Title:

Fastest may not be the best: differential and individual-specific immediate effects of gait speed on biomechanical variables post-stroke

Authors:

Michael C. Rosenberg¹, Hannah Christianson², Justin Liu², Vincent Santucci², Payton Sims², Alex Schilder², Laura Zajac-Cox², Taniel S. Winner¹, Lena H. Ting¹, Trisha M. Kesar²,³

¹Department of Biomedical Engineering, Emory University & Georgia Institute of Technology, Atlanta, GA, USA
²Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
³Center for Physical Therapy and Movement Science, Emory University, Atlanta, GA
ABSTRACT
Background: A common perspective in post-stroke gait training is that walking at the fastest safe speed maximizes the quality of gait biomechanics, with limited detrimental effects on compensatory biomechanics and inter-limb asymmetry. This fastest is best perspective is highly relevant to treadmill training paradigms, as mass high-intensity stepping practice with high-quality biomechanics can improve walking function and reinforce desirable gait patterns. However, it is unclear if walking at the fastest safe speed maximizes the quality of (i.e., optimizes) post-stroke gait biomechanics across variables, individuals, and walking function levels, or if there exists a significant cost (i.e., benefit lost) of walking at the fastest speed when fastest is not optimal.

Methods: Here, we determined if walking at the fastest speed optimized 16 biomechanical magnitude and inter-limb asymmetry variables, in 14 low- (n=7) and high-functioning (n=7) stroke survivors. Participants walked at six speeds ranging from their self-selected to fastest safe speed. To characterize the relative benefit of optimizing, rather than maximizing, gait speed for each variable, we compared the biomechanical cost (i.e., immediate speed-induced change versus the self-selected speed) of walking at the fastest versus the optimal speed. Finally, we used linear regression to characterize how each variable’s quality changed with absolute speed.

Results: Across speeds, 50% of magnitude and 17% of asymmetry variables were optimized at the fastest speed, but which variables were optimized differed between participants. Compared to walking at the optimal speed for each variable, the fastest speed elicited large biomechanical costs for some inter-limb asymmetry variables (difference in Cohen’s $d=0.1$-0.9). Both low- and high-function subgroups exhibited significant positive correlations between walking speed and paretic-leg trailing limb angle, peak ankle moment, and peak hip and ankle power magnitudes (all $p<0.001$), though the magnitude of changes in some variables differed between groups. Changes in inter-limb asymmetry were highly variable, even within-groups.

Conclusions: These results refine the perspective that fastest is best, showing that the training speeds that maximize gait quality may not be the fastest for all individuals and biomechanical variables. Individual-specific stroke gait quality metrics encompassing multiple biomechanical variables are needed to guide gait speed optimization for precision rehabilitation.

KEYWORDS
Biomechanics, gait rehabilitation, walking speed, interindividual variability, motor impairments, stroke, treadmill training
A common perspective in post-stroke gait rehabilitation is that mass stepping practice at the fastest safe speed maximizes the training-induced improvements in walking function without compromising gait quality [1-3]. Clinical practice guidelines support high-intensity treadmill training to improve overground walking function [4]. Treadmill training provides a safe and predictable environment in which physical therapists can modulate gait speed to promote high-quality gait biomechanics [1, 2, 4]. However, it remains unclear if gait training at faster speeds optimizes the quality of gait biomechanics across all individuals, for all biomechanical variables, and for individuals with different levels of baseline walking function. Since complex and individual-specific gait impairments post-stroke may lead to heterogeneous changes in biomechanics with walking speed, training at the fastest speed may not always maximize the quality of gait biomechanics [5]. Given the importance of gait speed in quantifying post-stroke walking function and community participation, as well as being a key training parameter during rehabilitation, refining our understanding of the relationships between gait speed and biomechanics may inform strategies to personalize gait training speed to optimize (i.e., maximally improve) gait biomechanics and walking function [6-8].

Prior studies typically compared a small number of gait speeds, limiting our ability to identify sub-maximal speeds that optimize gait biomechanics post-stroke [1, 3, 9]. Multiple studies have reported that walking faster than the individual’s self-selected (SS) gait speed improves post-stroke gait deficits, such as paretic push-off and ankle power, without increasing reliance on compensatory mechanisms or increasing inter-limb asymmetry [1, 3, 4, 9, 10]. For example, Lamontagne and Fung (2004) reported improvements in kinematics and muscle activity as well as reductions in inter-limb asymmetry for some temporal variables when walking at participants’ fastest safe speed compared to the self-selected (SS) speed [1]. Similarly, Jonkers and colleagues (2009) found improvements in hip and knee power when walking at the fastest safe speed compared to the SS speed [9]. However, it is not known whether intermediate speeds would further improve biomechanics. Tyrell and colleagues (2011) provided greater resolution into the biomechanical impacts of gait speed by evaluating changes in 8 biomechanical variables across four gait speeds in relatively high-functioning stroke survivors (speeds 0.3-1.0 m/s) [3]. However, the proportion of participants for whom the fastest speed was best was not investigated. Evaluating a wider range of speeds and determining the proportion of participants whose biomechanics are optimized at the fastest speed will provide a refined perspective on the optimality of training at faster speeds.

An additional challenge to personalizing gait training speeds is that a single speed may optimize only a subset of biomechanical variables. The complexity of post-stroke gait dysfunction is not fully captured by singular variables; improving the quality of a single variable may not correspond to improvements in the quality of other important biomechanical variables. Key biomechanical deficits such as reduced paretic push-off and reduced ankle moment and power generation during the stance phase of gait are seen in many stroke survivors and have been targeted by rehabilitation interventions [11-13]. Further, swing-phase hip, knee, and ankle flexion deficits can result in increased fall risk due to poor ground clearance [14]. These deficits may be compensated for by strategies from proximal joints, such as using pelvic hiking and circumduction [5, 9] or relying on the non-paretic leg to increase propulsion [11]. In addition to compensations, substantial individual differences in gait coordination can underlie similar values of clinical and time-based metrics of gait function [3, 9]. Gait speed is a prime example: speed increases may be achieved by increasing joint powers in the paretic or non-paretic leg and in either the hip or ankle, all of which have been observed in stroke survivors [9, 15]. Walking at faster speeds may, therefore, improve the quality of some biomechanical variables while decreasing the quality of others. As even small changes in gait biomechanics may have substantial impacts on gait stability, efficiency, and function, we posit that quantifying multidimensional changes in biomechanics is critical for optimizing gait training speeds [16-18].

While prior studies identified a range of biomechanical variables that were optimized at the fastest speed, no study has comprehensively investigated the tradeoffs between multi-joint changes in gait biomechanics,
compensations from proximal joints such as the pelvis and hip, and inter-limb asymmetry [1, 3, 9]. Multiple studies reported the immediate effects of speed on spatiotemporal variables, joint kinematics, moments, powers, and muscle activity in the paretic and non-paretic legs [1, 3, 9, 10, 14], but only Tyrell and colleagues (2004) tested the effects of speed on inter-limb step length asymmetry [3]. Increasing speed improved (i.e., decreased) step length asymmetry, though it is unclear if the inter-limb asymmetry of kinematic or kinetic variables also improved. Jonkers and colleagues showed that improvements (i.e., increases) in paretic-limb hip power at faster gait speeds were accompanied by even greater increases in non-paretic hip power [9]. In this case, inter-limb asymmetry may degrade (i.e., increase). Therefore, gains in the magnitude of some biomechanical variables may come at the cost of degradation in others. In this case, walking at faster speeds would incur a biomechanical cost – a benefit lost – compared to walking at a slower, “optimal” speed. Quantifying which variables are optimized at sub-maximal versus the fastest speeds will provide a framework for researchers and clinicians to objectively weigh the tradeoffs between changes in different biomechanical variables with walking speed.

Changes in post-stroke gait biomechanics with speed likely depend on each individual’s walking function level, often characterized by baseline SS speed [1, 9, 19]. Lower-functioning individuals are often defined as those who walk slower than speeds required for community ambulation [1, 9, 19]. Stroke survivors with more severe impairments may use distinct biomechanical strategies to modulate gait speed. For example, high-functioning stroke survivors exhibit changes in hip flexion and ankle plantarflexion power, while low-functioning stroke survivors struggle to modulate joint power generation at faster speeds [9]. This finding highlights the possibility that changes in biomechanics with speed depend on walking function level, and that this relationship may be specific to each variable. However, prior studies have not quantified the immediate effects of function level on gait biomechanics across more than 2 speeds [3, 9, 10]. A better understanding of the effects of speed and walking function level on changes in gait biomechanics is needed to guide personalization of speed-based gait rehabilitation.

Here, we tested the hypothesis that different post-stroke biomechanical gait variables are optimized at different gait speeds and vary across individuals and function levels. We build upon prior studies by analyzing post-stroke gait biomechanics (paretic leg kinematics and kinetics, compensations, inter-limb asymmetry) at 6 different speeds, ranging from SS to the fastest safe speed, in high- (> 0.4 m/s) and low-functioning (≤ 0.4 m/s) stroke survivors. We identified gait speeds that maximized the quality of (i.e., optimized) 16 biomechanical magnitude, compensatory, and inter-limb asymmetry variables for each individual and variable. To further quantify the potential importance of optimizing gait speed, we characterized the biomechanical cost (i.e., the potential loss of gait quality) of training at the fastest gait speed rather than the optimal speed for each variable. Finally, we characterized the immediate effect of speed and walking function level on changes in each of the 16 biomechanical variables. We predicted that the quality of paretic-leg biomechanical magnitude variables and inter-limb asymmetry would be maximized at different speeds, across individuals and function levels.

METHODS
Fourteen post-stroke individuals (4 females; 60 ± 11 years; 41 ± 32 months post-stroke; Table 1) participated in one session of treadmill-based gait analysis. Study procedures were approved by the Emory University Institutional Review Board and all participants provided written informed consent. Inclusion criteria included >6 months post-stroke, the ability to walk on a treadmill without an orthotic device for 1-minute, and the ability to communicate with investigators. Exclusion criteria included neurologic diagnosis other than stroke, hemi-neglect, orthopedic conditions limiting walking, and cerebellar dysfunction. Before gait analysis, a clinical evaluation comprising standard measures of lower limb sensorimotor impairment and function (e.g., Fugl-Meyer score, Berg Balance score) was conducted by a clinician (Table 1).
Table 1: Participant demographics.

ST01	M	[50-55]	7	L	15	0.25	0.45
ST02	M	[45-50]	78	R	17	0.30	0.60
ST03	F	[55-60]	64	L	18	0.35	0.50
ST04	M	[70-75]	106	R	22	0.35	0.55
ST05	M	[55-60]	46	L	23	0.37	0.47
ST06	M	[55-60]	75	L	14	0.38	0.53
ST07	M	[70-75]	8	L	22	0.40	0.70
ST08	F	[70-75]	24	L	26	0.45	0.70
ST09	M	[35-40]	35	R	20	0.45	0.80
ST10	M	[55-60]	15	R	23	0.55	0.80
ST11	F	[65-70]	65	L	20	0.60	0.85
ST12	M	[50-55]	27	R	27	0.70	1.15
ST13	F	[65-70]	19	L	25	0.75	0.95
ST14	M	[55-60]	6	L	26	0.90	1.20

*Summary statistics show the average and standard deviation across subgroups and across all participants.

Experimental setup

Participants walked on a split-belt instrumented treadmill (Bertec Corp., Ohio, USA) to enable collection of ground reaction force (GRF) data independently for each limb. Reflective markers were attached to the trunk, pelvis, and bilateral thigh, shank, and foot segments [20]. Marker trajectories were recorded using a 7-camera motion capture system (Vicon Inc., Oxford, UK). During all walking trials, for safety, participants held onto a front handrail and wore an overhead safety harness without body-weight support. Participants were instructed to maintain a light and consistent handrail grip for all walking trials; if investigators suspected a change in handrail grip or excessive reliance on the handrail, the participant was given feedback and, if needed, the trial was restarted.

Determination of walking speeds

After a 30-60 second trial to acclimatize to the treadmill, each participant’s self-selected (SS) walking speed was determined by slowly increasing the belt speed until the participant reported their comfortable walking speed. Next, the fastest safe walking speed was determined by gradually increasing the treadmill speed above their SS speed until either the participant reported the fastest speed that they could safely walk for 30 seconds, or the investigators deemed it unsafe to increase the speed further. Next, four intermediate speeds were computed at equal increments between the SS and fastest walking speeds, resulting in a total of six evenly distributed speeds spanning each participant’s walking capacity. Data were collected during 15-second treadmill walking trials at each of the six speeds, in increasing order from the SS speed to the fastest speed. Brief 1-2 minute standing rest breaks were provided between walking trials as needed, to prevent fatigue. Based on SS speed, participants were stratified into low- (SS speed ≤ 0.4 m/s) and high-functioning (SS speed > 0.4 m/s) subgroups, similar to prior studies [1, 9].
Data processing
All GRFs and joint kinematics, and joint moments and powers were processed in Visual 3D (C-Motion Inc., Maryland, USA). At each gait speed, dependent variable magnitudes were computed for the paretic and non-paretic limbs. For each variable, the average value across all gait cycles during each trial was used for each speed.

Dependent variables
To conduct a comprehensive analysis of the immediate effects of speed on post-stroke gait biomechanics, a total of 16 dependent variables included the magnitude of paretic-leg kinematics, kinetics and gait compensations, and inter-limb asymmetries. Paretic leg magnitude variables included: Peak paretic propulsion was normalized to body mass and was calculated as the peak value of the anteriorly-directed GRF during the terminal double-support phase of the limb [21, 22]. Trailing limb angle (TLA) was calculated as the maximum angle between the vertical axis of the laboratory and a line joining the greater trochanter and fifth metatarsal head marker [6, 23, 24]. Peak ankle moment and peak ankle power were calculated during the stance phase of gait. Peak hip power was defined as the peak hip flexor power generation power during the pre-swing and initial swing phase of gait. Peak moments and powers were normalized to body mass [9, 21]. Additionally, ankle angle at initial contact (IC) was calculated. We included two gait compensation variables: hip circumduction and pelvic hiking of the paretic leg. Paretic leg circumduction was calculated as the maximum frontal plane deviation of the bottom heel marker during stance phase versus the subsequent swing phase. Pelvic hiking was calculated as the maximum frontal plane angle between the pelvis during a static standing calibration trial and during the swing phase of the paretic leg [3]. Inter-limb asymmetry variables included the inter-limb asymmetry of each magnitude and compensatory variable, calculated as the difference between the non-paretic and paretic limb magnitudes [25].

Statistical analyses
Characterizing the immediate effects of speed on post-stroke gait biomechanics
To confirm that treadmill speed had significant effects on post-stroke gait biomechanics, we conducted repeated-measures Analyses of Variance (RM-ANOVAs; $\alpha = 0.05$) to test for immediate effects of treadmill speed on each dependent variable separately for the low- and high-functioning subgroups. This approach is consistent with prior literature and served as a preliminary characterization and replication of the immediate effects of speed on gait biomechanics [1, 3]. For each variable, we report percent changes between the SS and fastest speeds, as well as the number of participants who exhibited changes in the same direction between the SS and fastest speeds.

Determining if faster speeds result in improved gait biomechanics across individuals
We defined the optimal speed for each biomechanical variable within each individual. Specifically, optimal speeds were defined as the speeds that either maximized a paretic-leg magnitude variable, minimized the magnitude of a paretic-leg compensation variable, or minimized a variable’s inter-limb asymmetry. To determine the extent to which the fastest speeds optimized each gait variable, we computed the percentage of variables that were optimized at each speed for each individual. Percentages were computed separately for the 8 magnitude variables (including compensations) and 8 inter-limb asymmetry variables. If faster speeds are better for maximizing overall gait quality, then the fastest speed should optimize 100% of variables for all participants. We computed the average change in each biomechanical variable at the fastest speed relative to the SS speed as $\Delta_{fast-SS}$.

Characterizing the biomechanical cost of walking at sub-optimal speeds
For each of the dependent variables, we computed an individual-specific biomechanical cost (Δd) of training at the fastest rather than the optimal speed as the difference in the immediate effect ($d = $Cohen’s d vs. the SS speed) of walking at the fastest versus the optimal speed, identified for that participant and variable [26].
walking at the fastest speed resulted in worse biomechanical quality of a variable (e.g., reduced paretic leg propulsion, increased propulsive asymmetry) compared to that at the optimal speed, then the fastest speed was considered to incur a biomechanical cost. If the optimal speed was the fastest speed for a variable and individual, the biomechanical cost would be zero. If the fastest speed maximized a variable’s biomechanical quality, then the fastest and optimal speeds would be identical for that variable. We used Wilcoxon signed-rank tests to test for differences in biomechanical costs separately for magnitude and asymmetry variables.

Identifying gait biomechanics variables associated with modulation of absolute walking speed

Based on significant effects of relative speed on biomechanics in the RM-ANOVA, we used multivariate regression to characterize the effects of changes in absolute trial walking speed (i.e., absolute speed for each trial relative to SS speed; henceforth “trial speed”), SS speed, and their interaction on changes in each biomechanical variable compared to walking at the SS speed. Our premise for this analysis is that changes in gait biomechanics depend on both absolute trial speed during each trial and baseline walking function [9, 15]. The regression equation is shown in Equation (1): change in a biomechanical variable (ΔY) at each speed is estimated as a function of change in trial speed (ΔSpeed), SS speed (SpeedSS), their interaction (SpeedSS × ΔSpeed), and an error term (ε). Coefficients α, β, and γ that are significantly different from zero according to Wald Tests, suggest that changes in the biomechanical variable are associated with changes in speed, SS speed, or their interaction, respectively. Because SS speed is not categorical, we report regression results using an adjusted speed as a weighted combination of trial speed, SS speed, and their interaction. We report significant effects of changes in trial speed, SS speed, and their interaction.

$$\Delta Y = a \Delta \text{Speed} + \beta \text{Speed}_{SS} + \gamma (\text{Speed}_{SS} \times \Delta \text{Speed}) + \epsilon$$

When speed was identified as a significant predictor variable during regression, we used independent-samples t-tests to identify differences in speed-induced changes in gait biomechanics at the SS versus fastest speed between the low- and high-functioning subgroups. When either SS speed or the interaction term was identified as a significant predictor of speed-induced changes in a biomechanical variable, we used univariate linear regression to estimate the immediate effects of walking speed on changes in the variable (vs. SS speed) separately in the low- (SS speed ≤ 0.4 m/s) and high-functioning subgroups, with 7 participants in each subgroup [9]. All tests were conducted using MATLAB 2021b (Mathworks Ltd, Natick, USA) with an unadjusted significance level of α = 0.05. For RM-ANOVA, paired t-test, and univariate regression analyses, we adjusted the significance level (αSidak) for multiple comparisons using Holm-Sidak stepdown corrections [27].

RESULTS

Speed altered biomechanics differentially in low- and high-functioning subgroups

Across the high- and low-functioning stroke subgroups, walking speed modulated 75% of the biomechanical magnitude and compensatory variables and 43% of the asymmetry variables across participants (Figure 1A; the direction of improvements in each biomechanical variable is denoted by a green arrow, yellow stars denote variables that were modulated by speed, see Table 2 for statistical outcomes). Paretic-limb AGRF magnitude increased by 56 ± 44% (average across participants) between the SS and fastest speeds only in the high-functioning subgroup (RM-ANOVA, p < 0.001; αSidak = 0.006; Table 2). However, peak TLA, ankle moment, hip power, and ankle power increased by 24-134% with speed in both subgroups (all p < 0.001; αSidak < 0.006). Conversely, compensatory circumduction increased at faster speeds, indicating a detrimental effect of speed in only the high-functioning (69 ± 86%; p < 0.001; αSidak = 0.006; Figure 1A & B; blue bars and lines) subgroup after correction for multiple comparisons. Pelvic hiking trended toward increases (i.e., degradations) with speed
in the low-functioning (117 ± 365%; p = 0.014; \(\alpha_{\text{Sidak}} = 0.005 \)) but not high-functioning subgroup (10 ± 33%; p = 0.625; \(\alpha_{\text{Sidak}} = 0.006 \)).

Walking at faster speeds modulated inter-limb asymmetry differentially between subgroups. For example, only the low-functioning subgroup trended towards increases in peak AGRF asymmetry (142 ± 254%; p = 0.016; \(\alpha_{\text{Sidak}} = 0.005 \)) with speed (Figure 1A). Effects of speed on inter-limb asymmetry of joint powers and moments also differed between the high- and low-functioning subgroups. For example, ankle moment asymmetry increased \(\text{(i.e., worsened)} \) only in the high-functioning subgroup (50 ± 75%; p < 0.001; \(\alpha_{\text{Sidak}} = 0.006 \)), while ankle power asymmetry increased only in the low-functioning subgroup (110 ± 124%; p < 0.001; \(\alpha_{\text{Sidak}} = 0.005 \)).

However, there was substantial inter-individual variability in each group for inter-limb asymmetry variables; not all individuals followed group trends (Figure 1A & C). For example, compared to the SS speed, the fastest speed increased peak hip power asymmetry in 4 of 7 low-functioning participants and 3 of 7 high-functioning participants (Figure 1C). This contrasts with magnitude variables, in which all participants in both subgroups increased TLA, hip and ankle power, and ankle moments at the fast speed compared to the SS speed. Similarly, within individuals, not all asymmetry variables changed in the same direction: 47 ± 14% of each participant’s asymmetry variables increased between the SS and fastest speeds. For comparison, 82 ± 12% of magnitude variables changed in the same direction.
Figure 1: Changes in biomechanical variables with speed in low- and high-functioning stroke survivors.

A) Average (thick lines) and individual participants (thin lines) magnitudes (top) and inter-limb asymmetries (bottom) for biomechanical variables across the six gait speeds, ranging from the SS to fastest (Fast) speeds. Averages for low- (black) and high- (blue; SS speed > 0.4 m/s) functioning subgroups of participants, are shown to highlight potential group differences in changes in biomechanics with speed. Green arrows along the vertical axis denote the direction of improved biomechanical quality for each gait variable. Stars denote variables and groups that exhibited significant effects of speed according to the RM-ANOVA after correction for multiple comparisons.

B) Average (standard error of the mean; SEM) percent change in each biomechanical magnitude (top) and asymmetry (bottom) variable at the fast speed relative to the SS speed, grouped by function level. The SEM is shown for clarity and was computed with n = 7 for each group.

C) The number of participants in each subgroup (7 per group) that exhibited an increase in each variable between the SS and fastest speeds. If all participants changed a variable in the same direction, the corresponding bar would have a value of 7.
Table 2: RM-ANOVA results demonstrating within-group immediate effects of trial speed on changes in biomechanical variables.

<table>
<thead>
<tr>
<th></th>
<th>Low-functioning</th>
<th>High-functioning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>p</td>
</tr>
<tr>
<td>Push-off (AGRF)</td>
<td>2.2</td>
<td>0.081</td>
</tr>
<tr>
<td>TLA</td>
<td>12.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Hip power</td>
<td>19.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Ankle power</td>
<td>22.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Ankle moment</td>
<td>19.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Ankle angle at IC</td>
<td>2.3</td>
<td>0.067</td>
</tr>
<tr>
<td>Circumduction</td>
<td>2.6</td>
<td>0.046</td>
</tr>
<tr>
<td>Pelvic hiking</td>
<td>3.5</td>
<td>0.014</td>
</tr>
<tr>
<td>Push-off (AGRF)</td>
<td>3.3</td>
<td>0.016</td>
</tr>
<tr>
<td>TLA</td>
<td>1.5</td>
<td>0.234</td>
</tr>
<tr>
<td>Hip power</td>
<td>2.0</td>
<td>0.102</td>
</tr>
<tr>
<td>Ankle power</td>
<td>8.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Ankle moment</td>
<td>0.7</td>
<td>0.606</td>
</tr>
<tr>
<td>Ankle angle at IC</td>
<td>1.2</td>
<td>0.312</td>
</tr>
<tr>
<td>Circumduction</td>
<td>3.0</td>
<td>0.024</td>
</tr>
<tr>
<td>Pelvic hiking</td>
<td>2.7</td>
<td>0.042</td>
</tr>
</tbody>
</table>

The fastest walking speed did not optimize all biomechanical variables across participants

Across all participants, not all gait variables were optimized at the fastest speed. When looking at all magnitude variables, only 50% were maximized (i.e., optimized) at the fastest speed, with 14% of variables maximized at the SS speed (Figure 2A, brown bars). Conversely, only 17% of inter-limb asymmetry variables were optimized at the fastest speed, whereas 36% were optimized at the SS speed (Figure 2A, cyan bars). Magnitude variables were optimized at the fastest speed in more participants than were inter-limb asymmetry variables (Figure 2B). For example, at the fastest speed, paretic-limb AGRF magnitude (change vs. SS speed = Δ_{Fast−SS} = 0.2 ± 0.2 N/kg) was optimized in 71% of participants but AGRF asymmetry (Δ_{Fast−SS} = -0.2 ± 0.3 N/kg) was optimized in only 21% of participants. Compensatory circumduction and pelvic hiking magnitudes and asymmetries were optimized at the fastest speed for less than 21% of participants and exhibited no difference between magnitude and asymmetry.
Figure 2: The effects of walking at the fastest speed compared to the sub-maximal speeds. A) The percentage of participants whose biomechanics were optimized across the eight magnitude (orange) and eight asymmetry (cyan) variables. If training at the fastest speed was best for all variables (gray), the percent optimized at the fastest speed would be 100%. B) The percent of participants for whom each magnitude and asymmetry variable was optimized at the fastest speed. If the fastest speed always optimized a variable, it would have a value of 100%. C) Effect sizes (Cohen’s d) of each variable across participants for magnitude and asymmetry variables at the fastest (Fast) and optimal (Opt) speeds. Boxplots show the distribution of effect sizes across the eight biomechanical variables. Each gray dot corresponds to one variable (8 per box). Bars displaying p-values denote the probability of differences in immediate effects of training at the fastest rather than the optimal speed (Wilcoxon Signed-Rank test). Effect sizes are oriented such that positive effects imply improved biomechanical quality.

When the fastest speed is not best, it can incur substantial biomechanical costs

Compared to walking at the SS speed, the fastest and optimal speeds had similar immediate desirable effects (Cohen’s d across individuals) on magnitude variables, but the fastest speed had detrimental immediate effects on inter-limb asymmetry variables (Figure 2C; positive values indicate a desirable immediate effect). Magnitude variables were typically maximized, and thus optimal, at the fastest speed (Figure 2A), such that the median immediate effect sizes were similar at both the optimal and fastest speeds ($d = 0.7$; Figure 2C). Consequently, the median biomechanical cost of walking at the fastest speed, rather than the optimal speed, was not different from zero for magnitude variables (median $\Delta d = 0.01$).

Across inter-limb asymmetry variables, there was a small positive immediate effect (i.e., desirable; decreased asymmetry) of walking at the optimal speed, versus the SS speed (median $d = 0.1$; Figure 2C). Conversely, when walking at the fastest speed compared to the SS speed, inter-limb asymmetry increased, resulting in a moderate negative effect (median $d = 0.4$). This difference in immediate effects of walking at the fastest, rather than the optimal, speed corresponded to a small-to-moderate median biomechanical cost for inter-limb asymmetry across variables ($\Delta d = 0.4$, $p = 0.008$). The biomechanical cost of inter-limb asymmetry variables was largest in AGRF ($\Delta d = 0.9$, $\Delta_{fast-opt} = 0.2$ N/kg), hip power ($\Delta d = 0.6$, $\Delta_{fast-opt} = 0.1$ W/kg), and ankle power ($\Delta d = 0.7$, $\Delta_{fast-opt} = 0.3$ W/kg; Figure 2C).

Only changes in the magnitude variables were explained by changes in trial speed and SS speed

Across all participants, changes in magnitude, but not compensatory or inter-limb asymmetry variables were explained by a linear combination of changes in trial speed (vs. the SS speed) and SS speed. For magnitude variables, changes in trial speed, SS speed, and their interaction explained 44-80% of the variance in changes in AGRF, TLA, ankle moment, hip power, and ankle power (Figure 3A, C & E). Changes in trial speed were associated with changes in most magnitude variables: TLA ($p < 0.001$, $r^2 = 0.62$), hip power ($p = 0.009$, $r^2 = 0.66$), ankle power ($p < 0.001$, $r^2 = 0.80$), ankle moment ($p < 0.001$, $r^2 = 0.79$). Only peak ankle angle at IC exhibited a weak negative association with changes in speed ($p < 0.001$, $r^2 = 0.25$). SS speed was not associated with changes in magnitude variables. However, the interaction between changes in trial speed and SS speed was significant for changes in all magnitude variables (all $p < 0.002$; Table 3). Variance in neither compensatory circumduction nor pelvic hiking magnitudes was accurately explained by changes in trial speed and SS speed ($r^2 < 0.03$; Figure 3E).

Changes in inter-limb asymmetry variables were not associated with changes in trial speed and SS speed ($r^2 < 0.21$; Figure 3E). Specifically, the linear model failed to capture individual differences in the direction of changes in inter-limb asymmetry (Figure 3B & D). For example, some participants’ peak AGRF asymmetry increased while others decreased at faster speeds, such that a single linear fit did not capture the variability in the data across participants (Figure 3B). While change in trial speed and the interaction between trial speed and
SS speed were significant predictors of changes in AGRF (p < 0.020, \(r^2 = 0.09 \)) and ankle power (p < 0.020, \(r^2 = 0.04 \)) asymmetry, they explained less than 10% of the variance in the data (Table 3; Figure 3E).

Figure 3: Biomechanical variables regressed against a combination of SS speed, trial speed, and their interaction. A-D) Multivariate regression results showing the estimate (solid line) and 95% confidence interval (dashed lines) of each fit. Samples (gray dots) correspond to a participant and speed. The horizontal axis (Adjusted speed) corresponds to a weighted combination of trial speed, SS speed, and their interaction used in the multivariate regression analysis. A) AGRF magnitude. B) TLA magnitude. C) Peak hip power magnitude. D) Ankle moment asymmetry. E) Coefficient of determination (R\(^2\)) values for magnitude (orange) and asymmetry (cyan) biomechanical variables.

Table 3: Results of within-group linear regression and independent-samples t-tests.

<table>
<thead>
<tr>
<th>Magnitude variables</th>
<th>Within-group effects of trial speed on speed-induced changes</th>
<th>Between-group effects of function level (Fastest – SS speed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low-functioning slope</td>
<td>p</td>
</tr>
<tr>
<td>Push-off (AGRF)‡</td>
<td>0.5</td>
<td><0.001</td>
</tr>
<tr>
<td>TLA*‡</td>
<td>20.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Hip power*‡</td>
<td>0.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Ankle power*‡</td>
<td>2.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Ankle moment*‡</td>
<td>1.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Ankle angle at IC‡</td>
<td>-7.9</td>
<td>0.001</td>
</tr>
<tr>
<td>Circumduction*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pelvic hiking*‡</td>
<td>5.1 deg.s/m</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Push-off (AGRF)‡</td>
<td>-1.0</td>
<td>0.004</td>
</tr>
<tr>
<td>TLA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hip power</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ankle power*‡</td>
<td>-1.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Ankle moment</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Within-group effects of trial speed: Univariate linear regression slopes quantify immediate effects of changes in trial speed on changes in each biomechanical variable.

Between-group effects of function level: Independent-samples t-tests test for between-group differences in changes in biomechanical variables between the SS and fastest speeds. Between-group effect sizes (d; Cohen’s d) are reported.

*Significant effect of trial speed on change in variable vs. SS speed (α = 0.05)
+Significant effect of SS speed on change in variable vs. SS speed (α = 0.05)
+Significant effect of trial speed × SS speed on change in variable vs. SS speed (α = 0.05)

Low- and high-functioning stroke survivors exhibited different changes in biomechanics with trial speed

Changes in trial speed and function level independently impacted changes in different biomechanical variables in the low- and high-functioning subgroups. For variables that exhibited a significant effect of change in trial speed (asterisks in Table 3), only changes in ankle power magnitude between the fastest and SS speeds approached a significant difference between the low- and high-functioning subgroups before correction for multiple comparisons (d_{high-low} = 1.1, p = 0.053; α_{Sidak} = 0.003; Table 3).

For variables with significant effects of SS speed or the interaction between trial speed and SS speed (daggers and double daggers in Table 3), both subgroups exhibited positive associations between trial speed and most magnitude variables: AGRF, TLA, hip power, ankle power, ankle moment magnitudes (all p < 0.001; α_{Sidak} = 0.025; Table 3). However, changes in some variables per unit change in trial speed differed between groups. For example, the low-functioning subgroup exhibited smaller changes in AGRF magnitude (slope = 0.5 N∙s/kg∙m) and larger changes in TLA with speed (slope = 20.2 deg∙s/m) than did the high-functioning subgroup (slopes = 1.1 N∙s/kg∙m and 15.8 deg∙s/m, respectively; Figure 4C). Additionally, only the low-functioning subgroup exhibited a significant effect of trial speed on ankle angle at IC (slope = -7.9 deg∙s/m, p = 0.001; α_{Sidak} = 0.050) and pelvic hiking (slope = 5.1 deg∙s/m, p = 0.002; α_{Sidak} = 0.050).

Subgroup differences extended to inter-limb asymmetry variables. For example, AGRF asymmetry appeared to decrease more with trial speed in the low- (slope = -1.0 N∙s/kg∙m, p = 0.004; α_{Sidak} = 0.050) than the high-functioning (slope = -0.6 N∙s/kg∙m, p = 0.002; α_{Sidak} = 0.025) subgroup (Figure 4B). However, ankle power asymmetry exhibited similar effects of speed in the low- (slope = -1.5 J/kg∙m, p < 0.001; α_{Sidak} = 0.050) and high-functioning (slope = -1.5 J/kg∙m, p < 0.001; α_{Sidak} = 0.025) subgroups (Figure 4D).
Figure 4: Changes in biomechanical variables regressed against changes in trial speed for each subgroup. Subplots show changes in biomechanical variables for which a significant effect of SS speed was identified during multivariate regression analysis. The low- (black) and high-functioning (blue) subgroups were analyzed separately. A) Peak AGRF magnitude, B) Peak AGRF asymmetry, C) TLA magnitude, and D) Ankle power asymmetry.

DISCUSSION

Our results refine the perspective that post-stroke gait training at faster speeds improves biomechanical quality, instead suggesting that selecting optimal gait training speeds may require balancing tradeoffs between attaining faster speeds and maximizing the quality of multiple biomechanical variables. Our results show that walking at speeds faster than SS can improve the quality of gait biomechanics, but the fastest safe speed does not maximize biomechanical quality for all variables and all participants. As speed increases, there is a tradeoff between improvements in the magnitude of biomechanical variables and increases in inter-limb asymmetry, including peak paretic-limb propulsion asymmetry and peak ankle power asymmetry. However, changes in asymmetry with speed are heterogeneous and are not well described by SS walking speed. Considering inter-limb asymmetry variables during gait speed selection is critical because walking at the fastest, rather than the optimal speed incurred substantial biomechanical costs in these variables. Accounting for tradeoffs between gait speed, and the magnitude of biomechanical output, compensations, and inter-limb asymmetry may improve our ability to select personalized post-stroke gait training speeds that maximize gait quality across biomechanical variables.

Evaluating biomechanical quality across more speeds than prior studies enabled us to identify intermediate speeds that maximized biomechanical gait quality. Here we tested 6 speeds, compared to only 2 or 4 speeds in previous studies [1, 3, 9]. Our average speed increment was 0.05 m/s, compared to 0.13 m/s in a study with 4 speeds [3] and 0.34-0.55 m/s in studies with 2 speeds [1, 9]. These small increments maximized our ability to
precisely detect changes in biomechanics with speed: changes in some biomechanical variables (e.g., TLA and AGRF) were smaller than the minimum detectable changes during treadmill walking [14].

Although walking faster than an individual’s SS speed generally improves biomechanical magnitude variables, the fastest safe speed is unlikely to maximize the quality of all magnitude variables. Improvements in magnitude variables at faster speeds are consistent with prior studies that showed increases in TLA, hip power, and ankle power at speeds faster than SS [1, 3, 9]. Moreover, approximately-linear changes in magnitude variables with speed, support that faster speeds, if safe, could further improve these variables for some individuals. Increases in these magnitude variables are unsurprising, as faster speeds are often achieved by increasing peak propulsion and joint powers [15, 24]. However, no magnitude variables were optimized at the fastest speed for all individuals. This is consistent with the observation that multiple biomechanical strategies, such as increasing hip or ankle power, can be used to achieve the same walking speed in able-bodied adults and stroke survivors [9, 15, 28-30]. Near the fastest safe speed, changes in biomechanical strategies may result in some magnitude variables plateauing or even degrading as speed increases.

Despite improvements in magnitude variables, faster speeds often had detrimental, though variable, effects on the quality of compensatory and inter-limb asymmetry variables. Our regression analyses support that walking at faster speeds may increase compensatory pelvic hiking in low-functioning stroke survivors, while faster speeds may increase circumduction in both subgroups. This relationship should be interpreted with caution due to limited regression performance for compensatory variables. However, our RM-ANOVA results also supported this conclusion before adjusting for multiple comparisons, suggesting that a larger sample size would increase the strength of these findings. These findings contrast with Tyrell and Colleagues (2011), who did not find speed effects in either compensatory variable [3]. This discrepancy may be related to differences in walking function levels between studies. In our study, increases in pelvic hiking were predominantly in the low-functioning subgroup, whereas only 2 of 20 participants in the prior study would qualify as low-functioning (SS speed ≤ 0.4 m/s).

The modulation of inter-limb asymmetry with speed differs more between individuals than do magnitude variables. Unlike most magnitude variables evaluated here, asymmetry variables do not appear to change linearly with gait speed, with inter-limb asymmetry for some variables minimized (i.e., optimized) at intermediate speeds. One recent study found similar nonlinear within-individuals changes in circumduction with speed [29]. Further, while an individual’s asymmetry can change with speed, individuals do not necessarily change asymmetry in the same direction for a single variable. Even within individuals, predicting which direction asymmetry variables will change is challenging. On average, half of the asymmetry variables for a participant would favor the non-paretic leg at faster speeds, while the other half would favor the paretic leg. Both nonlinear speed-asymmetry relationships within-individuals and between-individuals differences in these relationships may explain poor regression performance for inter-limb asymmetry variables, and may explain why prior studies did not identify effects of speed on asymmetry [1, 3]. Changes in asymmetry with speed may be influenced by heterogeneous neural and biomechanical impairments post-stroke that limit individuals’ abilities to achieve faster speeds symmetrically [5, 31, 32]. Individual-specific nonlinear analyses may be needed to better characterize the relationships between speed and inter-limb asymmetry.

Only changes in biomechanical magnitude variables with speed are well-described by low/high function level grouping or preferred (SS) walking speed. Despite differences in the sensitivity of magnitude variables to speed, low- and high-functioning stroke survivors experience similar directional effects of speed on biomechanical magnitude variables, such that faster speeds have beneficial effects on both groups. This contrasts with differential changes in gait compensations with speed in low- and high-functioning stroke survivors, discussed earlier. Motor or musculoskeletal impairments in low-functioning stroke survivors may limit their ability to achieve faster walking speeds without increasing gait compensations, similar to factors potentially driving individual-specific changes in asymmetry with speed [5, 31, 32]. Identifying group-level motor or
biomechanical factors driving gait compensations would enhance our ability to prescribe rehabilitation protocols based on walking function level.

Our results indicate that walking at faster speeds can incur substantial biomechanical costs for inter-limb asymmetry variables. Biomechanical cost is analogous to an “opportunity cost” in economics [33]. In the context of gait rehabilitation, biomechanical costs quantify the potential benefit missed or additional worsening of biomechanical quality by selecting non-optimal training parameters, such as walking speed. Here, we calculated biomechanical cost as the difference in immediate effect size between training at the optimal and fastest speeds. Our analysis of speed-related biomechanical costs refines prior studies by showing that changes in some inter-limb asymmetry variables at the fastest speed, relative to the SS speed, were substantially worse than what could be achieved if speed was optimized to minimize asymmetry [1, 3]. Variables with large biomechanical costs may be important to consider when optimizing gait training speeds to improve overall gait quality. For example, moderate-to-large biomechanical costs of joint power and AGRF asymmetry suggest that maximizing gait training speeds may miss potential improvements in the quality of these variables, even when they are not direct therapeutic targets [20]. However, we did not determine if the identified biomechanical costs correspond to clinically-meaningful differences in a variable’s quality.

Limitations
The generalizability of our results is constrained by the amount of data collected, the experimental protocol, and the variables analyzed. First, our sample size was limited, though comparable to prior studies [1, 9] and sufficient to identify variables and individuals for which the fastest speed did not maximize biomechanical quality. Second, participants walked on a treadmill, which limits comparisons to overground studies [1]. Observed changes in some variables with speed may be conservative compared to changes in overground walking: peak GRFs and joint moments are larger overground than on a treadmill [34, 35]. Third, participants walked for only 15 seconds per speed. This short trial duration reduced the risk of fatigue, but longer walking bouts would enable more precise estimates of biomechanical variables. Finally, participants could hold a handrail, which is known to alter gait and may alter changes in peak AGRFs with speed [36]. The handrail was necessary for safe walking at fast speeds and is consistent with one prior study [3], but limits comparisons to studies that did not use handrails. Quantifying how forces generated on the handrails affect changes in post-stroke biomechanics with speed may explain conflicting results between studies and between individuals in the same study.

Implications for treadmill training and future research
In the context of treadmill-based gait rehabilitation, our results indicate that training at the fastest safe speed is not always best if the goal is to improve the quality of gait biomechanics. To maximize biomechanical quality, speed should be optimized based on the biomechanical variable or variables of interest. However, improving gait speed is another important functional goal of post-stroke gait rehabilitation [4, 6]. For some stroke survivors, gait training speed selection should consider the tradeoff between the benefits of training at the fastest safe speed on community ambulation ability and its impact on biomechanical quality [37]. While we only evaluated the immediate effects of speed on biomechanical quality, evaluating such changes within or across training sessions may improve speed-induced changes in biomechanical quality. Finally, differential changes in some biomechanical variables with speed highlight the need for holistic metrics of overall gait quality. Holistic data-driven metrics that are sensitive to tradeoffs between the magnitude of biomechanical output, compensations, and inter-limb asymmetry may facilitate patient-specific optimization of gait training speeds.

CONCLUSIONS
This study refines a current perspective in post-stroke gait training – that training at the fastest safe speed maximizes biomechanical quality – by showing that walking at the fastest safe speed does not maximize biomechanical quality for all individuals and variables. When using treadmill training to elicit mass stepping
practice of high-quality biomechanics, we posit that walking speed should be optimized, not necessarily maximized, for an individual and biomechanical variable. Challenges with predicting changes in compensatory and inter-limb asymmetry variables with speed highlights the need for innovative data-driven personalized and holistic metrics quantifying biomechanical quality during gait training.

LIST OF ABBREVIATIONS
AGRF: Anterior ground reaction force
IC: Initial contact
Fast: Fastest safe speed
Opt: Optimal speed
SS: Self-selected speed
TLA: Trailing limb angle

FUNDING
Research reported in this manuscript was supported by the National Institute of Child Health and Human Development under award number F32HD108927 to MR, and R01HD095975 and K01HD079584 to TK. This work was also supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1937971 to TW. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

AUTHOR CONTRIBUTIONS
M.R. and J.L. drafted the original manuscript. M.R. performed analyses and created all figures. J.L., V.S., P.S., A.S., L.Z., and T.K. collected the data. J.L., H.C., V.S., A.S., P.S., T.W., and T.K. processed the data and performed preliminary analyses. M.R., T.K., J.L., H.C., L.Z., and L.T. interpreted the data. T.K. was involved with all aspects of the study, including design, data-collection, data-processing, analysis, interpretation, and manuscript-preparation. All co-authors contributed to critical review and revisions of the manuscript.
REFERENCES

32. Johnson RT, Bianco NA, Finley JM. Patterns of asymmetry and energy cost generated from predictive simulations of hemiparetic gait. PLOS Computational Biology. 2022;18(9):e1010466.