Novel Community-Based Rabies Surveillance (CBRS) In Urban Lilongwe, Malawi

Precious Innocent Mastala1,2*, Melaku Tefera1†, Edson Chiweta2, Madeline Nyamwanza2, Thoko Kapalamula1

1Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
2Lilongwe Society for the Protection and Care of Animals, Lilongwe, Malawi

*Corresponding Author
Precious Innocent Mastala
Email: preciousmastala@gmail.com

These authors contributed equally to this work.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Introduction: Rabies is a neglected tropical disease that is endemic to Malawi, killing almost 500 people every year. Domestic dogs are implicated as the main reservoir for rabies. However, there is limited capacity to detect canine rabies in the country, particularly in urban areas where there are high dog densities. The Lilongwe Society for the Protection and Care of Animals designed and implemented a canine community-based rabies surveillance (CBRS) in Lilongwe city between January and June 2020.

Objectives: This study assessed the effectiveness of the CBRS program in canine rabies detection compared to the traditional passive routine surveillance data of the years between 2015 and 2019. Furthermore, the study determined rabies Post-Exposure Prophylaxis (PEP) issuance trends in emergent cases.

Methods: Suspected rabies cases were recorded and followed. The dogs that were found alive were quarantined for 10 days for observation. Brain samples were collected post-mortem for direct-fluorescent antibody testing for antigen detection.

Results: There were 610 suspected cases, and only 217 (39.2%) were followable. Out of these, 150 (62.8%) were followed. A total of 9 dogs (6%) tested positive, and there were 11 (7.3%) probable cases. This represents a 4.97-fold increase in rabies cases detected compared to the pre-surveillance period, with a resultant of 3.33 cases/month from 0.67 cases/month. The program also helped to initiate PEP treatment in exposed people. There were 141 bite victims and 136 (96.5%) reported for PEP. Out of these, 89 (65.4%) were from healthy bites and 33 (24.4%) from suspect cases indicating a 63.97% to 88.24% rate of irrelevant PEP issuance.

Conclusion: The CBRS program established relevance in increasing canine rabies detection and subsequent prevention of related human infections. It also established a high rate of PEP issuance following healthy bites. Therefore, we recommend enhanced multi-sectoral collaborative efforts aimed at increasing rabies detection and optimizing PEP usage.

Keywords: Community-based rabies surveillance, Lilongwe, Malawi, One Health, Post-Exposure Prophylaxis, Rabies

One Health Impact Statement

This novel implementation research features a One Health approach in which several arms of the public and private sectors including the community collaborate towards ending rabies. This collaboration provides synergy towards accelerating the identification of rabid animals in the community and effectively guides people to take the necessary precautions including prompt Post-Exposure Prophylaxis in cases of exposure. This ensures ultimate health promotion at the human-animal interface.
Introduction

Rabies is a viral zoonotic encephalitis infection of the central nervous system of homeothermic animals, including humans, that usually ends in the death of the host once clinical symptoms appear (Quin et al., 2016). The virus is usually transmitted to humans through contact with infected animals, primarily by bites, scratches, or other contact with saliva (Health Protection Agency, 2013).

In Malawi, rabies is endemic and often referred to as "a notifiable disease" (Mallewa et al., 2007). Despite that, there are about 59,000 and 500 (WHO, 2015) human deaths globally and in Malawi per annum, respectively. About 99% of these human rabies cases can be mostly attributed to dogs. Rabies is neglected in most developing countries, (Hampson et al, 2015).

Rabies causes huge losses, which can be attributed mainly to premature death, but also direct costs of Rabies post-exposure prophylaxis (PEP), additional costs to communities from livestock losses, lost income whilst seeking Rabies PEP, and very little in dog vaccination. Despite the losses, rabies prevention and control can be easily addressed by increasing awareness, vaccinating 70–80% of the dog population and prompt rabies PEP (WHO et al, 2018). Thus, controlling dog rabies substantially reduces human exposure to the virus.

Despite the important role of dogs in the transmission dynamics of the virus, issues surrounding the propagation and maintenance of dog rabies are still not clear. Achieving the ‘Zero canine rabies-related human deaths by 2030’ goal requires effective and well-coordinated surveillance of the disease (Bourhy et al, 2016). In Malawi, there is no nationwide instituted rabies surveillance program, but specific district non-governmental organizations run surveillance programmes in southern and central Malawi. Samples from suspected cases are mostly delivered for rabies testing through well-informed owners or consulting veterinary or paraveterinary professionals. This leaves room for the cycle of neglect and, as such, undermines the true burden of the disease on the population. Several elements can be attributed to the failure in control and elimination of rabies, these include: failure to employ effective tools; organizational failure in the planning, implementation, or evaluation of the rabies program specifically; a failure to gather and properly present information about disease risk and vulnerabilities; and a failure to generate systematic synergies with other programs and stakeholders to ensure efficient capacity deployment, and conduct thorough risk assessment on the sustainability of the rabies program (Hampson et al, 2015). The reporting of the disease is hindered by difficulties with the system and the lack of diagnostic facilities, (Mallewa et al, 2007).

Malawi has a One Health approach to addressing rabies which is played through a coordination between state animal health and public health departments. This coordination ensures that when a person is potentially exposed to the rabies virus through an animal, they should report to the veterinary department for advice and follow up of the suspected case where possible. Depending on the case, the veterinarian recommends PEP treatment for the victim. The global call for the elimination of dog-mediated human rabies by 2030 has prompted many countries to invest in dog vaccinations (Sambo et al., 2013), including the Malawi government, with alliances with two non-governmental organisations; Lilongwe Society for Prevention and Care of Animals and Mission Rabies, where Memorandums of understanding (MOU) are in place for rabies surveillance and
monitoring (WHO, 2019). This will revamp the One Health platform, which has long existed and encourage surveillance. The platform ensures that there is Integrated Bite Case Management (IBCM), where every dog bite case is systemically followed by both medical and veterinary support, and necessary management is done following each dog’s confirmation of rabies infection.

Employing the Community Based Rabies Surveillance (CBRS), where the community is at the core, could be important in detecting possible rabies cases and reporting them for confirmation and intervention systems. This paper details the process of developing the program, which comprised of both active and passive surveillance components. The active surveillance was done involved actively looking for rabies suspicion cases in the communities, while the passive surveillance involved cases reported to the surveillance team on bite and PEP cases reported by the DALHLDD and the referral hospital for PEP respectively. The study involved the assessment of data on animal rabies cases between January and June 2020, and a comparison to the pre-surveillance period of 2015–2019. It also assesses the rabies PEP issuance trends for the study period.

Materials and Methods: Study Design, study area, and sample population

The study was conducted in urban Lilongwe, a district in the central region of Malawi (Figure 1). According to the National Statistical Office (NSO), (2018), the government of Malawi has 230,265 households with a total population of 989,318.

![Figure 1: The study area: Lilongwe City with its designated areas of residence](image)

CBRS Design

The surveillance program was piloted from January to June 2020. The stakeholders of the program were the Lilongwe Society for the Protection and Care of Animals (LSPCA), the District
Animal Health and Livestock Department (DAHLD), the Lilongwe District Health Office (DHO), and Lilongwe City Council (LCC). The LSPCA was the lead of the program. The DAHLD reported cases of suspect human-animal exposures, the DHO helped to report cases of human exposures presenting for rabies PEP at the hospital, and the LCC helped in reporting roadside killed dogs. The data captured and reported for follow-up included each person’s name, phone number, and physical address. The LSPCA conducted the follow-ups of all reported cases (Figure 2).

Taskforce

The program taskforce had four rabies project officers (RPOS) with a para-veterinary profession, a veterinarian, the DHO, the DAHLD (The bite reporting section and the Central Veterinary Laboratory), and Community Rabies Action Groups (RAGs). The members of the RAGs included community leaders, community police, human and animal health surveillance officers, church leaders, school managers and market vendors association chairpersons.

Procedures

In December 2019 the RPOs were trained on the principles of rabies and its prevention in both animals and people. After the training, they received rabies pre-exposure vaccinations, and additional training in animal rabies surveillance and bite investigation. Since suspected cases were to be reported and handled through the LSPCA, a toll-free number (172) was established under one of the Network Proving Companies called TNM (Telecommunications Malawi), followed by publicity of the program to the communities through radios, televisions, newspapers, flyers, and other document materials and roving.

The RPOs were stationed in nine areas that were distinguished as hotspots of human exposures using the 2018 data obtained from DAHLD on dog bites, and DHO on rabies PEP treatment. The RPOs roved around the areas to identify any rabies suspected animals. Further to this the RPOSs followed up on reported exposure cases from the DAHLD and DHO first via telephone followed by physical visit to the reported site regardless of being a hotspot or not. The follow-up efforts were done to locate the infected animal. All animals cases were diagnosed and defined of their rabies status based on the case definition by Wallace et al, (2015) in the following box (Table 1).

Table 1: Animal Rabies Surveillance Program Case Definitions

<table>
<thead>
<tr>
<th>Animal Rabies Surveillance Program Case Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed Rabies Cases</td>
</tr>
<tr>
<td>‧ Diagnostic confirmation of rabies virus by Direct Fluorescent Antibody Test (dFAT)</td>
</tr>
<tr>
<td>Probable Rabies Cases</td>
</tr>
<tr>
<td>‧ Animals that were not tested for rabies and</td>
</tr>
<tr>
<td>‧ Animals that died during the observation</td>
</tr>
</tbody>
</table>
Animals that did not pass observation (escaped animals, not found by further investigation)
Animals that developed one or more clinical signs and died after being bitten by a suspect/probable/confirmed rabid animal

Suspect Rabies Cases
- Animals reported to animal rabies Project Officers that could not be assessed or
- Animals that had less than 2 signs of rabies and test results were inconclusive
- Animals that died after being hit on the road

Non-cases
- Animals that are healthy after the 14-day observation period or
- Animals that test negative by dFAT

Depending on the initial case definition, the animal would be kept under home quarantine for a minimum of 10 days if it did not show obvious clinical signs of rabies. Within the quarantine period, the animal would be followed to note any changes towards rabies definition. If after the period or during an investigation the animal showed clinical signs, the animal was humanely captured and transported to LSPCA Clinic for euthanasia.

The euthanasia of the animal involved a series of steps as recommended by the World Society for the Protection of Animals (WSPA) (2010). Following euthanasia, the animal was tagged with an ID, properly wrapped and placed in a sample bag, and transported to CVL where dFAT was performed on a brain sample.

Test results from the laboratory were reported through a WhatsApp forum to the stakeholders and by telephone call to the bite victim and reporting health facility or in person where telephone communication was not possible. If a case tested positive, the bite victim would be encouraged to continue with PEP treatment or start the treatment if not started yet.
Results

Active and Passive Surveillance

During the surveillance period, a total of 610 cases were reported during the surveillance period, of which 239 (39.2%) were followable, and only 150 (24.6% of the total and 62.8% of the followable cases) cases were followed.
Of the followed cases, 46 were under active surveillance and 104 through passive surveillance. 13 (8.67%) were tested cases and 9 (69.23%) were confirmed (Figure 4). All cases sent for testing were from Active surveillance.

Overall, there were 150 cases, 9 (6%) positive cases, 11 (7.3%) probable cases, 33 (22%) suspect cases and 97 (64.6%) non-cases. This entails that the program contributed 20 (13.6%) positive and probable cases. The active surveillance contributed 75% (28.6% of total active surveillance), whilst, the passive surveillance contributed 35% (6.7% of total passive surveillance cases).

According to Table 2, the animals involved in bites were dogs, and only 2 cats were reported. Notice that there was 1 confirmed donkey case detected through active surveillance but was not included in the study because it was not detected in the area of study.
Figure 3: Figure shows the number of cases that were reported during the study period versus the cases that were followable and actually followed. It also splits the followed cases into the actual case definitions.
Figure 4: Reported Cases

<table>
<thead>
<tr>
<th>Species</th>
<th>Case Review</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Cases</td>
</tr>
<tr>
<td>Dog</td>
<td>96 (64.9%)</td>
</tr>
<tr>
<td>Cat</td>
<td>1 (50%)</td>
</tr>
<tr>
<td>Total</td>
<td>97 (64.7%)</td>
</tr>
</tbody>
</table>

The most common signs of illness among all defined cases as shown in Table 3, were, unusual aggression and biting, with exception of Paresis/paralysis (Odds Ratio (OR) = 0.039-0.148 and 0.045-0.159), hypersalivation (OR = 2.994-71.4 and 3.46-66.667), restlessness (OR = 2.188-29.411 and 1.656-45.454) and anorexia (OR = 2.105-62.5 and 236-22.727) which were common among
confirmed and probable cases respectively. Lethargy (OR=6.758-29.4) and hydrophobia (OR=6.757-25.64) were among the confirmed cases only.
Table 3: Clinical signs observed during the investigation of rabies suspect animals by case status

<table>
<thead>
<tr>
<th>Observed Signs</th>
<th>Non-Cases (n (%)) #</th>
<th>Confirmed (n (%))</th>
<th>ODDS RATIOS (OR)</th>
<th>Probable (n (%))</th>
<th>ODDS RATIOS (OR)</th>
<th>Probable (n (%))</th>
<th>ODDS RATIOS (OR)</th>
<th>Case Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paresis/paralysis</td>
<td>0 (0%)</td>
<td>1 (11.1%)</td>
<td>.076 (.039-.148)</td>
<td>2 (18.2%)</td>
<td>.085 (.045-.159)</td>
<td>0 (0%)</td>
<td>§</td>
<td></td>
</tr>
<tr>
<td>aggression</td>
<td>11 (11.6%)</td>
<td>4 (44.4%)</td>
<td>6.25 (1.457-27.027)</td>
<td>5 (45.5%)</td>
<td>6.536 (1.701-25)</td>
<td>1 (3%)</td>
<td>.244 (.03-1.969)</td>
<td></td>
</tr>
<tr>
<td>Abnormal vocalisation</td>
<td>5 (5.3%)</td>
<td>2 (22.2%)</td>
<td>5.263 (.86-32.258)</td>
<td>2 (18.2%)</td>
<td>4.082 (0.691-24.39)</td>
<td>0 (0%)</td>
<td>1.359 (1.224-1.508)</td>
<td></td>
</tr>
<tr>
<td>Biting</td>
<td>94 (98.9%)</td>
<td>6 (66.7%)</td>
<td>.064 (.011-.386)</td>
<td>9 (81.8%)</td>
<td>0.134 (.021-.975)</td>
<td>33 (100%)</td>
<td>.74 (.668-.82)</td>
<td></td>
</tr>
<tr>
<td>Hypersalivation</td>
<td>5 (5.3%)</td>
<td>4 (44.4%)</td>
<td>14.706 (2.994-71.4)</td>
<td>5 (45.5%)</td>
<td>15.385 (3.46-66.667)</td>
<td>0 (0%)</td>
<td>1.358 (1.224-1.508)</td>
<td></td>
</tr>
<tr>
<td>Lethargy</td>
<td>0 (0%)</td>
<td>1 (11.1%)</td>
<td>13.158 (6.758-29.4)</td>
<td>0 (0%)</td>
<td>§</td>
<td>0 (0%)</td>
<td>§</td>
<td></td>
</tr>
<tr>
<td>Restlessness</td>
<td>4 (4.2%)</td>
<td>1 (11.1%)</td>
<td>2.9 (2.188-29.411)</td>
<td>3 (27.3%)</td>
<td>8.696 (1.656-45.454)</td>
<td>0 (0%)</td>
<td>1.355 (1.221-1.504)</td>
<td></td>
</tr>
<tr>
<td>Anorexia</td>
<td>4 (4.2%)</td>
<td>3 (33.3%)</td>
<td>11.628 (2.105-62.5)</td>
<td>1 (9.1%)</td>
<td>2.326 (.236-22.727)</td>
<td>0 (0%)</td>
<td>1.355 (1.221-1.504)</td>
<td></td>
</tr>
<tr>
<td>Hydrophobia</td>
<td>0 (0%)</td>
<td>1 (11.1%)</td>
<td>13.158 (6.757-25.64)</td>
<td>0 (0%)</td>
<td>§</td>
<td>0 (0%)</td>
<td>§</td>
<td></td>
</tr>
</tbody>
</table>

#Non-cases category was used as a reference for comparison
§ No statistics were computed because the designated sign was a constant.
There were 141 bite victims. Out of these, 91 (64.54%) were from healthy bites; 8 (5.67%) from confirmed cases; 9 (6.38%) from probable cases; and 33 (23.4%) from suspect cases. Out of these in the different exposure categories, 136 (96.45%) of the bite victims reported rabies PEP. Out of the 136, 87 (63.97%) from the non-cases, 7 (5.15%) from confirmed cases (1 person was reluctant to go for PEP after communication of lab results and advice due to religious convictions), 9 (6.62%) from probable cases, and 44 (32.35%) from suspect cases. This indicates between 63.97% to 88.24% of PEP issuance following healthy bites.

Rabies Testing at CVL During the CBRS Study Period and Pre-Surveillance Period

A total of 22 suspected case samples from Lilongwe urban were tested at CVL of these 13 cases were from active surveillance. 10 (45.5%) of the tested samples were positive and 12 (54.5%) tested negative.

Prior to the surveillance period (2015-2019), the LSPCA and government carried out mass rabies vaccinations with a passive surveillance system. During this period there were a total of 40 confirmed cases, averaging 8 cases per year and 0.67 cases per month (Figure 6).

![Figure 6: Comparison of rabies dFAT tests for cases between the pre-surveillance and surveillance period at Central Veterinary Laboratory](https://example.com/figure6.png)
Spatial Distribution of Rabies

In Figure 7, confirmed and probable cases were detected from Area 25, Area 18, Area 22, Area 9, Area 22, Area 23, Area 24, Area 36, Area 39, Area 49, Area 50, Area 56, and Area 57.

Figure 7: The spatial distribution of rabies cases during the study period

Discussion

In low-resource settings like in Malawi, the absence of reliable surveillance data makes it difficult to monitor and understand the disease burden, and implementing appropriate prevention and control measures. The CBRS under the case definitions justified by the Odds Ratios as by Wallace et al, (2015), identified 20 confirmed and probable cases within the study period. This indicates a 3.3 cases per month compared to the pre-surveillance period which had 0.67 cases per month and translates into a 5-fold increase in cases. The surveillance program also helped to initiate PEP treatment in exposed individuals. This indicates the importance of surveillance in the efficient detection of rabies cases which without the CBRS could not be detected as was also found by Wallace et al, (2015) who with surveillance there was a 10-fold increase in the detection of rabies in animals within the first 2 years of the surveillance. Herein, we demonstrate that data from
CBRS can help to reduce state losses from human death in exposed individuals, as there is a follow-up to encourage the exposed individuals to go for PEP treatment.

When compared to the reported cases in this study, we saw a significant decrease in the number of cases that were followed. Only 150 (24.6%) of the 610 reported cases were followed. This was due to the fact that cases from DHO and DALHD were frequently reported many days after they had been recorded in the respective departments. Additionally, it was challenging to follow these cases because the majority of the reported data from DALHD lacked the contact information for victims and dog owners, as appropriate. Additionally, some residents of the community were unaware of the surveillance program, which led them to dismiss any phone-based investigation into the cases because they believed it might be a common study period fraudster scam. There are frequently few perceived incentives for carrying out rabies surveillance, as mentioned by Wallace et al. (2015), Lembo et al. (2010), and Kitala et al. (2000), in the absence of systems capable of prompt investigation and reporting for clinical and public health purposes. Rabies and animal bites have a significant impact on public health. Therefore, accurate and timely data are essential to understanding the epidemiology and burden of rabies (Adomako et al., 2018). This means that poor and discrepant data underestimate the true burden of rabies and negate the advocacy efforts needed to achieve control and elimination (Scott, et al 2017). Subsequently, this can result in a lack of awareness of the case burden, reduced funding for control, and poor community engagement around prevention.

The study found that the majority of people who sought rabies PEP had not been exposed. It was discovered that only 14.18% of the population had been exposed to positive and probable cases. Additionally, we discovered that some religious beliefs have an impact on prompt PEP treatment. These religious convictions put the believers at risk to dying from the disease. The established One Health platform for rabies in Malawi assures that the state veterinarians and para-veterinarians make the decision regarding whether or not PEP should be administered to the bitten victim(s) in addition to wound care. The observed irregularity in PEP issuance to mostly healthy bite victims may indicate a serious issue with the veterinary practitioners’ decision-making and necessitates an investigation of what influences their decisions. But it should be noted that in regions like Malawi where rabies is enzootic in dogs and wildlife, the WHO advises that PEP be implemented right away unless sufficient laboratory surveillance and data show that the species in question is not a rabies vector (WHO (2014), Ngugi et al, (2016) and Obonyo et al, (2016)). Likewise, even if the suspect animal is not available for testing or observation, rabies PEP administration should still begin. However, the same may be discontinued if the animal involved is vaccinated and, following observation for 10 days, the animal remains healthy or is humanely killed and declared negative for rabies by a WHO-prescribed laboratory test.

Given the scarcity of resources, PEP must be used more effectively for those who have been exposed. To reduce inappropriate PEP administration, Moore (2000) recommends increasing vaccination rates for pet (owned) animals. Furthermore, with advanced training of the staff and adhering to WHO recommendations, this could be accomplished. There is a need to teach the
communities about responsible dog ownership including the need for dog population
management and vaccination and animal behaviour to reduce and prevent animal-bite cases.

To ensure that the exposed individuals and the anti-rabies dispensary are promptly informed to
stop the PEP if the involved animal is deemed healthy, it is important to establish good
coordination between the involved parties, including the diagnosing laboratory, the veterinary
team, the human health department, and the community/patient. It is also important to educate
communities on responsible dog ownership including the need for dog population management
and vaccination and animal behaviour to reduce and prevent animal-bite cases.

The highest rabies cases were recorded during the study period in Areas 25, Area 18, and Area
22, according to the spatial distribution. Adjustments to comprehend the true significance of the
observations are however prevented by the lack of statistics or studies on dog populations. The
majority of nations around the world lack such data on pet populations (Carvelli et al. 2020). It
is crucial to have thorough knowledge of zoonoses, infectious diseases, and risk factors associated
with their spatial and temporal distribution in the pet population (Day et al. (2012) and Carvelli
et al. 2020). As seen here, one of the most important tools for comprehending the population's
burden is knowledge of animal populations' sizes, demographics, and ownership patterns.

Limitation

Due to COVID-19-related public health restrictions, the surveillance team's activities were heavily
affected and as such some cases could have gone unreported.

Conclusion and Recommendations

This is the first time to employ a community based canine rabies surveillance in Malawi. The study
has illustrated how a multisectoral, One Health approach can enhance canine rabies surveillance.
The CBRS program has demonstrated its value in enhancing the detection of canine rabies cases
and assisting the exposed victims in initiating PEP for rabies in a timely manner. Additionally, a
high rate of PEP issuance following healthy bites has been established. In order to increase rabies
detection and maximize PEP use, we advise increased multi-sectoral collaborative efforts. Every
major stakeholder must work together to strengthen surveillance, make the best use of data, and
maximize the use of available resources if the goal of ending rabies-related human deaths is to be
accomplished.

Funding statement

This research was funded by the Lilongwe University of Agriculture and Natural Resources
(LUANAR), the Lilongwe Society for the Protection and Care of Animals and the Martyn Edelsten
(of The University of Edinburgh) Research and Internship Grant Fund.

Conflict of interest declaration

The authors declare that there is no conflict of interest.
Ethics statement confirming that all relevant guidelines were followed
Ethical Approval for research was provided by Animal Health Committee reference number DAHLD/AHC/12/2019/1.

Acknowledgements
We would like to thank Kondwani Chiumya and the entire Lilongwe Society for the Protection and Care of Animals (LSPCA) team for their expertise and assistance throughout all aspects of this study.

References

