatosis with polyangiitis; NA, not applicable. Note that MPO-ANCA negative GPA, EGPA and unclassifiable AAV are not included in this study. Detailed information is available in Supplementary Data 1.
Table 2. Association of DQA1*03:02 with susceptibility to MPO-ANCA positive AAV and MPA

<table>
<thead>
<tr>
<th></th>
<th>n (allele frequency: %)</th>
<th>P_{unconditional} / OR (95%CI)</th>
<th>P_{conditional} / OR (95%CI)* on:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>case</td>
<td>healthy controls</td>
<td>DRB1*09:01</td>
</tr>
<tr>
<td>MPO-AAV</td>
<td>2n=856</td>
<td>2n=1558</td>
<td></td>
</tr>
<tr>
<td>DRB1*09:01</td>
<td>190 (22.2)</td>
<td>222 (14.2)</td>
<td>6.9x10^{-7} / 1.75 (1.40-2.19)</td>
</tr>
<tr>
<td>DQA1*03:02</td>
<td>202 (23.6)</td>
<td>240 (15.4)</td>
<td>5.8x10^{-7} / 1.74 (1.40-2.16)</td>
</tr>
<tr>
<td>MPA</td>
<td>2n=610</td>
<td>2n=1558</td>
<td></td>
</tr>
<tr>
<td>DRB1*09:01</td>
<td>137 (22.5)</td>
<td>222 (14.2)</td>
<td>4.2x10^{-6} / 1.77 (1.39-2.26)</td>
</tr>
<tr>
<td>DQA1*03:02</td>
<td>143 (23.4)</td>
<td>240 (15.4)</td>
<td>1.1x10^{-5} / 1.71 (1.34-2.17)</td>
</tr>
</tbody>
</table>

OR: odds ratio, CI: confidence interval, MPO-AAV: MPO-ANCA positive ANCA-associated vasculitis, MPA: microscopic polyangiitis, NA: not applicable.

*P_{conditional}, OR and 95% CI were conditional on DRB1*09:01 or DQA1*03:02 in conditional logistic regression analysis.
Table 3. Characteristics of the MPO-ANCA single positive AAV with and without relapse

<table>
<thead>
<tr>
<th></th>
<th>Relapse (+)</th>
<th>Relapse (-)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td>39 (19.6)</td>
<td>160 (80.4)</td>
<td></td>
</tr>
<tr>
<td>Sex (Male : Female)</td>
<td>15 : 24</td>
<td>63 : 97</td>
<td>1.0</td>
</tr>
<tr>
<td>Age (mean ± SD)</td>
<td>69.7 ± 10.1</td>
<td>69.9 ± 11.3</td>
<td>0.76</td>
</tr>
<tr>
<td>EMA classification: n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPA</td>
<td>26 (66.7)</td>
<td>115 (71.9)</td>
<td>0.56</td>
</tr>
<tr>
<td>GPA</td>
<td>8 (20.5)</td>
<td>17 (10.6)</td>
<td>0.11</td>
</tr>
<tr>
<td>EGPA</td>
<td>0 (0)</td>
<td>12 (7.5)</td>
<td>0.13</td>
</tr>
<tr>
<td>Unclassifiable</td>
<td>5 (12.8)</td>
<td>16 (10.0)</td>
<td>0.57</td>
</tr>
<tr>
<td>Treatment*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC alone</td>
<td>15 (38.5)</td>
<td>69 (43.1)</td>
<td>referent</td>
</tr>
<tr>
<td>GC plus immunosuppressants</td>
<td>23 (59.0)</td>
<td>89 (55.6)</td>
<td>0.72</td>
</tr>
<tr>
<td>Immunosuppressants alone</td>
<td>1 (2.6)</td>
<td>2 (1.3)</td>
<td>0.46</td>
</tr>
<tr>
<td>Observation period (mean ± SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From the start of treatment</td>
<td>673.3 ± 148.3</td>
<td>677.5 ± 147.2</td>
<td>0.87</td>
</tr>
<tr>
<td>After the achievement of remission</td>
<td>577.4 ± 151.5</td>
<td>575.2 ± 160.6</td>
<td>0.94</td>
</tr>
</tbody>
</table>

n: number, SD: standard deviation, GC: glucocorticoid.

P values were calculated using Fisher’s exact test in the comparisons of sex, EMA classification and treatment. Mann–Whitney U test was used for age, and t-test for observation period.

*treatment during the first three months after initiation.

Detailed information is available in Supplementary Data 1.
Table 4. Association of *HLA class II* alleles with occurrence of relapse and risk of relapse

<table>
<thead>
<tr>
<th>HLA</th>
<th>Carrier frequency</th>
<th>Relapse-free survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relapse (+: n=39)</td>
<td>Relapse (-: n=160)</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>DRB108:02</td>
<td>7 (17.9)</td>
<td>11 (6.9)</td>
</tr>
<tr>
<td>DRB109:01</td>
<td>22 (56.4)</td>
<td>62 (38.8)</td>
</tr>
<tr>
<td>DQA103:02</td>
<td>24 (61.5)</td>
<td>64 (40.3)<sup>3</sup></td>
</tr>
<tr>
<td>DQB103:03</td>
<td>23 (59.0)</td>
<td>65 (40.6)</td>
</tr>
</tbody>
</table>

OR: odds ratio, CI: confidence interval.

¹Carrier frequency (%) of each *HLA* allele was compared between the patients with and without relapse by Fisher’s exact test. Uncorrected P values (P_{uncorr}) and false discovery rate (FDR) Q values are shown.

²Time to relapse after achievement of remission was compared between the patients carrying and not-carrying each *HLA* allele using log-rank test. P_{uncorr} values for the relapse-free survival rate calculated by Kaplan-Meier method and FDR Q values are shown.

³One patient, whose *HLA-DQA1* genotype could not be determined, was excluded from the analysis of *HLA-DQA1*.
Table 5. Association of *HLA class II* alleles and DRβ1 position 13 serine with risk of relapse in multivariate Cox proportional hazards model

<table>
<thead>
<tr>
<th>HLA-allele</th>
<th>relapse-free survival rate (95% CI)</th>
<th>Punconditional / HR (95%CI)</th>
<th>Pconditional / HR (95%CI)* on:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>positive patients</td>
<td>negative patients</td>
<td>MPA</td>
</tr>
<tr>
<td>DRB108:02</td>
<td>61.1 (42.3-88.3)</td>
<td>80.2 (74.1-86.8)</td>
<td>0.046 / 2.30 (1.01-5.20)</td>
</tr>
<tr>
<td>DRB109:01</td>
<td>70.6 (60.6-82.3)</td>
<td>84.1 (77.4-91.4)</td>
<td>0.053 / 1.87 (0.99-3.52)</td>
</tr>
<tr>
<td>DQA103:02</td>
<td>69.4 (59.5-81.0)</td>
<td>85.4 (78.7-92.5)</td>
<td>0.023 / 2.11 (1.11-4.02)</td>
</tr>
<tr>
<td>DQB103:03</td>
<td>70.6 (60.8-82.1)</td>
<td>84.5 (77.7-91.8)</td>
<td>0.047 / 1.91 (1.01-3.61)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HLA-amino acid</th>
<th>relapse-free survival rate (95% CI)</th>
<th>Punconditional / HR (95%CI)</th>
<th>Pconditional / HR (95%CI)* on:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRβ1_13S</td>
<td>90.9 (83.5-98.9)</td>
<td>73.0 (65.3-81.5)</td>
<td>0.015 / 0.31 (0.12-0.80)</td>
</tr>
</tbody>
</table>

HR: hazard ratio, CI: confidence interval, MPA: microscopic polyangiitis, GPA: granulomatosis with polyangiitis.

*Pconditional, HR and 95% CI conditional on EMA classification (MPA, GPA or unclassifiable), treatment, age and sex in multivariate Cox proportional hazards model. EGPA was not included in variables of the EMA classification, because none of the patients with EGPA experienced relapse.
Table 6. Conditional survival analysis of *HLA* alleles and DRβ1 position 13 serine in multivariate Cox proportional hazards model

<table>
<thead>
<tr>
<th>HLA-allele</th>
<th>P_{unconditional} / HR (95%CI)</th>
<th>P_{conditional} / HR (95%CI)* on:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DRB109:01</td>
</tr>
<tr>
<td>DRB109:01</td>
<td>0.053 / 1.87 (0.99-3.52)</td>
<td>NA</td>
</tr>
<tr>
<td>DQA103:02</td>
<td>0.023 / 2.11 (1.11-4.02)</td>
<td>0.15 / 2.95 (0.67-12.9)</td>
</tr>
<tr>
<td>DQB103:03</td>
<td>0.047 / 1.91 (1.01-3.61)</td>
<td>0.58 / 1.63 (0.28-9.39)</td>
</tr>
<tr>
<td>HLA -amino acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*DRβ1_13S</td>
<td>0.015 / 0.31 (0.12-0.80)</td>
<td>NA</td>
</tr>
</tbody>
</table>

HR: hazard ratio, CI: confidence interval, NA: not applicable.

*P_{conditional}, HR and 95% CI were conditioned on indicated HLA alleles or amino acid in multivariate Cox proportional hazards model.
Figure Legends

Figure 1. Flow chart of the MPO-AAV patients in the relapse-free survival analysis.
Among the patients who entered the cohort studies of remission induction therapy (RemIT-JAV and RemIT-JAV-RPGN), 199 MPO-ANCA positive and PR3-ANCA negative (“MPO-ANCA single positive”) patients who achieved remission were studied in the relapse-free survival analysis.

Figure 2. Relapse-free survival in MPO-ANCA single positive AAV patients according to the EMA classification and treatment modality.
The longitudinal and horizontal axes represent the probability of relapse-free survival and days after achievement of remission, respectively. P value was calculated by log-rank test. (A) Relapse-free survival was compared among MPO-ANCA single positive, MPA (n=141), GPA (n=25), EGPA (n=12) and unclassifiable AAV (UC) (n=21). Note that PR3-ANCA positive patients are not included in any group. (B) Relapse-free survival was compared among MPO-ANCA single positive AAV patients treated with glucocorticoid (GC) alone (n=84), GC plus immunosuppressants (n=112) and immunosuppressants alone (n=3).

Figure 3. Association of HLA alleles and DRβ1 position 13 serine with relapse-free survival in MPO-ANCA single positive AAV patients by Kaplan-Meier method.
The longitudinal and horizontal axes represent the probability of relapse-free survival and days after achievement of remission, respectively. Uncorrected P values calculated by log-rank test are shown. Q values corrected for multiple comparisons for each locus are shown in the text, Table 4 and Table 5. Relapse-free survival was compared between MPO-ANCA single positive AAV patients carrying and not carrying
(A) **HLA-DRB1***09:01*, (B) **HLA-DRB1***08:02*, (C) **HLA-DQA1***03:02*, (D) **HLA-DQB1***03:03* and (E) **HLA-DRβ1** position 13 serine (HLA-DRβ1_13S). (F) the patients were divided into four groups according to the carriage of **HLA-DQA1***03:02* and **HLA-DRβ1_13S**. Relapse-free survival was compared among **DQA1***03:02* (+) and **DRβ1_13S** (-) (n=79), **DQA1***03:02* (-) and **DRβ1_13S** (+) (n=49), **DQA1***03:02* (-) and **DRβ1_13S** (-) (n=61) and **DQA1***03:02* (+) and **DRβ1_13S** (+) (n=9) groups.
264 AAV patients: RemIT-JAV (n=88)
RemIT-JAV-RPGN (n=176)

- negative for MPO-ANCA (n=41)
- double positive for MPO and PR3-ANCA (n=8)
- ANCA-specificity data not available (n=1)

214 MPO-ANCA single positive AAV patients

- remission not achieved (n=13)
- remission data not available (n=2)

199 MPO-ANCA single positive AAV patients who achieved remission

- with relapse (n=39)
- without relapse (n=160)
Figure 2
Figure 3

A) Log-rank P = 0.049

B) Log-rank P = 0.040

C) Log-rank P = 0.020

D) Log-rank P = 0.043

E) Log-rank P = 0.010

F) Log-rank P = 0.027