Effects of PM$_{2.5}$ and Corticosteroid Use on Cardiovascular and Thromboembolic Events Among Older Adults: Evidence of Drug-Environment Interaction

Kevin P. Josey, PhD1; Rachel C. Nethery, PhD1; Aayush Visaria, MD MPH2; Benjamin Bates, MD2,4; Poonam Gandhi, MS2; Melanie Rua, PharmD MPH2; David Robinson, PhD3; and Soko Setoguchi, MD DrPH2,4,*

1Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, 4th Floor, Boston, MA 02115, USA

2Rutgers University Institute for Health, Healthcare Policy, and Aging Research, The State University of New Jersey, 112 Paterson Street, New Brunswick, NJ 08901, USA

3Department of Geography, Rutgers University, 54 Joyce Kilmer Avenue, Piscataway, NJ 08854, USA

4Department of Medicine, Rutgers Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08901, USA

* Rutgers University Institute for Health, Healthcare Policy, and Aging Research
112 Paterson Street, Room 402
New Brunswick, NJ 08901, USA
Phone: (848) 932-6507
Email: soko.setoguchi@rutgers.edu

Funding information: This study was supported by National Institutes of Health grants R01AG060232, 1K01ES032458, and 5T32ES007142.

Data availability statement: For data privacy reasons, the Medicare data used in this study cannot be made publicly available, but interested parties can request access by applying through the US Centers for Medicare and Medicaid Services. The PM$_{2.5}$ exposure data are publicly available at the following link: https://doi.org/10.7927/0rvr-4538. Area-level covariates used herein are also publicly available from the US Census Bureau website. Code for fitting the models and for plotting estimates found within this manuscript is available at: https://github.com/kevjosey/pm-steroid.
Abstract

Background: Exposure to fine particulate matter (PM$_{2.5}$) and use of corticosteroids have both been linked to increased risk of cardiovascular/thromboembolic events (CTEs). However, no studies have assessed both PM$_{2.5}$ and corticosteroid use concomitantly, nor has the potential interaction between these two risk factors been examined.

Objective: To assess the existence of a synergistic effect between PM$_{2.5}$ and corticosteroid use on adverse outcomes in older adults who are at high risk for CTEs.

Methods: We collected a ~50% random sample of Medicare fee-for-service participants receiving care between 2008-2016 who are at high-risk for future CTE events. We followed participants until death and/or the first instance of various cardiovascular events. From a marginal structural proportional hazards model, we tested for the presence of synergy between PM$_{2.5}$ and corticosteroid use on the additive scale by estimating the relative excess risk due to interaction (RERI). Outcomes included incidences of myocardial infarction or an acute coronary syndrome, ischemic stroke or transient ischemic attack, heart failure, venous thromboembolism, atrial fibrillation, and all-cause mortality.

Results: Among 1,936,786 high-risk older adults (mean age 76.8, 40.0% male, 87.4% White), the mean PM$_{2.5}$ exposure level was 8.3 ± 2.4 μg/m3 and 37.7% had at least one prescription for a systemic corticosteroid during follow-up. We observed positive relationships between PM$_{2.5}$ and CTE, and between corticosteroid use and CTE. We also observed evidence of an interaction existing between corticosteroid use and PM$_{2.5}$ for some CTEs. By increasing the average PM$_{2.5}$ from 8 μg/m3 to 12 μg/m3, the RERI of corticosteroid use and PM$_{2.5}$ was significant for heart failure (18.2%, 95% CI: 7.5%-29.0%), and death (8.9%, 95% CI: 1.6%-16.1%). Increasing the average PM$_{2.5}$ from 5 μg/m3 to 10 μg/m3 yielded significant RERIs for incidences of heart failure (40.6%; 95% CI: 24.8%-56.4%) and acute coronary syndromes (31.8%; 95% CI: 10.3%-53.4%).
Discussion: PM$_{2.5}$ and systemic corticosteroid use were independently associated with increases in CTE hospitalizations, with evidence of significant interactions between the two exposures for heart failure, acute coronary syndromes, and death.
Introduction

Climate change is ‘the single biggest health threat facing humanity’ and is expected to have a growing impact on human health through multiple pathways, including more frequent extreme weather events and worsening ambient air pollution. Air pollution is currently among the top five modifiable contributors to death and disease globally. The adverse effects of air pollution, and particularly fine particulate matter (PM$_{2.5}$), on the cardiovascular system are well-established, and PM$_{2.5}$ exposure has been linked to increased risk of stroke, myocardial infarction, heart failure, venous thromboembolism, and other cardiovascular events. More than half of deaths attributable to air pollutants are due to cardiovascular thromboembolic (CTE) events. Epidemiological assessments in this area are also supported by cellular/toxicological experiments and by controlled animal/human studies, which both demonstrate the mechanisms by which PM$_{2.5}$ may trigger acute events as well as prompt the chronic development of cardiovascular diseases.

One of the most vulnerable populations, older adults, are at elevated risk for mortality and morbidity from PM$_{2.5}$, particularly those with accessory comorbidities such as respiratory and cardiovascular diseases. Older adults are also at increased risk for CTE from certain medications taken to treat or prevent comorbidities. For example, systemic corticosteroids used for asthma/COPD exacerbations and to treat autoimmune diseases have direct vasoconstriction effects that inhibit fibrinolytic activity of the blood, leading to clinically-recognized thrombogenicity. Further, systemic corticosteroids can cause sodium and fluid retention issues, leading to hypertension or heart failure exacerbations.

Although the independent effects of air pollution and corticosteroids on CTE are well-established, no prior study has assessed the risk of both exposures simultaneously on CTE; thus, it is unknown whether there is a synergy between these factors. Leveraging rich healthcare utilization data on a large cohort of Medicare beneficiaries with comorbidities linked to residential PM$_{2.5}$ concentrations, we examined whether simultaneously experiencing elevated PM$_{2.5}$ and corticosteroid exposure leads to an increased risk of CTE.
that is greater than the combination of these two effects independently. To our knowledge this is the first study to examine interactions between drug and pollutant exposures, and provides a framework to produce more in-depth analyses into the contributing factors that explain individual-specific vulnerabilities to air pollution.

Methods

Study Population and Cohort Definition

The cohort used in this study has been previously described. Briefly, we used data from a 50% random sample of the 2008-2016 Medicare Part D-eligible Fee-for-Service beneficiary population and formed a cohort of individuals with conditions known to increase the risk of CTE. These high-risk conditions included pre-existing cardiovascular diseases, prior venous thromboembolism, total joint arthroplasty, and cancer. Any beneficiary who had an inpatient diagnosis/procedure at any position (primary or otherwise) for one or more of the above causes during a one-year baseline period from their date of enrollment into the Medicare Fee-for-Service system was entered into the cohort at the end of the baseline period. This definition for high CTE risk has been shown to be highly predictive of future CTE events (see Supplemental Table S1 for specific International Classification of Diseases (ICD-9/10) diagnosis codes used to define each high-risk condition).

Outcomes

We followed all participants until they developed one of the outcomes of interest, or until they experienced a censoring event – whichever occurred first. Outcomes of interest included hospitalization for: 1) myocardial infarction or acute coronary syndrome (MI/ACS); 2) ischemic stroke or transient ischemic attack (Stroke/TIA); 3) heart failure (HF); 4) atrial fibrillation (AFib); 5) venous thromboembolism (VTE); or 6) all-cause death (see Supplemental Table S2 for ICD-9/10 diagnosis and procedure codes identifying the outcomes). Non-administrative censoring events included death (when death was not the outcome under study), loss of eligibility for Medicare Part D, and the participant’s moving to a ZIP code without available PM$_{2.5}$ exposure data. We also censored participants after the discontinuation of their first corticosteroid therapy, with a 30-day grace period.
PM$_{2.5}$ Exposures

Seasonal average PM$_{2.5}$ concentrations were derived from spatially and temporally aggregated predictions from a well-validated, high-resolution PM$_{2.5}$ model.22 This model predicts PM$_{2.5}$ concentrations at 1-km square grids across the US and consists of an ensemble of neural net and machine learning sub-models trained on integrated high-resolution satellite, land use, emissions, ground monitoring, and weather data. Daily gridded estimates were aggregated and linked to participants by residential ZIP code, and then averaged within seasons. Figure 1 demonstrates why we chose to model the outcomes using seasonal-average PM$_{2.5}$ exposures rather than a more long-term measurement such as yearly-average PM$_{2.5}$ - there is significant variation between seasons that we have the computational ability to process in our assessment of the air pollution effects. We are particularly focused on contrasting outcomes for PM$_{2.5}$ measurements of 12 μg/m3 vs. 8 μg/m3, which are policy-relevant thresholds in the US (12 μg/m3 being the US limit for annual average PM$_{2.5}$).23 We also compare outcomes for the contrast between PM$_{2.5}$ levels of 10 μg/m3 vs. 5 μg/m3 in a secondary analysis, informed by the WHO’s updated guidelines recommending an annual average limit of 5 μg/m3 (recently reduced from 10 μg/m3).24

Corticosteroid Exposures

We used Medicare Part D drug dispensing data to identify systemic corticosteroid exposure. Systemic corticosteroids of interest included Cortisone, Hydrocortisone, Prednisone, Prednisolone, Methylprednisolone, Triamcinolone, Dexamethasone, and Betamethasone. Initiation and duration of each corticosteroid were estimated based on the dispensing date, dispensing dose, and days’ supply of the participants’ prescriptions. Because allowing for continuous follow-up was computationally infeasible, corticosteroid therapy status was updated quarterly until one of the study endpoints was achieved for each participant.

To ensure that individuals’ quarterly follow-up times aligned with key dates of corticosteroid usage, we constructed unique drug exposure panels for each cohort member. The start of the drug exposure panels aligns with the initiation of corticosteroid therapy.
during follow-up for users, and with the change of seasons for non-users. In other words, for a participant who uses corticosteroids at some point during follow-up, the first day of their corticosteroid therapy always coincides with the first day of a quarter. We then constructed individual-specific panels spanning quarterly intervals extending backward in time to the participant's index date and forward in time to the participant's end date (see Figure 2 for example).

Covariates

We identified individual-level sociodemographic characteristics, comorbidities and health services utilization information derived from Medicare enrollment files and inpatient, outpatient, and drug dispensing data from files pertaining to Medicare Parts A, B, and D, respectively. Using Medicare enrollment files, we extracted the following individual-level baseline variables: age, sex, race/ethnicity, and Medicaid eligibility (a proxy for low-income status). Various pre-enrollment measurements were assessed based on diagnosis codes for inpatient and outpatient visits during each participant’s baseline period (see Tables S3 for complete list of comorbidities). We also derived metrics of health services utilization during the baseline period, including the number of hospitalizations, number of emergency department visits, number of outpatient visits, and number of generic medications dispensed. We consider this collection of variables as time-invariant and treat them as potential confounders between corticosteroid use and CTE.

Additional temporal and neighborhood-level features were also identified to enable further confounding adjustment, for both PM$_{2.5}$-CTE and corticosteroid-CTE associations. These variables included season, year, region, and PM$_{2.5}$ from the prior four seasons as well as area-based measures of population density, proportion of residents living below the federal poverty line, proportion of housing units that are owner-occupied, median home value, median household income, proportion of residents identifying as Hispanic, proportion of residents identifying as Black, and proportion of residents 25+ with at least a college degree that were linked to Medicare by ZIP code of beneficiaries' residence. These demographic and socioeconomic features were considered as time-varying covariates.
updated yearly. We also accounted for ZIP code changes that occur during follow-up and updated participants’ PM$_{2.5}$ exposures and neighborhood features accordingly.

Statistical Analysis

We first described summary measures of the individual- and neighborhood-level characteristics and calculated the number of person-years at risk, number of events, and event rates per 1,000 person years for each of the six outcomes examined, both overall and stratified by corticosteroid status. We then fitted history-adjusted marginal structural Cox proportional hazard models, facilitated by fitted inverse probability weights (IPWs), to investigate both the independent and synergistic effects of PM$_{2.5}$ and corticosteroid use on the CTE outcomes.25,26 Separate models were used to estimate the IPWs for each of the outcomes considered, and separate weighted Cox models were fit over the age-time scale.27 We included penalized spline components in the weighted Cox models to account for potential nonlinear effects of PM$_{2.5}$ in addition to a main effect for corticosteroid use and an interaction between corticosteroid use and PM$_{2.5}$ (the penalized spline representation).

The final IPW for a given participant and follow-up period was constructed as the product of three distinct IPWs accounting for different potential sources of bias: an inverse probability of treatment weight for each of the PM$_{2.5}$ and corticosteroid exposures, to adjust for confounding, and an inverse probability of censoring weight to account for informative censoring. The neighborhood-level IPWs for PM$_{2.5}$ were constructed by estimating the ZIP code and season-specific generalized propensity scores modeled using random forest regression. The individual-level IPWs for the quarterly corticosteroid use indicators were estimated using random forest classification. Additionally, over the same corticosteroid use quarters, we modeled the probability of censoring with random forest classification to produce inverse probability of censoring weights. The three IPWs were stabilized by the marginal probabilities of treatment/censoring. Extreme weights were truncated at the 1st and 99th percentiles of the final IPW distribution (see Supplement for additional details on the construction of the IPWs).

We report the hazard ratios and 95% confidence intervals associating PM$_{2.5}$ with the five CTE outcomes and all-cause mortality (comparing average hazards evaluated at PM$_{2.5}$
levels of 12 vs. 8 μg/m³ and 10 vs. 5 μg/m³) with corticosteroid status held fixed (both on and off treatment). Hazard ratios associating corticosteroid use with CTEs and mortality with PM₂.₅ held fixed at 8 μg/m³ are also provided. We then assessed synergy between PM₂.₅ and corticosteroids by calculating the relative excess risk due to interaction (RERI) - a measure of interaction on the additive scale that can be interpreted as the relative increase in the combined effect of the two exposures versus the individual effects of the two exposures summed together (presented as a percentage).²⁰⁻³¹ The delta method and robust variance estimates of the Cox model parameters were used to compute standard errors for the RERI.³² Additional details for estimating the RERI are provided in the Supplement.

This study was approved by the Institutional Review Board of Rutgers University. All analyses were conducted using R version 4.2.0. Data cleaning was performed using SAS version 9.4.

Results

The cohort included 1,936,786 beneficiaries with a total of 4,629,432 person-years of follow-up. Average age at index date was 76.8 years, with 60.0% of cohort members female, 15.9% Medicaid eligible, 87.4% White, and 8.2% Black (Table 1). Among these beneficiaries, 37.7% had at least one prescription for corticosteroid therapy during follow-up. Participants who received corticosteroid therapy were slightly younger than those who never received corticosteroid therapy (75.7 versus 77.4 years old), were more likely to be White (89.9% versus 85.9%) and were less likely to be Medicaid eligible (14.0% versus 17.0%). Table 1 and Supplemental Table S3 shows summary statistics of several comorbidities included into the random forest IPW models, stratified by eventual corticosteroid status. Table 2 contains data on demographics and season-specific PM₂.₅ measurements over 329,544 ZIP code years from 35,695 unique ZIP codes. The average PM₂.₅ level was 8.3 ± 2.4 μg/m³, average population density was 1,425 people per square mile, and the overall poverty rate was 10.3%.
During an average follow-up of 2.4 years per person, we observed a total of 244,451 hospitalizations for HF, 118,754 hospitalizations for AFib, 101,611 hospitalizations for Stroke/TIA, 93,191 hospitalizations for MI/ACS, 41,635 hospitalizations for VTE, and 491,445 deaths. The incidence rates per 1,000 person-years were 57.1 for HF, 27.0 for AFib, 22.8 for Stroke/TIA, 20.8 for MI/ACS, 9.1 for VTE, and 106.2 for death (Table 3).

Corticosteroid use was associated with higher risks of CTE and death, with significant associations for all six outcomes examined. Holding PM$_{2.5}$ fixed at 8 μg/m3 (close to average PM$_{2.5}$ in the US), corticosteroid use was associated with CTE, with hazard ratios (95% CI) of 2.07 (1.98, 2.17) for MI/ACS, 1.53 (1.45, 1.62) for Stroke/TIA, 2.38 (2.32, 2.45) for HF, 3.57 (3.39, 3.76) for VTE, 2.26 (2.18, 2.35) for AFib, and 2.46 (2.42, 2.51) for Death.

Seasonal average PM$_{2.5}$ exposure was also significantly associated with an increased risk of each of the six outcomes. Increasing the PM$_{2.5}$ concentration from 8 μg/m3 to 12 μg/m3, in the absence of corticosteroid therapy, resulted in hazard ratios (95% CI) of 1.201 (1.186, 1.217) for MI/ACS, 1.210 (1.195, 1.225) for Stroke/TIA, 1.288 (1.278, 1.298) for HF, 1.271 (1.247, 1.297) for VTE, 1.147 (1.134, 1.161) for AFib, and 1.193 (1.186, 1.199) for Death. Figure 3 contains more complete results on the hazard ratio point estimates including the effects of increasing PM$_{2.5}$ from 5 μg/m3 to 10 μg/m3, and the effects of PM$_{2.5}$ while receiving corticosteroid therapy.

Evaluating the additive interactions between PM$_{2.5}$ and corticosteroid use on the additive scale, we observed significant interactions (RERI [95% CI]) associated with increasing PM$_{2.5}$ from 8 μg/m3 to 12 μg/m3 for HF (18.2% [7.5%, 29.0%]) and death (8.9% [1.6%, 16.1%]). Increasing PM$_{2.5}$ from 5 μg/m3 to 10 μg/m3 resulted in a significantly increased excess risk due to interaction (RERI [95% CI]) for HF (40.6% [24.8%, 56.4%]) and MI/ACS (31.8% [10.3%, 53.4%]). Figure 4 plots the RERI curves corresponding to various PM$_{2.5}$ contrasts across the range of observed exposure levels for each outcome. For most outcomes, the increase in RERI is steepest when PM$_{2.5}$ is less than ten, indicating more intense synergy between PM$_{2.5}$ and corticosteroids even at PM$_{2.5}$ concentrations below current US annual average PM$_{2.5}$ standards.
An interesting result worth noting concerns the hazard ratios associated with PM$_{2.5}$ while receiving corticosteroid therapy. Observe that nearly every estimate of the hazard ratio in the last plot of Figure 3 is attenuated toward the null value of one relative to the second plot in Figure 3 examining the effects of PM$_{2.5}$ while not receiving corticosteroid therapy. This implies that the multiplicative interaction between PM$_{2.5}$ and corticosteroid use is negative. A negative multiplicative interaction would seem to contradict our findings about the additive interaction, which are predominantly positive. However, this result simply provides yet another example about the discordance that can occur between these two measures of synergy, and further demonstrates the caution one needs to consider when establishing causal interactions.

Discussion

In this study, we examined the interaction between seasonal average PM$_{2.5}$ exposure and corticosteroid use on the risk of CTE in a cohort of Medicare beneficiaries with high-risk conditions for CTE. Using marginal structural models from the causal inference literature, which adjust for time-varying confounding attributable to several observed neighborhood- and individual-level covariates, we found that the escalation in risk for certain CTE outcomes during periods of simultaneous high PM$_{2.5}$ exposure and corticosteroid use was larger than what would be expected from the independent effects of the two factors added together. In particular, we detected synergism between these two exposures for all-cause mortality, heart failure, and myocardial infarction/ACS.

Numerous studies have reported that older adults and those with comorbidities, particularly respiratory and cardiovascular disease, are at elevated risk for mortality and morbidity from air pollution. Older adults may be more vulnerable not only because of age and pre-existing diseases, but also because of the multiple medications they receive. Despite making up only 13% of the US population, older adults account for more than one-third of all prescriptions dispensed. Yet, current evidence on the health impacts of air pollution lacks consideration of additional factors to characterize individuals at risk. In particular, studies lack considerations for medication use, a prevalent risk factor that may further increase vulnerability in older adults. To our knowledge, our study provides the
first epidemiologic evidence of synergistic effects of air pollution and medication on CTE outcomes in older adults.

In addition, examining the independent effects of PM$_{2.5}$ and corticosteroid use on CTE and mortality, we observed results that corroborate those already found in the current literature. PM$_{2.5}$ has been significantly associated with increased risk of MI/ACS,6 Stroke/TIA,7 HF,39 VTE,14 AFib,5 and all-cause mortality.40 Our results sometimes yielded adverse PM$_{2.5}$ effects larger in magnitude than those found in previous studies. This is unsurprising given that our cohort consists only of participants already at high risk for CTE.14 Likewise, corticosteroid use was strongly and significantly associated with increased risk of the five CTE outcomes and all-cause mortality in our study. The deleterious effects that corticosteroids can have on CTE outcomes have already been described in several other reports.19,20

There are several potential biological mechanisms explaining the synergistic interactions between prescription systemic corticosteroids and PM$_{2.5}$ on CTE. First, both PM$_{2.5}$ and glucocorticoids have been shown to induce hypercoagulable states in humans. As PM$_{2.5}$ is small enough to translocate into the bloodstream, chronic PM$_{2.5}$ exposure may increase coagulability indirectly through production of pro-oxidative and pro-inflammatory factors that can then induce production of coagulation factors and fibrinogen. Steroids may complement this thrombogenicity by stimulating Plasminogen Activator Inhibitor-1, which decreases dissolution of fibrinogen.41 Second, PM$_{2.5}$ may also lead to atherosclerotic changes and autonomic cardiac dysfunction (i.e., reduced heart rate variability), which in conjunction with adverse metabolic changes seen with systemic glucocorticoid use, can increase risk of cardiovascular disease-related outcomes. Third, both PM$_{2.5}$ inhalation42 and glucocorticoids43 have been shown to have vasoconstrictive effects, which can increase blood pressure, risk of hypoxia in cardiac/brain tissue, and ultimately lead to MI or stroke. Some steroids also exhibit mineralocorticoid activity at higher doses which can lead to fluid retention and potassium efflux.44 In combination with PM$_{2.5}$'s effects on autonomic dysfunction and modulation of vascular tone,45 this could potentially exacerbate heart failure or induce arrhythmias.
Our analysis is not without its limitations. First, using model-based PM$_{2.5}$ aggregated to ZIP codes carries the potential for attenuation created by exposure measurement error.46 However, even with such potential attenuation, we still obtained significant results. Second, comorbidities were captured and fixed at the index date and not allowed to vary over time. However, most comorbidities that we accounted for are chronic diseases that are rarely reversed. Finally, we censored participants after their first corticosteroid therapy ended, and repeated corticosteroid exposure was not considered in the analyses. A recurrent events model might have been constructed to alleviate this issue; however, fitting marginal structural models in this design is both more time-intensive and new to the causal inference space. Moreover, our approach to consider the first course of exposure makes epidemiological sense given that repeated drug exposures are likely to be associated with worsening of the disease or comorbidities, which is difficult to correct for in a model of the exposure responses.47

Conclusion

Using a cohort of nearly two million adults at high risk for CTE, we found evidence of a synergistic effect between seasonal PM$_{2.5}$ exposure and corticosteroid use on several CTEs and mortality. We used advanced causal inference methods to control for potential confounding attributable to a large set of individual- and neighborhood-level covariates. We also observed strong independent adverse effects of PM$_{2.5}$ and corticosteroids on each of the six outcomes examined. Our study demonstrates that certain combinations of medication and PM$_{2.5}$ can work synergistically to impose increased health risks on older adults, even when PM$_{2.5}$ concentrations fall below EPA standards. While our results should not discourage clinicians/older adults from prescribing/taking medications needed for treatment, they do shape our conceptual model of disease risk, which we believe should incorporate potential synergisms between individual- and environmental-level risk factors. Our results also emphasize the need for stricter control of PM$_{2.5}$ concentrations to help protect these vulnerable populations for whom corticosteroid medications are commonly indicated.
References

Table 1. Characteristics of high-risk Medicare beneficiaries (total N=1,936,786). Beneficiaries are further divided into strata of those who received at least one dispensing of systemic corticosteroid during follow-up and those who never received corticosteroids during follow-up. We report counts (%) for categorical variables or mean ± standard deviation for continuous variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>All Participants (N = 1,936,786)</th>
<th>Participants who Received Corticosteroids (N = 729,546)</th>
<th>Participants who Never Received Corticosteroids (N = 1,207,240)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at Index</td>
<td></td>
<td>76.8 ± 8.0</td>
<td>75.7 ± 7.3</td>
<td>77.4 ± 8.3</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td>774,852 (40.0)</td>
<td>280,471 (38.4)</td>
<td>494,381 (41.0)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td></td>
<td>1,692,791 (87.4)</td>
<td>655,493 (89.9)</td>
<td>1,037,298 (85.9)</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td>159,001 (8.2)</td>
<td>47,725 (6.5)</td>
<td>111,276 (9.2)</td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
<td>35,508 (1.8)</td>
<td>10,571 (1.5)</td>
<td>24,937 (2.1)</td>
</tr>
<tr>
<td>Asian</td>
<td></td>
<td>24,152 (1.3)</td>
<td>7,334 (1.0)</td>
<td>16,818 (1.4)</td>
</tr>
<tr>
<td>North American Native</td>
<td></td>
<td>6,943 (0.4)</td>
<td>2,489 (0.3)</td>
<td>4,454 (0.4)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>18,391 (1.0)</td>
<td>5,934 (0.8)</td>
<td>12,457 (1.0)</td>
</tr>
<tr>
<td>Medicaid Eligibility</td>
<td></td>
<td>307,985 (15.9)</td>
<td>102,251 (14.0)</td>
<td>205,734 (17.0)</td>
</tr>
<tr>
<td>Chronic Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hip Arthroplasty</td>
<td></td>
<td>231,114 (11.9)</td>
<td>81,194 (11.1)</td>
<td>149,920 (12.4)</td>
</tr>
<tr>
<td>Total Knee Arthroplasty</td>
<td></td>
<td>473,206 (24.4)</td>
<td>186,349 (25.5)</td>
<td>286,857 (23.8)</td>
</tr>
<tr>
<td>Acute Coronary Syndrome</td>
<td></td>
<td>74,783 (3.9)</td>
<td>33,651 (4.6)</td>
<td>41,132 (3.4)</td>
</tr>
<tr>
<td>Condition</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>291,014 (15.0)</td>
<td>116,892 (16.0)</td>
<td>174,122 (14.4)</td>
<td></td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>595,876 (30.8)</td>
<td>219,836 (30.1)</td>
<td>376,040 (31.2)</td>
<td></td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>184,442 (9.5)</td>
<td>61,232 (8.4)</td>
<td>123,210 (10.2)</td>
<td></td>
</tr>
<tr>
<td>Heart Failure</td>
<td>291,993 (15.1)</td>
<td>102,930 (14.1)</td>
<td>189,063 (15.7)</td>
<td></td>
</tr>
<tr>
<td>Ischemic Stroke</td>
<td>175,201 (9.1)</td>
<td>58,686 (8.0)</td>
<td>116,515 (9.6)</td>
<td></td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>127,147 (6.5)</td>
<td>43,605 (6.0)</td>
<td>83,542 (6.9)</td>
<td></td>
</tr>
<tr>
<td>Peripheral Vascular Disease</td>
<td>196,055 (10.1)</td>
<td>73,127 (10.0)</td>
<td>122,928 (10.2)</td>
<td></td>
</tr>
<tr>
<td>Transient Ischemic Attack</td>
<td>56,930 (2.9)</td>
<td>20,283 (2.8)</td>
<td>36,647 (3.0)</td>
<td></td>
</tr>
<tr>
<td>Venous Thromboembolism</td>
<td>95,081 (4.9)</td>
<td>36,938 (5.1)</td>
<td>58,143 (4.8)</td>
<td></td>
</tr>
<tr>
<td>Cerebrovascular Accident</td>
<td>184,442 (9.5)</td>
<td>61,232 (8.4)</td>
<td>123,210 (10.2)</td>
<td></td>
</tr>
<tr>
<td>Carotid Stenosis</td>
<td>828 (0.0)</td>
<td>117 (0.0)</td>
<td>711 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Hospitalization and Medication History</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior Inpatient Hospitalizations</td>
<td>1.7 ± 1.3</td>
<td>1.7 ± 1.3</td>
<td>1.7 ± 1.3</td>
<td></td>
</tr>
<tr>
<td>Prior ER Visits</td>
<td>0.8 ± 1.2</td>
<td>0.8 ± 1.2</td>
<td>0.8 ± 1.2</td>
<td></td>
</tr>
<tr>
<td>Prior Outpatient Visits</td>
<td>8.3 ± 9.2</td>
<td>8.8 ± 9.5</td>
<td>8.0 ± 9.1</td>
<td></td>
</tr>
<tr>
<td>Prior Medications Dispensed</td>
<td>12.1 ± 7.1</td>
<td>13.5 ± 7.2</td>
<td>11.2 ± 7.0</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Neighborhood-level characteristics averaged over 329,727 ZIP-code years across 35,695 unique ZIP codes.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$ ($\mu g/m^3$)</td>
<td>Yearly Average</td>
<td>8.3 ± 2.4</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>8.7 ± 3.4</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>7.8 ± 2.4</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>9.5 ± 2.9</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>7.5 ± 2.4</td>
</tr>
<tr>
<td>Population Density (per mile2)</td>
<td></td>
<td>1,425.0 ± 4,978.5</td>
</tr>
<tr>
<td>Median House Value ($)</td>
<td></td>
<td>180,117.4 ± 154,630.3</td>
</tr>
<tr>
<td>Median Household Income ($)</td>
<td></td>
<td>52,276.7 ± 22,549.9</td>
</tr>
<tr>
<td>% Poverty</td>
<td></td>
<td>10.3 ± 10.7</td>
</tr>
<tr>
<td>% Owner Occupied Housing</td>
<td></td>
<td>72.3 ± 17.4</td>
</tr>
<tr>
<td>% Hispanic</td>
<td></td>
<td>9.7 ± 17.1</td>
</tr>
<tr>
<td>% Black</td>
<td></td>
<td>8.5 ± 16.5</td>
</tr>
<tr>
<td>% White</td>
<td></td>
<td>82.9 ± 20.8</td>
</tr>
<tr>
<td>% with Bachelor's Degree or Higher</td>
<td></td>
<td>23.5 ± 16.8</td>
</tr>
</tbody>
</table>
Table 3. Incidence Rates of Cardiovascular Thromboembolic Events in Overall Cohort and by Systemic Corticosteroid Use.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>All</th>
<th>No Corticosteroid Use</th>
<th>Corticosteroid Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Person-Years at Risk</td>
<td>Events (per 1,000 Person-Years)</td>
<td>Person-Years at Risk</td>
</tr>
<tr>
<td>MI or ACS</td>
<td>4,481,330</td>
<td>93,191 (20.8)</td>
<td>4,398,446</td>
</tr>
<tr>
<td>Ischemic Stroke or TIA</td>
<td>4,449,201</td>
<td>101,611 (22.8)</td>
<td>4,366,251</td>
</tr>
<tr>
<td>Heart Failure</td>
<td>4,282,456</td>
<td>244,451 (57.1)</td>
<td>4,204,664</td>
</tr>
<tr>
<td>Venous Thromboembolism</td>
<td>4,561,261</td>
<td>41,635 (9.1)</td>
<td>4,477,435</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>4,395,518</td>
<td>118,754 (27.0)</td>
<td>4,314,107</td>
</tr>
<tr>
<td>Death</td>
<td>4,629,432</td>
<td>491,445 (106.2)</td>
<td>4,544,200</td>
</tr>
</tbody>
</table>
Figure 1. Season-specific average PM$_{2.5}$ measurements for every ZIP-code across the United States over the period 2008-2016. Note that the PM$_{2.5}$ measurements are most severe in the Southern states during the Summer and the upper-Midwest states during Winter.
Figure 2. Example of five participants’ survival paths over a one-year period. This plot demonstrates how we construct individual-level quarters over which we model corticosteroid therapy. Participants 1, 2, and 4 never receive corticosteroid therapy and thus their quarters align with seasons. An arrow denotes censoring (as in Participants 1 and 4) while an X denotes when an event occurs (as in Participant 2). Participants 3 (pink) and 5 (green) both received corticosteroids, indicated by the respective dots. Note that the quarters are evenly spaced and shifted according to the starting treatment date. The one exception is within the treatment path of Participant 3 – Quarter 1 is shortened by the start of the study period.
Figure 3. Hazard ratios (and 95% confidence intervals) for corticosteroid use and increasing PM$_{2.5}$ while both on and off corticosteroids. We contrasted the effects of setting PM$_{2.5}$ to 10 vs. 5 μg/m3 and 12 vs. 8 μg/m3 which were chosen based on WHO and EPA guidelines.23,24
Figure 4. Relative excess risk due to interaction (RERI) between PM$_{2.5}$ and corticosteroid usage for each of the six outcomes (and their 95% confidence interval bands), comparing a range of PM$_{2.5}$ concentrations to reference values of 5 (pink line) and 8 (blue line). Curves represent the change in RERI due to simultaneously initiating corticosteroid treatment and increasing PM$_{2.5}$ exposure to any given level above the corresponding PM$_{2.5}$ reference level. Note that the curves intersect zero at their respective reference levels, as there can be no excess risk increase due to the interaction without changing both exposures concomitantly.
Supplement to “Effects of PM\textsubscript{2.5} and Corticosteroid Use on Cardiovascular and Thromboembolic Events Among Older Adults: Evidence of Drug-Environment Interaction”

Kevin P. Josey, Rachel C. Nethery, Aayush Visaria, Benjamin Bates, Poonam Gandhi, Melanie Rua, David Robinson, and Sokou Setoguchi

Additional Details on the Statistical Models

Let \(i = 1,2, \ldots, n \) index study participants, \(j = 1,2, \ldots, m \) index individual-level drug-quarters, \(k = 1,2, \ldots, l \) index ZIP codes, and \(s = 1,2, \ldots, 36 \) index seasons from Winter 2008 (\(s = 1 \)) to Fall 2016 (\(s = 36 \)). We will denote the PM\textsubscript{2.5} measurements by \(W \) and the corticosteroid indicators by \(X \). Define \(U \) to be the confounders for PM\textsubscript{2.5} indexed by \(k \) and \(s \), and \(V \) to be the confounder measurements for corticosteroid therapy indexed by \(i \) and \(j \). The variable \(W \) is the vector of four season averaged PM\textsubscript{2.5} measurements occurring before the present season and the variable \(X \) denotes the treatment history one quarter prior to the current drug quarter. Lower-case letters refer to the observed values of the corresponding random variables.

Below we outline the steps to constructing the inverse probability weights used to fit the Cox proportional hazard model which allows us to evaluate the independent and synergistic effects of PM\textsubscript{2.5} and corticosteroid use.

Step 1: Inverse Probability Weighting

Fit the ZIP code by season-level generalized propensity score for PM\textsubscript{2.5} with random forest regressions assuming:

\[
p_{ks} = \frac{f_W(w_{ks} | \bar{W} = \bar{w}_{ks})}{f_W(w_{ks} | U = u_{ks}, \bar{W} = \bar{w}_{ks})}
\]

Here, \(f_W(\cdot) \) denotes the probability density function of the PM\textsubscript{2.5} measurements evaluated at the observed PM\textsubscript{2.5} values. Next, we fit individual by quarter-level propensity score for corticosteroid use with random forest classification. Taking the cumulative product of the resulting probabilities, we assume:

\[
q_{ij} = \prod_{\{h:sj, x_{ih}=0\}} \frac{Pr\{X = x_{ih} | W = w_{ih}\}}{Pr\{X = x_{ih} | U = u_{ih}, V = v_{ih}, W = w_{ih}\}}.
\]
Note that the index on the PM$_{2.5}$ exposures and the neighborhood-level confounders changes to the individual-level indexes in this model relative to the previous weights p_{ks}. The observations w_{ij} and u_{ij} simply refer to the seasonal average PM$_{2.5}$ and ZIP code measurements that person i experiences at the start of quarter j. Finally, we fit individual by quarter-level probabilities of being censored with random forest (censoring weights):

$$r_{ij} = \prod_{\{h:h \neq j\}} \frac{Pr(Censored = 0| W = w_{ih}, X = x_{ih})}{Pr(Censored = 0| U = u_{ih}, V = v_{ih}, W = w_{ih}, X = x_{ih})}.$$

The three inverse probability weights are combined into one weight by finding the product $a_{ijks} = p_{ks} \times q_{ij} \times r_{ij}$. Plugging in estimates for the various probability models (like the output from our random forest regressions) contained in p_{ks}, q_{ij} and r_{ij} will yield the estimator \hat{a}_{ijks} which we will use to weight the Cox proportional hazards models.

Since the proportional hazards models are fit on the continuous age-time scale, denoted by t_i for participant $i = 1, 2, ..., n$, and the weights are fit on more abstract panels spanning the age-time continuum, we must define the functions $j(t_i)$, $k(t_i)$, and $s(t_i)$ that produce the drug quarter, ZIP code, and season experienced by person i at age t_i, respectively. These functions allow us to obtain the inverse probability weights at some age t denoted with $\hat{a}_{ij_i(t_i)k_i(t_i)s_i(t_i)}$ which can be used within a proportional hazards model. In addition, weights are truncated to fall within the 1st and 99th percentiles to prevent some highly leveraged observations from driving estimation and inference.

Step 2: Cox Proportional Hazard Model

Define $z_0(w, x)$ and $z_1(w, x)$ to be a basis of nonlinear functions evaluated at a PM$_{2.5}$ measurement of w while off and on medication (x), respectively. More concisely, set

$$z_x(W,X) = \begin{cases} p_{x}(8, 4), & X \neq x \\ p_{x}(W, 4), & X = x \end{cases}$$

where $p_x(\cdot)$ forms a penalized spline basis with four degrees of freedom. For each CTE outcome, our goal is to model the following hazard function given the two exposures for PM$_{2.5}$ and corticosteroid use evaluated at age t, which we denote as

$$\lambda(t|W(t) = w, X(t) = x) = \lambda_0(t) \exp[\beta_1 + z_0^T(w, x) \beta_2 + z_1^T(w, x) \beta_3].$$
\(\lambda_0(t)\) is an unknown baseline hazard function, a nuisance parameter that makes the Cox proportional hazard model semiparametric. The hazard models described by the above form are fit by maximizing the partial likelihood while conditioning on the time-varying exposures for PM\(_{2.5}\), \(W_i(t_i)\), corticosteroid exposure, \(X_i(t_i)\), and given the estimated inverse probability weights \((\hat{a}_{ij}(t_i)\hat{k}(t_i)S(t_i))\) fit in Step 1.

Step 3: Evaluating the Relative Excess Risk due to Interaction

The existence of a sufficient cause interaction can be tested using the estimated hazard functions to construct the relative excess risk due to interaction. For two contrasting PM\(_{2.5}\) values \(w_0\) and \(w_1\), evidence of synergy can be found by evaluating whether

\[
RERI_{w_0,w_1} = \frac{\lambda(t|W(t) = w_1, X(t) = 1) - \lambda(t|W(t) = w_0, X(t) = 1) - \lambda(t|W(t) = w_0, X(t) = 0)}{\lambda(t|W(t) = w_0, X(t) = 0)} + 1 > 0
\]

Of course, this value can only be estimated from the fitted Cox model, and thus we must also find some estimator of the standard error to discern the level of uncertainty for our estimates to properly evaluate whether the RERI is greater than zero. To find the standard error, we use the delta method from the variance estimates for \(\hat{\beta}_1\), \(\hat{\beta}_1\), and \(\hat{\beta}_3\) in the Cox model fit. As we describe in main manuscript, the RERI for PM\(_{2.5}\) and corticosteroid use is a measure of the interaction on the additive scale, which evaluates whether the combined effect of the two exposures is greater than the individual effects added together.
Table S1. ICD-9, ICD-10, and CPT codes for cohort-defining conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>ICD-9 codes</th>
<th>ICD-10 codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Joint Arthroplasty</td>
<td>81.54, 81.51 CPT Code: 27130, 27447</td>
<td>0SRC07Z, 0SRC0J9, 0SRC0J9A, 0SRC0J9Z, 0SRC0KZ, 0SRD07Z, 0SRD0J9, 0SRD0J9A, 0SRD0J9Z, 0SRD0KZ, 0SRT07Z, 0SRT0J9, 0SRT0J9A, 0SRT0J9Z, 0SRT0KZ, 0SRU07Z, 0SRU0J9, 0SRU0J9A, 0SRU0J9Z, 0SRU0KZ, 0SRV07Z, 0SRV0J9, 0SRV0J9A, 0SRV0J9Z, 0SRV0KZ, 0SRW07Z, 0SRW0J9, 0SRW0J9A, 0SRW0J9Z, 0SRW0KZ, 0SR9019, 0SR901A, 0SR901Z, 0SR9029, 0SR902A, 0SR902Z, 0SR9039, 0SR903A, 0SR903Z, 0SR9049, 0SR904A, 0SR904Z, 0SR907Z, 0SR909, 0SR90J9, 0SR90J9A, 0SR90J9Z, 0SR90KZ, 0SRB019, 0SRB01A, 0SRB01Z, 0SRB029, 0SRB02A, 0SRB02Z, 0SRB039, 0SRB03A, 0SRB03Z, 0SRB049, 0SRB04A, 0SRB04Z, 0SRB07Z, 0SRB09, 0SRB0J9, 0SRB0J9A, 0SRB0J9Z, 0SRB0KZ</td>
</tr>
<tr>
<td>Acute Coronary Syndrome</td>
<td>411.0, 411.1, 411.81, 411.89</td>
<td>I24.0, I24.1, I24.8, I24.9</td>
</tr>
<tr>
<td>All Stroke</td>
<td>430, 431, 433.xx, 434.xx, 436</td>
<td>I60.xx, I61.x, I63.xxx, I65.xx, I66.xx</td>
</tr>
<tr>
<td>Ischemic Stroke</td>
<td>433.xx, 434.xx, 436</td>
<td>I63.xxx, I65.xx, I66.xx</td>
</tr>
<tr>
<td>Transient Ischemic Attack</td>
<td>435.x</td>
<td>G45.x</td>
</tr>
<tr>
<td>Condition</td>
<td>ICD-10 Codes</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Carotid Stenosis</td>
<td>433.1</td>
<td></td>
</tr>
<tr>
<td>Peripheral Vascular Disease</td>
<td>440.20, 440.21, 440.22, 440.23, 440.24, 440.29, 440.30, 440.31, 440.32, 440.4, 443.9</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>140.xx-209.xx, 230.xx-239.xx</td>
<td></td>
</tr>
<tr>
<td>Heart Failure</td>
<td>428.xx</td>
<td></td>
</tr>
</tbody>
</table>

All rights reserved. No reuse allowed without permission.
Table S2. ICD-9 and ICD-10 codes for CTE outcomes

<table>
<thead>
<tr>
<th>Condition</th>
<th>ICD-9 codes</th>
<th>ICD-10 codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Coronary Syndrome</td>
<td>411.0, 411.1, 411.81, 411.89</td>
<td>I24.0, I24.1, I24.8, I24.9</td>
</tr>
<tr>
<td>Ischemic Stroke</td>
<td>433.xx, 434.xx, 436</td>
<td>I63.xxx, I65.xx, I66.xx</td>
</tr>
<tr>
<td>Transient Ischemic Attack</td>
<td>435.x</td>
<td>G45.x</td>
</tr>
<tr>
<td>Heart Failure</td>
<td>428.xx</td>
<td>I50.xx</td>
</tr>
</tbody>
</table>
Table S3. Comorbidities used for adjustment of the IPWs in addition to the variables listed in Tables S3 and S5.

<table>
<thead>
<tr>
<th>Comorbidity</th>
<th>All Participants (N = 1,936,786)</th>
<th>Participants who Never Received Corticosteroids (N = 1,207,240)</th>
<th>Participants who Received Corticosteroids (N = 729,546)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Acute Renal Failure</td>
<td>275,481</td>
<td>14.22</td>
<td>182,744</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>689,699</td>
<td>35.61</td>
<td>433,967</td>
</tr>
<tr>
<td>Alcohol Abuse</td>
<td>52,446</td>
<td>2.71</td>
<td>34,277</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>5,495</td>
<td>0.28</td>
<td>2,890</td>
</tr>
<tr>
<td>Anemia</td>
<td>1,010,949</td>
<td>52.20</td>
<td>630,187</td>
</tr>
<tr>
<td>Stable Angina</td>
<td>169,330</td>
<td>8.74</td>
<td>97,741</td>
</tr>
<tr>
<td>Unstable Angina</td>
<td>170,790</td>
<td>8.82</td>
<td>99,830</td>
</tr>
<tr>
<td>Anxiety</td>
<td>286,192</td>
<td>14.78</td>
<td>170,840</td>
</tr>
<tr>
<td>Any Mental Disorders</td>
<td>876,918</td>
<td>45.28</td>
<td>555,047</td>
</tr>
<tr>
<td>Asthma</td>
<td>231,379</td>
<td>11.95</td>
<td>105,689</td>
</tr>
<tr>
<td>Bipolar</td>
<td>27,517</td>
<td>1.42</td>
<td>17,903</td>
</tr>
<tr>
<td>Cancer</td>
<td>644,054</td>
<td>33.25</td>
<td>385,633</td>
</tr>
<tr>
<td>Cardiac Condition</td>
<td>242,663</td>
<td>12.53</td>
<td>154,116</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>226,355</td>
<td>11.69</td>
<td>142,384</td>
</tr>
<tr>
<td>Chronic Renal Diseases</td>
<td>435,069</td>
<td>22.46</td>
<td>283,379</td>
</tr>
<tr>
<td>Chronic Kidney Disease</td>
<td>270,902</td>
<td>13.99</td>
<td>177,860</td>
</tr>
<tr>
<td>Congenital Heart Failure</td>
<td>52,511</td>
<td>2.71</td>
<td>32,494</td>
</tr>
<tr>
<td>COPD</td>
<td>559,867</td>
<td>28.91</td>
<td>297,083</td>
</tr>
<tr>
<td>Other CVD</td>
<td>184,735</td>
<td>9.54</td>
<td>124,482</td>
</tr>
<tr>
<td>Dementia</td>
<td>337,130</td>
<td>17.41</td>
<td>248,000</td>
</tr>
<tr>
<td>Depression</td>
<td>419,081</td>
<td>21.64</td>
<td>260,082</td>
</tr>
<tr>
<td>Diabetic Peripheral Circulatory Disorder</td>
<td>99,344</td>
<td>5.13</td>
<td>68,746</td>
</tr>
<tr>
<td>Diabetic Nephropathy</td>
<td>88,216</td>
<td>4.55</td>
<td>61,456</td>
</tr>
<tr>
<td>Diabetic Neuropathy</td>
<td>156,100</td>
<td>8.06</td>
<td>103,351</td>
</tr>
<tr>
<td>Diabetic Retinopathy</td>
<td>69,979</td>
<td>3.61</td>
<td>47,828</td>
</tr>
<tr>
<td>Severe Diarrhea</td>
<td>244,970</td>
<td>12.65</td>
<td>143,822</td>
</tr>
<tr>
<td>Dissociative Disorder</td>
<td>358,436</td>
<td>18.51</td>
<td>196,123</td>
</tr>
<tr>
<td>Drug Abuse</td>
<td>41,986</td>
<td>2.17</td>
<td>25,145</td>
</tr>
<tr>
<td>Drug Allergy</td>
<td>20,324</td>
<td>1.05</td>
<td>10,965</td>
</tr>
<tr>
<td>Dyskinesia</td>
<td>642,491</td>
<td>33.17</td>
<td>402,334</td>
</tr>
<tr>
<td>Edema</td>
<td>1,024</td>
<td>0.05</td>
<td>689</td>
</tr>
<tr>
<td>Condition</td>
<td>Value 1</td>
<td>% 1</td>
<td>Value 2</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Electrolyte Imbalance</td>
<td>751,968</td>
<td>38.83</td>
<td>476,240</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>27,621</td>
<td>1.43</td>
<td>19,061</td>
</tr>
<tr>
<td>Food Allergy</td>
<td>1816</td>
<td>0.09</td>
<td>899</td>
</tr>
<tr>
<td>Hip Fracture</td>
<td>84,454</td>
<td>4.36</td>
<td>57,916</td>
</tr>
<tr>
<td>Gastrointestinal Disorders</td>
<td>166,384</td>
<td>8.59</td>
<td>101,662</td>
</tr>
<tr>
<td>Glaucoma</td>
<td>17,089</td>
<td>0.88</td>
<td>11,656</td>
</tr>
<tr>
<td>Heart Failure</td>
<td>656,499</td>
<td>33.90</td>
<td>414,256</td>
</tr>
<tr>
<td>HIV</td>
<td>2,413</td>
<td>0.12</td>
<td>1,648</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,716,012</td>
<td>88.60</td>
<td>1,067,497</td>
</tr>
<tr>
<td>Hyperparathyroidism</td>
<td>1,618</td>
<td>0.08</td>
<td>1,338</td>
</tr>
<tr>
<td>Severe Injury</td>
<td>25,815</td>
<td>1.33</td>
<td>18,163</td>
</tr>
<tr>
<td>Intestinal Diverticulitis</td>
<td>250,646</td>
<td>12.94</td>
<td>144,197</td>
</tr>
<tr>
<td>High Lipid Levels</td>
<td>1,372,612</td>
<td>70.87</td>
<td>839,466</td>
</tr>
<tr>
<td>Prior Myocardial Infarction</td>
<td>181392</td>
<td>9.37</td>
<td>117,727</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>22,030</td>
<td>1.14</td>
<td>12,022</td>
</tr>
<tr>
<td>Obstructive Sleep Apnea</td>
<td>159,762</td>
<td>8.25</td>
<td>90,563</td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td>1,103,702</td>
<td>56.99</td>
<td>668,765</td>
</tr>
<tr>
<td>Other IHD</td>
<td>920,758</td>
<td>47.54</td>
<td>562,999</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>27,250</td>
<td>1.41</td>
<td>16,952</td>
</tr>
<tr>
<td>Prior Pneumonia</td>
<td>355,215</td>
<td>18.34</td>
<td>212,012</td>
</tr>
<tr>
<td>Psychosis</td>
<td>127,650</td>
<td>6.59</td>
<td>90,919</td>
</tr>
<tr>
<td>PVD</td>
<td>467,004</td>
<td>24.11</td>
<td>297,114</td>
</tr>
<tr>
<td>Renal Insufficiency</td>
<td>335,281</td>
<td>17.31</td>
<td>218,106</td>
</tr>
<tr>
<td>Mental Retardation</td>
<td>969</td>
<td>0.05</td>
<td>705</td>
</tr>
<tr>
<td>Prior Self Harm</td>
<td>2,402</td>
<td>0.12</td>
<td>1,860</td>
</tr>
<tr>
<td>Sleep Disorder</td>
<td>310,840</td>
<td>16.05</td>
<td>171,820</td>
</tr>
<tr>
<td>Smoker</td>
<td>449,206</td>
<td>23.19</td>
<td>266,602</td>
</tr>
<tr>
<td>Prior Stroke</td>
<td>482,127</td>
<td>24.89</td>
<td>309,414</td>
</tr>
<tr>
<td>Prior Transient Ischemic Attack</td>
<td>172,988</td>
<td>8.93</td>
<td>110,972</td>
</tr>
<tr>
<td>Ventricular Arrhythmia</td>
<td>109,956</td>
<td>5.68</td>
<td>68,904</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>32,822</td>
<td>1.69</td>
<td>19,792</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>499,245</td>
<td>25.78</td>
<td>303,785</td>
</tr>
</tbody>
</table>