Type of article: Systematic review article

Title of the article: Clinical Virology and Effect of Vaccination and Monoclonal Antibodies against SARS-CoV-2 Omicron Sub Variant BF.7 (BA.5.2.1.7) : A systematic review.

Name of the Authors: Santenna Chenchula*¹, Krishna Chaitanya Amarneni, Mohan Krishna Ghanta, Padmavathi R², Madhu Bhargavi Chandra, Madhu Babu Adusumilli, Madhavrao Chavan¹, Sofia Mudda, Rupesh Gupta, Bhawna Lakhawat.

Running Title: The BF.7 (BA.5.2.1.7) variant Virology and Preventing Strategies.

The affiliation(s) of the author(s):

1. *Santenna Chenchula, PhD, Department of Pharmacology, All India Institute of Medical Sciences (AIIMS)Bhopal, Madhya Pradesh, India. Email: csanten7@gmail.com
2. Krishna Chaitanya Amarneni, Faculty, Western Michigan University, Kalamazoo, Michigan. Email: krishnachaitanya.amarneni@med.wmich.edu
3. Mohan Krishna Ghanta, Assistant Professor, Department of Pharmacology, MVJ Medical College and Research Hospital, Bangalore, Karnataka, Email: mohanakrishna.ghanta@gmail.com
4. Padmavathi R, Resident, SVS Medical College and Hospital, Telangana, India. Email: pad.mythili@gmail.com
5. Madhu Bhargavi Chandra, Intern, All India Institute of Medical sciences, Bhopal. email: madhubhargavi196@gmail.com
6. Madhu Babu Adusumilli, Intern, All India Institute of Medical sciences, Bhopal. email: madhu.adusumilli3@gmail.com
7. Sofia Mudda, Medical Officer, All India Institute of Medical sciences, Bhopal. Email: sophia.dr@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
8. Madhavrao Chavan, Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Mangalagiri, Andhra Pradesh, India. Email: madhavrao.pharm@aiimsmangalagiri.edu.in

9. Rupesh Gupta, Assistant Professor, Department of Internal Medicine, Government Medical College, Shahdol, Madhyapradesh, India. Email: neolog.raj@gmail.com

10. Bhawna Lakhawat, Tutor, department of Pharmacology, All India Institute of Medical sciences, Bhopal, Email: bhawnaajmer001@gmail.com

Corresponding Author: Santenna Chenchula, Department of Pharmacology, 3rd floor, All India Institute of Medical Sciences, Bhopal, 462020, Madhya Pradesh, India.

Phone no: 7987220348

Email Id: csanten7@gmail.com.

The total number of pages: 10.

Total number of Tables/Graphs: 0

Total number of Images: 0

Word counts: For abstract: 187

For the text: 2133

Prior publication: Nil

Sources of Support: Nil

Conflicts of interest: Nil

Read and approved by all authors: Yes.
Abstract:
Since its identification in late 2019 the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China, by the World Health Organization (WHO), which cause the coronavirus disease 2019, it is rapidly spreading, resulting in the global pandemic. As of 19 December 2022, more than 64 million confirmed cases and 6,645,812 deaths have been reported across the world. Over time, the SARS-CoV-2 acquired genetic mutations resulting in multiple types of SARS-CoV-2 variants and subvariants that have been confirmed. The Omicron (B.1.1.529) variant was identified later in November 2021, with enhanced immune escape and was followed with various sublineages due to mutations in the spike protein of the SARS-CoV-2. However, rapid resurge in COVID-19 reports by Omicron subvariant BF.7 (BA.2.75.2) in China and other countries, alarming global threat. The present systematic review was conducted using "Omicron" AND "BA.5.2.1.7" OR "BF.7" in Pub Med, Google Scholar and MedRXiv database and grey literature from the authentic database and websites. We have identified a total of 14 published studies. We have reviewed all the eligible available studies to understand the viral mutations, factors associated with increase in the reports of COVID-19 cases in China and across the world and to evaluate the effectiveness of vaccination and monoclonal antibodies against BF.7 variant.
Since its identification in late 2019 the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China, by the World Health Organization (WHO), which cause the coronavirus disease 2019, it is rapidly spreading, resulting in the global pandemic [1]. As of 19 December 2022, more than 64 million confirmed cases and 6,645,812 deaths have been reported across the world [2]. Over time, the SARS-CoV-2 acquired genetic mutations resulting in multiple types of SARS-CoV-2 variants and subvariants that have been confirmed [3]. Certain variants have gained keen attention because of their characteristics of rapid transmissibility, enhanced immune escape and severity of the infection and these are considered variants of concern (VOC) that continue to threaten public health [3].

Later in November 2021, the Omicron (B.1.1.529) variant with enhanced immune escape was first reported from Botswana and thereafter from South Africa with an increased infection [3-4]. Very soon it has been spread swiftly to several other countries, across the world with subtle raise in the number of COVID-19 infections [4-5]. Subsequently, Omicron sublineages with increasingly greater replication advantages emerged, replacing the previous predominant sublineage [3]. There are about 200 sublineages of Omicron [3]. The original Omicron variant was sublineage BA.1, BA.2, BA.3, BA.4 and BA.5 [5-6]. Other Omicron sublineages, such as BQ.1, BQ.11, BF.7, BA.2.75, and XBB, which evolved from various previously circulating sublineages, have been increasing in prevalence worldwide [7]. Each sublineage differs from the others by several mutations in the spike protein except for BA.4 and BA.5, which have identical spike proteins [8]. Evidence has shown that, all omicron sub-variants are distinct from pre-omicron variants, including BA.1, BA.2 and BA.5 omicron sub-variants are also antigenically distinct from each other [9].
In response to the current surge in the COVID-19 reports by Omicron subvariant BF.7 also known as BA.2.75.2 in China and other countries, triggering global alarm the present review was conducted to understand the virology, factors associated with increased reports of COVID-19 infections with BF.7 variant in China and possible urgent preventing strategies to be taken to curtail the novel omicron variants outbreak across the world.

Methodology:

We have performed a comprehensive literature search was performed from inception to till January 2022, using the MeSH terms and keywords "Omicron" AND "BA.5.2.1.7" OR "BF.7" in Pub Med, Google Scholar and MedRXiv database and grey literature from the authentic database and websites to find relative information about Omicron subvariant BF.7 (BA.5.2.1.7) and data assessed to understand viral mutations, factors associated with increased reports of COVID-19 infections with BF.7 variant in china and on literature evidence on vaccine effectiveness and monoclonal antibodies against BF.7 to understand possible urgent preventing strategies to be taken to curtail the novel omicron variants outbreak in china and across the world.

Results:

In the present review, after removing duplications and literature not mentioned regarding BF.7 or BA.5.2.1.7, a total of 14 studies were found eligible among the 79 studies. The SARS-CoV-2 Omicron BF.7 (BA.5.2.1.7) a subvariant of BA.5, is responsible for the ongoing resurgence of cases since late September 2022 in China [10]. To date, BF.7 (BA.5.2.1.7) subvariant has been
reported in Belgium, China, Denmark, Norway, France, Germany, India, Mongolia, the United Kingdom and the United States[11-12]. However, before China, the BF.7 variant has been circulating at an incredibly intense level in USA and Europe since August 2022[8-10]. The current reports from China indicate BF.7 has the strongest infection ability out of the Omicron subvariants, being quicker to transmit than other variants, having a shorter incubation period, and with a greater capacity to infect people who have had a previous COVID infection, or been vaccinated, or both [11].

The most symptoms of an infection with BF.7 were similar to those associated with other Omicron subvariants, primarily upper respiratory symptoms[12]. Patients may have a fever, cough, sore throat, running nose and fatigue, among other symptoms and gastrointestinal symptoms like vomiting and diarrhoea [11-12]. The basic reproduction number R_t of Omicron BF.7(BA.5.2.1.7) variant was 10 to 18.6, which is significantly high compared to BA.1 Omicron variant which is only 5.08[11]. A study by Kathy Leung et al., in China during November to December 2022 found that, the R_t increased to 3.42 (95% CrI: 2.79 – 4.17) on November 18, Infection incidence peaked on December 10, and the cumulative infection attack rate was 42.5% (95% CrI: 20.3 – 63.9) on December 14[13]. The high transmission rate of BF.7(BA.5.2.1.7), is due to the novel mutations in the spike protein [11-15]. Evidence from the Molecular modelling revealed the mechanisms of antibody-mediated immune evasion by R346T, K444T, F486S, and D1199N mutations on the receptor-binding domain [15]. However, the Omicron variant BF.7 carries an additional specific mutation, R346T in the spike protein of SARS-CoV-2 which is derived from the BA.4/5 subvariant, which is why the BF.7 variant has a 4.4-fold higher neutralization resistance than the original D614G variant [15]. The Arg346 mutations R346T in the BF.7 variant spike glycoprotein, particularly those on the receptor-binding domain has been
associated with an increased immune escape capability to neutralize antibodies generated by vaccines or previous infection[11-15]. Therefore, COVID-19 infection with BF.7 variant may cause a serious illness in populations with weaker immune systems such as the elderly and those with concomitant comorbidities [13-15]. A study by Wang, Qian et al., investigated the sensitivity profile of omicron subvariants to neutralisation by a panel of 23 mAbs found that, all mAbs retained potency against earlier omicron subvariants, including that targeted different epitope clusters of the receptor-binding domain (RBD) of the viral spike and others that target non-RBD epitopes [16]. The neutralisation profiles of BF.7 did not differ much from that of BA.4/5 except those mAbs in RBD class 3 which showed substantial reduction in their neutralisation potency against the new subvariants [16]. The reduced neutralizing activity was mainly due to mutation R346T, R346S, or R346I, which are associated with eliminated or weakened hydrogen bonds or salt bridges, or both, between R346 and some RBD class 3 mAbs. In addition, the combination of a monoclonal antibodies cilgavimab and tixagevimab, which had received an emergency use authorisation for the prevention of COVID-19, could also not neutralized BF.7 and other variants such as, BA.4.6, BA.4.7, and BA.5.9[16].

Discussion:

Being quicker to transmit than other Omicron variants, having a shorter incubation period, increased evasion of antibodies and with greater capacity to infect people who have had a previous COVID-19 infection, and/or been vaccinated, or both, the BF.7 variant is causing a significant increase in number COVI-19 cases in China and across the world [16-17]. A SARS-CoV-2 transmission model study by Kathy Leung et al., from China, using the data from recent outbreaks in Hong Kong and Shanghai to compare different scenarios in China concluded that the hospitals will be overwhelmed if infections rise as rapidly because of the easing of Zero
COVID policy restrictions and will probably result in about one million deaths over the next few months, the study forecasts [17]. The study also suggests that, if 85% of the population gets a booster fourth dose of the COVID-19 vaccine other than the inactivated-virus vaccines, it could slow the rise in infections and reduce the number of severe infections and deaths by up to 35% [17]. According to this study, if China lifts the zero-COVID policy the Omicron could infect between 160 million and 280 million people and 1.55 million deaths largely among unvaccinated older adults [17]. The study also suggests that, if 85% of the population gets the fourth dose of a vaccine other than the inactivated-virus vaccine could slow the increase in infections, the number of severe infections and deaths [17]. According to reports from China, more than 90% of the population has been fully vaccinated [18]. However, less than half of people aged 80 and over have received three doses of the vaccine [18]. Evidence also shown that, the inactivated vaccine CoronaVac from China produced lower levels of neutralizing antibodies and these antibody levels also dropped quickly over time [18]. In addition, studies also have shown that protection from severe disease was also very less in preventing severe disease and death among 80 years and older [17].

Evidence from the literature suggests that booster vaccination is associated with a significant impact on emerging Omicron variants across the world. A study by Sullivan, David J et al., to evaluate polyclonal antibodies from individuals both with at least 3 vaccine doses and also recently recovered from Omicron COVID-19 (VaxCCP) neutralizing activity against new Omicron lineages in 740 individual patient samples from 37 separate cohorts defined by boosted vaccinations with or without recent Omicron COVID-19, as well as infection without vaccination found that more than 96% of the plasma samples from individuals in the recently i.e., within 6 months boosted VaxCCP study cohorts neutralized BQ.1.1 with 79%, XBB.1 with 22%
and BF.7 with 94% variants respectively [19]. Another study by Sullivan DJ et al., on found that, the BA.5-bivalent booster dose vaccines elicited better neutralization against the newly emerged Omicron sublineages including BF.7 variant than the parental mRNA vaccine and those individuals with SARS-CoV-2 infection history develop higher and broader neutralization antibodies against the ongoing novel Omicron sublineages after the BA.5-bivalent booster [20]. Another study by Zhu, Ka-Li Jiang et al., found that, two-dose CoronaVac or a third-dose ZF2001 booster elicits limited neutralization against Omicron subvariants 6 months after vaccination but hybrid immunity as well as Delta, BA.1, and BA.2 breakthrough infections induced long-term persistence of the antibody response, and over 70% of sera neutralized BF.7. as well as BA.1, BA.2, BA.4/BA.5[21]. Another systematic review of effect of booster dose vaccination, with 27 studies by Chenchula S et al., found that, booster-dose vaccine efficacy against SARS-CoV-2 variants, including Omicron sublineages [22].

Conclusion:

The present review focusing on the variant of concern Omicron BF.7 with enhanced infectivity and transmissibility potential suggests that in addition to regular surveillance activities, the protection strategies need to rapidly achieve by global vaccination to nonvaccinated populations and booster dose vaccination with other than inactivated vaccines, especially among immunocompromised and vulnerable populations those aged 60 years more and in children, to prevent possible outbreaks of novel SARS-CoV-2 Omicron subvariants and to decrease severity and mortality to mitigate the healthcare and economic impacts due to the emerging Omicron sublineages and future VOCs.
Acknowledgment:

None to declare.

Conflict of Interests: The authors declare that there are no conflicts of interests.

Grants and funding: None.

Author Contributions: Santenna Chenchula conducted the literature search and data extraction and drafted the manuscript. Krishna Chaitanya Amarneni, Mohan Krishna Ghanta, Padmavathi R, Madhu Bhargavi Chandra, Madhu Babu Adusumilli, Bhawna Lakhawat, Madhavrao Chavan, Sofia Mudda, Rupesh Gupta revised the final manuscript. All authors reviewed and approved the final version of the manuscript.

Data Availability:

The data used in this systematic review is available from the corresponding author with a reasonable request.

References:

19. Mallapaty S. China's COVID vaccines have been crucial - now immunity is waning. Nature. 2021 Oct;598(7881):398-399. doi: 10.1038/d41586-021-02796-w.

Identification of studies via PubMed, Google Scholar, and MedRxiv by using following MESH or key words:

"Omicron" AND "BA.5.2.1.7" OR "BF.7"

Records identified from databases: (n=80)
Records excluded based on title and abstract review (n=35)

Records screened (n=45)

Full-text articles assessed for eligibility (n=22)

Records excluded with reasons (n=23)
 Duplicate data (n=10)
 BF.7 variant not mentioned (n=13)

Studies included in qualitative analysis (n=14)