Interplay of physical and cognitive performance using hierarchical continuous-time dynamic modelling and a dual-task training regime in AD patients

S. Schwarck¹,²*, M. C. Voelkle³, A. Becke¹,², N. Busse¹,², W. Glanz¹,², E. Düzel¹,²**, G. Ziegler¹,²**

¹Institute of Cognitive Neurology and Dementia research, Otto-von-Guericke-University Magdeburg, Germany
²German Center of Neurodegenerative Diseases (DZNE), Magdeburg, Germany
³Institute of Psychology, Humboldt University of Berlin, Berlin, Germany

*corresponding author:

E-mail: svenja.schwarck@med.ovgu.de

** shared senior authorship

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Various longitudinal studies report positive effects of physical exercise on cognitive performance in patients with Alzheimer’s disease (AD). However, most of these studies fail to capture the dynamic nature of the change and interplay of physical fitness and cognition. To overcome this limitation, we employ a hierarchical continuous-time dynamic model to analyze data of a 24-week physical and cognitive dual-task training regime (3 sessions per week) in older adults with AD (N = 17). The model was specified with two fully connected state variables enabling bidirectional effects between physical and cognitive performance over measurement occasions. The results show that physical performance is dynamically linked to cognitive performance. In line with earlier findings, higher physical performance predicted improved memory recognition performance in terms of faster reaction times.

Keywords: Alzheimer’s disease, cardiovascular training, cognition, intervention, continuous-time modelling, longitudinal analysis, dynamic modelling, ctsem, hierarchical
Introduction

A general goal of physical and/or cognitive training is to improve performance of the trained function: This rationale is promising for the context of promoting healthy ageing or even reducing cognitive decline in pathological conditions such as Alzheimer’s disease (AD). A training is considered successful if a significant performance increase over time is established or if natural decline is delayed and more importantly if the training enables transfer to untrained tasks. In context of cognitive training Schmiedek et al. (2010) observed positive transfer effects for working memory, episodic memory, and perceptual speed in a 100-day memory training using a comprehensive session-to-session analysis in younger and older adults (1). Yet even in cognitively healthy participants, intra-individual cognitive performance is not inherently stable, but rather fluctuates from session-to-session or trial-to-trial (2–6). Intra-individual cognitive performance changes might be differentiated into two components: (A) trait changes defined by long-term (months to years) within-person modifications of the trait e.g. due to ageing or pathology that progress slowly but are relatively robust; and (B) short-term intra-individual (state) variability characterized by fast and reversible fluctuations in a person’s true score (7,8). Consequently, in contrast to actual trait changes, short-term variability is associated with systematic time-associated fluctuations in the person’s true state around the given trait value (9) and can cause quick and temporary changes within minutes or days (10). For many cognitive outcomes intra-individual variability was approximately 50% larger than the variability between persons (4).

Despite the decline of plasticity during healthy aging, numerous longitudinal cognitive training studies with old participants showed improved cognitive abilities (1,11,12). In contrast to healthy aging, neurodegenerative diseases such as AD are associated with greater impairment of cognitive performance (13). AD is a neurodegenerative disorder encompassing neuropathological changes including accumulation of amyloid plaques, neurofibrillary tangles and neuronal as well as synaptic loss resulting in macrostructural atrophy of the brain (13–15). AD is typically characterized by a progressive decline of cognitive functioning, starting with memory loss (13,16). Consequently, the vital question is whether and how cognitive decline can be counteracted in terms of prevention and interventions?

Several approaches towards effective treatments exist for patients with dementia (13) and interventions focussing on potential risk factors, such as physical inactivity, yielded promising effects in terms of prevention as well as delay of symptoms (17). Higher physical fitness across the lifespan mitigates age-related cognitive decline and reduces the risk of AD conversion (18–21). According to Hamer and Chida (2009) physical fitness reduces the AD-risk by 45% (22). In concordance, mice- and human studies suggest a neuroprotective effect of physical activity by reducing Aβ plaques, increasing hippocampal neurogenesis and improving memory performance (23–29). Several intervention-studies reported positive effects of physical exercise trainings on cognitive performance in patients with AD or MCI (20,30–34). In contrast, there are also longitudinal studies that yield no evidence for links of physical fitness and cognition in patients with dementia despite physical fitness improvements (35–39).

There are, however, several limitations of previous longitudinal training studies. Firstly, respective studies differ in numerous methodological (e.g., design, duration and type of exercise) and sample characteristics (e.g., sample size, neurological status, heterogeneity). Secondly, physical fitness as a single factor is not sufficient to explain all cognitive improvements or cognitive maintenance respectively (40). Physical fitness is not the only modifiable factor that can be manipulated in interventions. As such, the combination of multiple modifiable life-style factors such as cognitive training and physical exercise shows
promising effects in terms of maintaining cognitive performance in old age (41). Dual-task trainings, i.e. performing two tasks at the same time, offer a highly relevant, non-invasive and economic intervention to improve cognition (42). Compared to healthy age-matched controls, the dual-task performance in patients with AD is reduced and the impairment is an indicator of the severity of the disease (43–47). Nevertheless, longitudinal dual-task regimes seem to improve both cognitive and physical performance in patients with AD (48). Thus, there are reasons to expect that physical and cognitive performance are positively associated and might counteract the cognitive decline in patients with AD.

The majority of studies using repeated measurements report only undirected associations rather than analysing the dynamic change and interplay of physical and cognitive states (49,50). Temporal precedence is an important requirement for causality (51,52). Moreover, time itself is often treated as a discrete variable and accordingly the regression strength between time points is estimated without integrating information regarding the interval between them (52,53). The majority of longitudinal studies therefore struggles with unequal time interval lengths between and/or within participants, which might lead to biased parameter estimates and conclusions based thereon (52–54). In contrast, a hierarchical continuous-time dynamic modelling approach overcomes problems of conventional longitudinal modelling approaches, such as biased parameter estimates and unclear directionalities (49,50). Correspondingly, this approach enables the analysis of the dynamic change and coupling between states, even in the case of unequal time intervals (52,55,56).

Taken together, to the best of our knowledge, dynamic longitudinal training studies using advantages of continuous and hierarchical modelling approaches that aim to examine the dynamics between physical and cognitive performance in a sample with AD are missing.

Here we study the dynamic changes of physical and cognitive performance and their interplay using an extensive longitudinal training study for AD patients comprised of 72 sessions over 24-weeks including a physical and cognitive dual-task regime. The positive exercise-induced effect of physical fitness on cognition was shown in a previous paper using a linear approach (57). In this study we focus on the dynamic interplay between physical and cognitive performance using state of the art hierarchical Bayesian continuous-time dynamical system modelling. We hypothesize that changes in physical performance predict subsequent changes of cognitive performance. In addition, we hypothesize that individual dynamics relate to dementia symptom severity as well as physical health.

**Results**

**Demographic data**

Table 1 provides the demographic data and associated neurological characteristics for the participants.
**Demographic data**

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>67-80 (M = 73.41, SD = 3.43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>7:10 (ratio female to male)</td>
</tr>
</tbody>
</table>

**Neurological characteristics**

<table>
<thead>
<tr>
<th>ICD-10 diagnosis</th>
<th>Alzheimer’s disease (F00.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE pre</td>
<td>M = 23.35, SD = 3.50</td>
</tr>
<tr>
<td>MMSE post*</td>
<td>M = 22.75, SD = 4.06</td>
</tr>
</tbody>
</table>

Table 1: Demographic data and neurological characteristics of the sample (N = 17). MMSE pre, Mini Mental Status Examination score before the start of the intervention. MMSE post, Mini Mental Status Examination score after the end of the 24-week intervention (assessment within 12 days to 8 weeks after the intervention). * N = 16 due to one missing post assessment. M, mean. SD, standard deviation.

**Analysis of cross-domain interplay using dynamic modelling**

The range of valid measurement occasions of all 17 participants was between 59 – 70 sessions (M = 64.71, SD = 4.26) resulting in 1100 manifest observations per latent state (or domain) with 25 (~2.3%) missing values for physical performance. The time interval between successive measurement occasions ranged from 1 to 14 days (M = 2.54, SD = 1.04).

The longitudinal data was analysed using a 2-state dynamical model as illustrated in Figure 1 (for details see methods).

![Fig. 1. Schematic illustration of the 2-state-model with the first three timepoints (t0, t1, t2) reflecting successive training sessions. The graphical model contains the observed variables (manifest indicators) power of the bicycle ergometer and HR (as ratio: Power/HR) and reaction time corrected for the proportion of error (RT) loading on the latent variables (ellipsoids) PP (physical performance) respectively COG (cognitive performance). The main effect of interest is the cross-effect of PP on](image-url)
COG (further denoted as drift PP\(\rightarrow\)COG). The model also contains latent error terms (w) and the continuous time intercept (triangle). The model shows regression paths (red lines) and variance and covariance (orange lines). Manifest intercepts are not shown.

We first performed comparisons of alternative models in light of the data (see methods for details). The Chi-Square difference test for model comparison revealed a significant difference between the full 2-CR model and the zero-model (\(\chi^2(17) = 235.1, p < .001\)). In addition, a significant difference was also observed between the 2-CR model and the PP\(\rightarrow\)COG 1-CR model (\(\chi^2(9) = 149.8, p < .001\)) and COG\(\rightarrow\)PP 1-CR model (\(\chi^2(9) = 294.6, p < .001\)). Correspondingly, the full 2-CR model containing both cross-effects that enable a bi-directional interplay between cognitive (COG) and physical (PP) performance domains fitted the data best. Estimated population parameters for both 1-CR model (with one cross-effect) and the 0-CR model (with auto-effects only) are shown in the Supplemental Material (Table S1). In what follows we further report details about the winning model and tests of our hypothesis about the interplay during training.

Table 2 shows the Bayesian posterior estimates of population mean parameters of the full 2-CR (cross-effect) continuous-time model.

<table>
<thead>
<tr>
<th>parameter</th>
<th>symbol</th>
<th>Est.</th>
<th>SD</th>
<th>LL-BCI</th>
<th>UL-BCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRIFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>drift(_{PP})</td>
<td>A</td>
<td>-0.851</td>
<td>0.146</td>
<td>-1.146</td>
<td>-0.602</td>
</tr>
<tr>
<td>drift(_{COG})</td>
<td>A</td>
<td>-1.645</td>
<td>0.188</td>
<td>-2.026</td>
<td>-1.300</td>
</tr>
<tr>
<td>drift(_{COG,PP})</td>
<td>A</td>
<td>0.313</td>
<td>0.087</td>
<td>0.154</td>
<td>0.485</td>
</tr>
<tr>
<td>drift(_{PP,COG})</td>
<td>A</td>
<td>-1.335</td>
<td>0.201</td>
<td>-1.725</td>
<td>-0.954</td>
</tr>
<tr>
<td>T0 MEANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0(_{PP})</td>
<td>(\eta_1)</td>
<td>-0.175</td>
<td>0.010</td>
<td>-0.194</td>
<td>-0.154</td>
</tr>
<tr>
<td>T0(_{COG})</td>
<td>(\eta_2)</td>
<td>0.941</td>
<td>0.083</td>
<td>0.766</td>
<td>1.102</td>
</tr>
<tr>
<td>DIFFUSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diff(_{PP})</td>
<td>Q</td>
<td>0.045</td>
<td>0.011</td>
<td>0.027</td>
<td>0.070</td>
</tr>
<tr>
<td>diff(_{COG})</td>
<td>Q</td>
<td>0.797</td>
<td>0.038</td>
<td>0.722</td>
<td>0.874</td>
</tr>
<tr>
<td>diff(_{PP,COG})</td>
<td>Q</td>
<td>-0.687</td>
<td>0.135</td>
<td>-0.884</td>
<td>-0.354</td>
</tr>
<tr>
<td>MANIFEST VAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mvar(_{Power/HR})</td>
<td>(\Theta)</td>
<td>0.208</td>
<td>0.006</td>
<td>0.195</td>
<td>0.220</td>
</tr>
<tr>
<td>mvar(_{RT})</td>
<td>(\Theta)</td>
<td>0.046</td>
<td>0.029</td>
<td>0.012</td>
<td>0.124</td>
</tr>
<tr>
<td>MANIFEST MEANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm(_{Power/HR})</td>
<td>(\tau)</td>
<td>-0.382</td>
<td>0.078</td>
<td>-0.531</td>
<td>-0.234</td>
</tr>
<tr>
<td>mm(_{RT})</td>
<td>(\tau)</td>
<td>0.259</td>
<td>0.079</td>
<td>0.103</td>
<td>0.412</td>
</tr>
</tbody>
</table>

Table 2: Group level results showing estimated population means including Bayesian posterior intervals of the Full 2-CR (cross-effect) model. Sample size \(n = 17\) with 1100 observed sessions in total; The model contains two latent variables (physical (PP) and cognitive (COG) performance) with one manifest indicator, each (Power/HR and RT corrected for PE) respectively, \(n = 13\) free population mean parameters. Est. mean from mean of the chains; BCI, 95% Bayesian credible interval, LL, lower limit, UL, upper limit; Bayesian model estimation: number of chains = 4, number of iterations = 8000.

Changes in PP predict later changes in COG in the opposite direction as found by a more substantial negative cross-effect drift\(_{PP,COG}\) (-1.335, \(SD = 0.201\), 95 BCI [-1.725, -0.954]). As such, when physical performance levels are above baseline (suggesting a higher physical performance) COG levels are likely to go downwards (indicating faster reaction times corrected for PE). In addition, the effect of physical on cognitive performance also varies
between participants which suggests that some subjects benefit more from the physical exercise training resulting in cognitive improvements than others (between-person variability in drift$_{\text{driftPP}}$/COG: 2.44, $SD = 0.29$, 95% BCI[1.86, 3.02]). The high between-person differences in the effect of PP on COG comes along with its higher population mean (T0_MEANS, Table 2). This suggest that this effect seems more relevant in the sample but its importance also differs more between participants. In contrast, cognitive performance levels do partially predict later changes of physical performance in the same direction as indicated by a small and positive cross-effect (drift$_{\text{driftCOG\rightarrow PP}}$). Accordingly, when subject’s reaction time corrected for error increases (i.e. reduced cognitive performance) the physical performance levels did also slightly increase over following time. Furthermore, the temporal changes of PP last longer than the temporal dynamic of COG as shown by a higher auto-effect of PP (drift$_{\text{driftPP}}$).

The above drift parameters can be transformed into discrete parameters (time interval of one day) which facilitates the interpretation (for details see methods). Previous states of PP do impact COG negatively (-0.368, $SD = 0.05$, 95 BCI [-0.479, -0.266]). Figure 2 illustrates the captured dynamics by showing the expected pattern of both auto-effects and cross-effects over training days. The expected effect PP on COG peaks around one day suggesting rather short-term benefits from physical training. Changes in PP predict COG for up to around four days, after which the random-state fluctuations dominate. In contrast, the cross-lagged effect COG on PP was observed to be close to zero (0.086, $SD = 0.024$, 95 BCI [0.041, 0.136]) and accordingly there is practically no substantial effect in this direction. Furthermore, the small autoregressive (self-connection) effect of COG (0.145, $SD = 0.039$, 95 BCI [0.072, 0.226]) suggested low stability of the construct over time. PP on one day had a small effect on PP on another day (0.363, $SD = 0.05$, 95 BCI [0.264, 0.472]).

![Fig 2. Auto and cross regression over time. Temporal autoregressive effects (upper panel) and cross-lagged effects (lower panel) over time (x-axis, time interval in days), median and 95% quantiles for a change of 1 at time zero. The expected autoregressive effect (or self-connection) of PP (drift PP) and COG (drift COG) peak around approximately one day and decrease with increasing time interval length. This suggests that the more time passes the less predictive is the performance for consecutive](image)
performance levels. The expected cross-lagged effect (or interplay) of PP on COG (PP→COG) peaks around one day and seem to improve predictions of COG for up to around four days. This can be understood as rather short-term benefits from physical training on cognitive performance. The cross-lagged effect COG on PP (COG→PP) is very close to zero, suggesting that changes in cognitive performance do not improve predictions of physical performance.

The temporal dynamics of PP showed more inter-individual differences compared to COG. Some subjects showed relatively persistent physical performance levels over the entire training time, while the physical performance fluctuated more in other participants (between-person variability in drift\textsubscript{PP}: 9.89, \(SD = 0.52\), 95% BCI[8.89, 10.90]). The measurement error (\text{MANIFESTVAR}) of the manifest indicator Power/HR (0.208) was found to be higher compared to RT (0.046) (Table 2). This suggests that measurement limitations and short-term situational influences (e.g. subjective stress or sunny days) are more present in the physical performance indicator. In contrast, cognitive performance showed higher session-to-session fluctuations within-person (0.188, \(SD = 0.014\), 95 BCI [0.163, 0.217]) compared to physical performance (0.004, \(SD = 0.002\), 95 BCI [0.001, 0.012]). The model prediction of COG and PP over training time are illustrated in Figure 3. In addition, the session-by-session data and corresponding model predictions over study time for five selected participants of the sample is included in Supplemental Material (Fig. S1).

Fig. 3. Individual estimates. Individual level analyses for all participants of the sample (\(n = 17\)) over time interval in days (x-axis). The solid lines presents the model prediction of the smoothed estimates of participant’s individual latent states COG (upper panel) and PP (lower panel) within a 95% BCI. Each coloured solid line presents the individual model prediction for one subject each. The temporal dynamics of PP show more individual differences compared to COG.
Drift coefficients as a function of clinical baseline scores

We further aimed at validation of the obtained individual dynamics using available clinical scores. The baseline MMSE score and SF12 physical health score of each participant were included as time-independent predictor (covariates) of individual differences in the above model. Figure 4A illustrates the observed effect of the included covariate MMSE baseline score on drift parameters. Participants with higher MMSE baseline scores show lower persistence in the cross-effect COG on PP (drift\(_{\text{COG} \rightarrow \text{PP}}\); -0.215, \(SD = 0.022\), 95% BCI [-0.259, -0.172]). In addition, higher MMSE baseline scores were associated with lower persistence in cognitive performance (drift\(_{\text{COG}}\); -0.538, \(SD = 0.174\), 95% BCI [-0.887, -0.209]). In contrast, the effect of MMSE on the auto-effect PP and the cross-effect PP on COG is close to zero (-0.02, \(SD = 0.003\), 95% BCI [-0.03, -0.01]. Figure 4B contains the covariate SF12 physical health baseline score. Participants with a lower health score show a stronger cross-effect of COG on PP (drift\(_{\text{COG} \rightarrow \text{PP}}\); -0.231, \(SD = 0.035\), 95% BCI [-0.303, -0.165]). Likewise, higher physical health scores seem to be associated with lower persistence in their physical performance (drift\(_{\text{PP}}\); -0.036, \(SD = 0.008\), 95% BCI [-0.052, -0.021]). The effect on the other auto-effect and cross-effect are close to zero.

Fig. 4. Estimated effect of subject-level covariate predictors on dynamical parameters. We show (A) MMSE and (B) SF12 physical health baseline score effects on drift parameters (auto-effects and cross-effects) within a 95% BCI. drift\(_{\text{PP}}\), auto-effect PP (red solid line); drift\(_{\text{PP} \rightarrow \text{COG}}\), cross-effect PP on COG (green solid line); drift\(_{\text{COG} \rightarrow \text{PP}}\), cross-effect COG on PP (blue solid line); drift\(_{\text{COG}}\), auto-effect COG (purple solid line).
Changes of dynamics over the course of training

So far the above model assumed that the dynamics do not change over the course of the training e.g. the model did not allow for any increase or decrease of the interplay of domains over months. Therefore an extended model with the drift coefficient physical on cognitive performance (PP→COG) as a function of time was specified. As such, the model estimated if the strength of the cross effect PP on COG changed between the baseline (day 1-84) and the second half (day 85-168). To estimate this change from training day 84 (last baseline day) to 85 (first day of second half) an additional time dependent predictor and an extra latent step process were included (see methods). Results suggested that the cross-effect PP on COG (PP→COG) becomes positive in the second half of the training (2.08), i.e. the strength and associated effect of physical performance on cognitive performance was found to be reduced in the second half of training. This change was estimated as a function of PP→COG on baseline (-0.11, SD = 0.63, 95% BCI [-1.34, 1.14]) added PP→COG on the second half of the training (-1.50, SD = 0.08, 95% BCI [-1.66, -1.34]) multiplied by the extra latent step process (-1.45, SD = 0.38, 95% BCI [-2.21, -0.72]).

Discussion

AD is a devastating neurodegenerative disorder causing complex neuronal, physiological and behavioural changes (13). As such, a vital question in training and cognitive science is whether and how to counteract the cognitive decline in aging and AD by developing feasible and effective treatments. Recent longitudinal studies reported promising evidence of physical exercise training on cognitive performance in persons with dementia (20,30–33), while others observed no substantial change (35–39). However, most of these studies fail to capture the dynamic nature of the change and interplay of physical fitness and cognition (52). By taking advantage of a hierarchical continuous-time dynamic modelling approach (58) this study assessed the dynamic session-to-session changes and interplay of physical and cognitive performance over 72 measurement occasions (24-weeks) dual-task training in participants with AD. We specified a fully connected model enabling the analysis of the session-to-session connectivity (auto/self-effect) and coupling (cross-domain/interplay) of physical (PP) and cognitive (COG) performance.

Under the assumption of our model, physical performance is dynamically linked (coupled) to cognitive performance, i.e. when PP increases, COG levels tended to decrease (faster reaction time corrected for error). Thus, exercise-induced increased physical performance was positively associated with improved cognitive performance even in our sample with AD. This is in line with previous training studies reporting positive effects in terms of dementia prevention and delay of the progressive cognitive decline in AD or MCI (19,22,36,59). The observed coupling effect of PP on COG shows some between-person variability, i.e. some participants benefited from the physical exercise training resulting in improved cognitive performance to a greater extent than others. Going beyond the group level, however, there are also participants who fail to adapt on the training protocol (so called non-responders), i.e. showing unchanged or even worse physical performance (60,61). We aimed to design a personalized training protocol per participant including individual target HR (65-75% of maximum HR), start resistance and adaptive changes. However, since our study contains no
control group, we cannot rule out the possibility of non-responders benefiting more from a different type of exercise and/or intensity in our sample. Moreover, currently more accurate diagnostic tool to examine the training time course and personalize the training plan to create an optimal training load exist, such as heart rate variability monitoring (62). Nevertheless, the observed coupling effect of higher physical performance on improved cognitive performance supports the importance of regular physical exercise training to affect the cognitive decline a sample with AD.

In addition, an important question is how long this beneficial exercise-induced effect on cognition lasts (e.g. how many days). One main strength of the used dynamic modelling approach is the transformation of the above reported temporal connectivity and coupling effects into discrete (auto-lagged and cross-lagged) parameters allowing to examine the dynamics over time (58). Our results suggest that a positive change in physical performance can improve the prediction of increased cognitive performance for up to four days with the strongest influence after one day, after which unpredictable random fluctuations dominate. Accordingly, the training-induced benefit seems to be rather a short-term effect in our sample with AD. However, the effect cannot be directly attributed to training since the fluctuations could be due to unexplained or not modelled causes acting on both PP and COG and might appear without training as well. Nevertheless, the coupling effect appears at least under the condition of training, which is in line with recent studies (22,63). Importantly, the participants exercised three times per week (15 minutes each), resulting in 45 minutes training per week. Correspondingly, the pure weekly training time was below the recommendations of the World Health organization: 150 minutes of moderate or 75 minutes of vigorous intensity (or an equivalent combination) aerobic exercise (64). An increase of physical training time and/or sessions per week might have prolonged the strength of its effect on cognitive performance in our sample. In addition, the training intensity was suggested to be a driving factor in AD treatments. With regard to AD pathology, physical exercise was found to reduce the Aβ accumulation and preserve cognitive functions in the hippocampus in mice, which seem to mediate the exercise-induced memory benefits (65–67). However, a dose-dependent effect of exercise intensity was observed in this regard, i.e. the effect was found to be stronger for higher compared to low exercise intensities (67). Our training contained low up to moderate peak intensity. Thus, a higher intensity may have achieved a stronger and longer lasting effect on cognitive performance. However, the observed coupling effect suggests at least the performance of 45 minutes moderate physical exercise per week to yield short-term benefits on cognition, but ideally an increase up to the amount of training time according to the recommendations of the World Health Organization (2010).

The studied training was designed as a time-efficient dual-task regime, i.e. the participants had to maintain a given cadence on the ergometer while simultaneously memorizing pictures. In general, the dual-task performance is reduced in in patients with AD compared to MCI and healthy aged matched controls (43–47). Nevertheless, we still observed a positive interplay effect of PP on COG, while coupling the other way around was very minor. Here we are in line with Parvin (2020) reporting improvements in both cognitive and physical domain after a dual-task training in patients with AD (48). Importantly, the post-exercise memory recognition performance task was rather used as a cognitive performance measurement. We observed random session-to-session cognitive fluctuations within participants over time (deviations around the true cognitive state), while the measurement error was close to zero. Although intra-individual cognitive performance tends to fluctuate from session-to-session in
healthy older participants (2–6), the variability is higher in patients with AD or MCI (3,10,68–70). The higher amount of intra-individual variability is linked to AD pathology, such as impaired cerebral blood flow and increased hippocampal and entorhinal atrophy and functional decline (71,72). Correspondingly, within-person cognitive fluctuation cannot be considered exclusively as measurement error as it would be an oversimplification of the true cognitive state (73). The used dynamic modelling approach allows to separate such intra-individual deviations from a smooth overall change of cognitive performance into unpredictable but meaningful changes (fluctuations or short-term variability) in the cognitive process itself and measurement error, i.e. uncorrelated random noise in the indicator (58).

Thus despite the AD pathology in our sample, the observed short-term effect suggests that the cognitive system was still able to change and fluctuate. Physical exercise seem to elicit plasticity capacities that would otherwise have remained unused. Accordingly, our results support the importance of developing and optimizing regular aerobic exercise trainings to attenuate the cognitive decline, which can be easily integrated into the daily lives of persons with AD. However, the exercise-induced causal underlying molecular and cellular mechanism(s) leading to structural and functional brain changes and associated cognitive improvements is still discussed (74,75). Besides others, there seem to be strong evidence for exercise-induced neurotrophin-mediated neurogenesis counteracting the cognitive decline in healthy and pathological aging mice (75,76). Physical exercise increases neurotrophic factor levels, such as BDNF (brain-derived neurotrophic factor), neurogenesis in dentate gyrus of the hippocampus and cognitive function (77,78). Inhibited BDNF in the hippocampus by blocking tyrosine receptor kinase B also inhibited the action of BDNF and its associated beneficial effects on cognitive function (79,80).

We further aimed to validate the individual temporal dynamics (connectivity and coupling) of physical and cognitive performance with clinical baseline scores (covariates), namely MMSE (typical AD screening of cognitive impairment) and SF-12 questionnaire (physical health). We assessed the drift coefficients as a function of MMSE and SF-12, respectively. Validity of dynamical modelling parameters were supported by both clinical baseline scores. Higher SF-12 baseline scores (higher physical health) were associated with lower persistence in physical performance. These findings are in line with studies showing associations between SF-12 as well as its longer SF-36 version (81) and physical fitness associated outcomes (82–84). In addition, higher MMSE baseline score (less cognitive impairment) was associated with lower persistence in cognitive performance, i.e. the smaller the autoregressive (connectivity) effect, ceteris paribus. Thus, our results support some validity for our observed temporal dynamics since cognitive and physical performance were associated with their related clinical scores MMSE and SF-12 baseline score, respectively.

We observed a general increasing trend of physical performance and a decreasing trend of cognitive performance (faster reaction times corrected for error) over training time. This is in line with our previous study using a linear-mixed modelling approach (57). Beyond, we observed changes in the coupling effect of physical on cognitive performance over training time by specifying an additional model. The coupling effect of PP on COG was stronger in the first half of training (day 1- 84). This is in line with studies reporting positive effects after 12-weeks of physical exercise or dual-task training on cognitive performance in older healthy adults (85–88). However, in the second half of training (day 85 – 168) the strength of this coupling effect is reduced, i.e. the exercise-induced increase of physical performance positively affecting cognitive performance appeared to weaken over time. One explanation
might be that the changes may follow a non-linear time course, e.g. increase early or close to the end of the whole training regime. As such, further studies using time-varying analysis of those domains may clarify the temporal patterns of the coupling effect. However, since patients with AD show general reduced motivational capacities (89), the mitigated effect of physical on cognitive performance might also reflect a decrease in motivation over training time which could be compensated in future experimental studies. In addition, animal studies observed positive effects of environmental enrichment (combined physical, cognitive and social stimulation) on brain health, such as increased neurotrophic factor levels, neurogenesis, and improved cognitive performance (90–92). Although our dual-task training is a comparable equivalent for humans, the less variability in the task itself (exercising in a given rotation while memorizing pictures) may have led to reduced motivation and/or increased distraction (e.g., by social or environmental factors) from the middle of the training onwards.

Finally, we like to mention several limitations of the current study. Firstly, the exercise-induced underlying mechanisms yielding to cognitive improvements remain to be further understood. Although the model is mechanistic (or causal) it contains many assumptions that might be wrong and/or we may have not included all observable factors mediating the observed effects. Secondly, our approach assumed stationary dynamics over the course of the training. Thus, we cannot rule out non-stationary dynamics during the training time. Thirdly, our sample was small (N=17) and potentially biased regarding age and severity of AD. Fourthly, our study did not include a control group, e.g. healthy aged match controls and/or participants with different severities of symptoms. Since there is an absence of a physically inactive control group, future studies might look if cognitive volatility (i.e. also short reaching performance highs) is present without training and whether the coupling of physical on cognitive performance still exist without. With regard to the present literature showing positive due to regular exercise, (Colcombe & Kramer, 2003; Erickson et al., 2019; Schwarck et al., 2021), the latter one might not be the case. Future longitudinal randomized controlled studies are necessary to verify our results. Additionally, studies may examine the question how cognitive fluctuations can be used since they are random. Finally, a more comprehensive neuropsychological assessment should be taken into account to examine transfer effects.

Conclusion

The present extensive 24-week longitudinal training studies examines the temporal connectivity und coupling of physical and cognitive performance in a sample with AD using a hierarchical continuous-time dynamic modelling approach. Physical performance is dynamically linked to cognitive performance, i.e. higher physical improved cognitive performance in subsequent sessions. The beneficial effect is rather short-term, since a change in physical performance improved prediction of cognitive performance for up to four days after the training session. Furthermore, our observed dynamics were validated by clinical scores. Higher MMSE baseline score (less cognitive deficits) were associated with lower persistence in the temporal dynamics of cognitive performance. To summarize, we observed a short-term effect of exercise-induced increased physical performance positively affecting cognitive performance even in a sample with AD. Thus, physical exercise seem to be a promising treatment to counteract the cognitive decline in pathological aging.
Methods

Participants

The recruitment for the study took place in the period from September 2017 to September 2018 from the memory clinic of the German Center for Neurodegenerative Diseases (DZNE), Magdeburg. Older adults aged 60-80 years with diagnosed mild to moderate Alzheimer’s disease (F00.1; MMSE: 18-26) were included. During enrolment 125 patients were assessed for eligibility. 92 patients were excluded because they did not meet the inclusion criteria (n = 10), declined to participate (n = 65) and due to other reasons (n = 17) such as too small apartments for an ergometer. In addition, 14 participants did not receive the allocated intervention due to deterioration of symptoms. One participant dropped out during the intervention due to physical health difficulties. Consequently, the final sample size was n = 17 participants (age: \( M = 73.33, \ SD = 3.43 \); Mini Mental Status Examination: \( M = 23.50, \ SD = 3.45 \); female = 8). All participants were free of pulmonary or cardiovascular disorders and symptoms of depression (Geriatric Depression Scale: \( M = 1.88, \ SD = 0.93 \)). All participants and their relatives as representatives signed a written informed consent form for participation. The study was approved by the ethics committee of the Otto-von-Guericke University, Magdeburg, Germany (approval number: 68/17). The study was registered as a clinical trial after the enrolment of participants started since this study was planned as a feasibility study (DRKS registration number: DRKS00019105). The authors confirm that all ongoing and related trials for this intervention are registered. The participants were not compensated monetarily for the costs of participation.

Design

The study contained a 24-week dual task regime on a bicycle ergometer with an integrated tablet. The dual task regime took place in the own households of the participants. The training support per week was provided by the relatives, a team member and a senior volunteer. It was attempted that each participant exercised at the same time to better control circadian rhythm. The participants exercised three times per week resulting in 72 physical and cognitive exercise training sessions. Each dual task training contained 15 minutes of physical exercise while simultaneously memorizing pictures. The heart rate (HR) was continuously measured every second using a Garmin chest belt. The subjective perceived exertion was assessed after each session using a 6-20 Borg Scale (93). Finally, a picture recognition test was carried out to measure visual short-term memory performance.

Moreover, the Min-Mental State Examination (MMSE) and the Geriatric Depression Scale (GDS) and questionnaires were assessed before and immediately after the 24-week dual task regime. A more comprehensive post-assessment was conducted within 12 days to 8 weeks. In addition, the 12-Item Short Form Survey (SF-12) questionnaire assessing the impact on health on everyday activities (94) was used for further analysis. The questionnaire and screenings were part of the dementia care instruments used in the DelpHi-MV study (“Dementia: life- and person-centered help in Mecklenburg-Western Pomerania”) of the German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald (95).
Dual task regime

The dual task regime that was used in this study is a simultaneous physical and cognitive training, which is specifically developed for older adults with AD (for more details see 57). An individual training plan was designed for each participant. The required pedal frequency was individually set to 40 – 80 RPM. The exercise training was also dependent on an individual target HR of each participant which was set to 65-75% of the maximum HR using the Karvonen method (96) and was accordingly around 90 to 115 bpm. Each training session began with the individual start-resistance and proceeded by successively increasing it each 60s until the individual target HR was reached. Moreover, the overall training regime included an increase of the resistance from the individual assessed start resistance by approximately 5% every four weeks. These individual adaptations were carried out if the average target HR and the ratings of perceived exertion after each training session were in the determined range.

Simultaneously, each training session included the memorization of 30 pictures such as animals or landscapes, presented on an integrated tablet (Samsung Galaxy Tab A 2016 10.1 inch). The pictures were presented one after the other for 20 seconds each. During each 10-second inter-stimulus interval the screen background turned white. The same set of pictures was presented during each of the three training sessions within one week while the applied set was varied over weeks to minimize learning effects. The different sets of pictures were matched regarding the average difficulty memorability level determined by the open source LaMem score (97).

The picture recognition memory performance was assessed immediately after each dual task training. The test included 30 test screens containing the original picture visible during the training and a lure picture. The lure picture was new but matched the memorability score of the original picture. Accordingly, the participants had to decide one by one which of both test pictures was the original. The test was designed without a time limit for the response. The pictures on each test screen were arranged on top of each other, with the arrangement of the original and lure picture randomised. The picture recognition memory test was designed as a forced choice task. As with the pictures visible during the dual task, each training week contained the same lure pictures, while the 24 picture sets per week differed from each other. The lure picture sets were also matched for memorability using the LaMem score (97).

Statistical Analysis

The analysis focused on modelling the dynamic interplay between the two key domains: physical and cognitive performance. Each of the 72 training sessions per participant were included in the analysis insofar as they were completed (90% completed in sample). The training observations were z-standardized on the group level (grand mean centered and scaled across all sessions). First, the physical performance (PP) was defined as the ratio of power output (unit: Watt) and HR of each training session. Higher values reflect higher physical performance. Second, as outcome of cognitive performance (COG) we focused on reaction times corrected for the number of errors since this combination was previously reported as most efficient during detection of effects (98). The reaction time (RT, in seconds) within a valid range of ≤ 13 seconds was used and corrected for the proportion of error (PE) using the linear integrated speed-accuracy score (LISAS) (98):
For each participant, the mean RT of the measurement occasion (j) was added to the ratio of the overall standard deviation of reaction time (SD_{RT}) and PE (SD_{PE}) multiplied by the corresponding PE observed at the measurement occasion (98). Lower linear integrated speed-accuracy scores reflect higher cognitive performance i.e. faster reaction time corrected for the proportion of error.

All statistical analyses were conducted in R version 4.0.2 using RStudio version 1.3.1056. The main approach followed in this paper to model session to session variability and interplay of physical and cognitive performances is hierarchical Bayesian continuous-time dynamic modelling. The approach was previously established and implemented in the R package ctsem (58) relying on the Stan software (99). All results were visualized using ctsem and the R package ggplot2 included in the package tidyverse (100). Model fit was compared using Chi-square tests. The alpha level for all frequentist statistical tests was defined as p < .05.

Firstly, hierarchical Bayesian continuous-time dynamic modelling was used to simultaneously analyse the longitudinal changes of physical and cognitive outcomes. In this framework the evolution of these two processes over training sessions is reflected in a 2-dimensional state variable $\eta(t) = [PP(t), COG(t)]^T$ at time t. The model then describes the temporal dynamics of these states. The hierarchical continuous-time dynamic model of Driver and Voelkle (2018) consists of three main elements. Firstly, in its general form the subject-level latent dynamic model is a stochastic differential equation and can be written as follows:

$$d\eta(t) = (A\eta(t) + b + M\chi(t))dt + GdW(t)$$

with time-varying latent process $\eta(t)$ and its temporal derivative $d\eta(t)$ encoding the systems current state and its change over time, respectively. Eq. (2) is sometimes also called state equation. The DRIFT matrix A contains free parameters and defines the temporal dynamics of the process with so-called auto-effects on the main diagonal and cross-effects encoding interplay or interactions (across domains) on the off-diagonal elements. Moreover, Eq. (2) contains the continuous time intercept (CINT) b and the effect M of time dependent predictors $\chi$ on $\eta(t)$.

The continuous-time parameters of the DRIFT matrix (A) contain changes of $\eta$ over a small time interval in the differential equation. As such, the auto-effect parameters reflects the connectivity and the cross-effects the coupling. Moreover, the continuous-time parameter can be transformed into the discrete-time equivalent ($A^*$) reflecting the change of these connectivity and coupling over time. As such, the calculation of discrete-time parameters for any given time time interval length ($\Delta t$):

$$A^*_{\Delta t} = e^{A(t_t-t_{t-1})}$$

$LISAS(j) = RT(j) + \frac{SD_{RT}}{SD_{PE}} \times PE(j)$

(1)
where $A^*_{\Delta t}$ includes the associated auto and cross regression effect for the effect of $\eta$ at the measurement occasion $u-1$ on $\eta$ at measurement occasion $u$ (58). Secondly, the model includes a linear measurement model for states $\eta(t)$:

$$y(t) = \Lambda \eta(t) + \tau + \varepsilon(t) \quad (4)$$

The vector of the manifest (i.e. observable) variables $y(t)$ is defined by the factor loadings $\Lambda$, the manifest intercepts $\tau$ and the residuals $\varepsilon$ with covariance matrix $\Theta$. Further details of the framework are included in the supplements.

The dynamic model was specified with two fully connected state variables enabling bi-directional coupling between PP and COG over 72 measurement occasions within 24 weeks. The measurement model relates manifest observables to latent state variables and in this study loadings were set such that manifest observable indicator Power/HR of each session were loading on PP and correspondingly reaction times (RT) on COG. All other parameters (except $b$ and $M$ which were set to zero) of the state equation and measurement model were left free to be estimated using the data. More specifically, the latent process means at $t=0$ (or initial states of the system), the manifest intercepts $\tau$ and the auto-effects and cross-effects of the DRIFT-matrix $A$ were allowed to vary free across participants resulting in a total of 49 parameters. Population and individual level parameters are estimated simultaneously using all data from all subjects. The hierarchical Bayesian model estimation was set to default priors and initial starting values. All models were estimated using 4 chains and 8,000 iterations (under Stan’s optimizer for maximum a posteriori estimates (cf. see 58).

Overall, three models were hypothesized and compared using their model evidence. First, a full 2-CR model (cross-effects) containing both auto-effects and both cross-domain interplay parameters in the drift-matrix. The full 2-CR model results in 13 free population mean parameters and is a full model enabling bi-directional coupling of state variables. Secondly, a 1-CR (COG.PP) model with both auto-effects and the cross-effect from PP on COG (denoted as $PP\rightarrow COG$) only, implementing the hypothesized effects of physical performance on cognition but not reversed. Thirdly, a 1-CR (PP.COG) model with both auto-effects and the cross-effect COG on PP (denoted as $COG\rightarrow PP$) only. Both 1-CR model resulting in a total of 40 parameters each. Lastly, a zero-model (0-CR) was specified in which both cross-effects were fixed to zero (without domain interplays) and accordingly only the auto-effects were freely estimated. Then, the full 2-CR model was compared against both 1-CR ($PP\rightarrow COG$ and $COG\rightarrow PP$) and 0-CR model with regard to their model fit using a Chi-Square difference test (58).

Furthermore, we aimed to validate the dynamic modelling coefficients that characterize the individual interplay of physical and cognitive domain by exploring their relationship with clinical scores. More specifically, we ran a second-level models with the MMSE baseline score and the SF12 physical sum baseline score as time-independent covariates. A higher score in both covariates is associated with higher cognitive status respectively higher physical health status. All other model specifications were the same as the above full 2-CR model.

Finally, we aimed to explore potential changes of dynamics over the course of training using a slightly extended full 2-CR model. The strength of the cross-effect in question physical on cognitive performance ($PP\rightarrow COG$) was compared between the baseline (day 1-84) and
second half (day 85-168) of the training. Therefore we included a time dependent predictor $\chi$ (named ‘secondhalf’), which is zero expect on day 84, when it is 1. Additional, an extra latent process (named ‘step2ndhalf’) was included, with all parameters and covariances fixed to zero, except the element on the time dependent predictor were set to 1. The later specification make this extra latent process a step function, i.e. shifts on day 84 to 1 and stay there. The cross-effect in question was defined as a function of PP$\rightarrow$COG on baseline added by PP$\rightarrow$COG on the second half of the training multiplied by the extra latent process. As such, a negative value reflects a stronger effect of physical on cognitive performance (i.e. when physical performance increases the reaction time decreases) in the second half of the training and vice versa. Both PP$\rightarrow$COG baseline and second half were free parameters to estimate.
Author Contributions

GZ and SS contributed to the conceptualization and the data curation. SS, GZ, and MV performed the formal analysis. ED contributed to the funding acquisition, resources, and the supervision. The investigation was conducted by NB, WG, AB, and SS. ED, MV, GZ, AB, and SS contributed to the methodology and AB and NB to the project administration. The software and validation was conducted by AB. SS contributed to the visualization and the writing of the original draft preparation. SS, GZ, MV, WG, AB, NB, and ED contributed to the writing of the review and editing. All authors contributed to the article and approved the submitted version.

Funding

The project (ID: ZS/2016/05/78611) belongs to the Research Association Autonomy in old Age (AiA) funded by the European Union (ERDF-European Regional Development Fund) and the State of Saxony-Anhalt, Germany.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Supplemental Material

Methods – Statistical Analysis

Subject-level latent dynamic model

\[
don\eta(t) = (A\eta(t) + b + M\chi(t))dt + QdW(t) \tag{2}\]

Furthermore, \( W(t) \) denotes the so-called Wiener process, a random walk in continuous time with covariance matrix \( Q = GG^T \). \( Q \) is also referred as the diffusion matrix. Further technical details and explanations can be found in (58).

Thirdly, the framework allows for some (or potentially all) parameters to differ across individuals. Here the parameters for each subject are drawn from a population distribution with unknown mean and variance and priors. Additionally, effects of time independent predictors (covariate effects) can be included (see Driver and Voelkle (2018) for further details).
Fig. S1. Individual level analyses for five randomly selected participants of the sample over time interval in days (x-axis). The solid lines presents the model prediction of the smoothed estimates of participant’s individual latent states COG (upper panel) and PP (lower panel) within a 95% BCI. Each coloured solid line presents the individual model prediction for one subject (ID) each. The temporal dynamics of PP show more individual differences compared to COG.
Alternative model examine dynamic change and interplay of physical (PP) and cognitive (COG) performance

<table>
<thead>
<tr>
<th>parameter</th>
<th>sym bol</th>
<th>model with cross-effect</th>
<th>model with cross-effect</th>
<th>model with no cross-effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COG ( \rightarrow ) PP only</td>
<td>PP ( \rightarrow ) COG only</td>
<td></td>
</tr>
<tr>
<td>DRIFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>drift(_{PP})</td>
<td>A</td>
<td>-0.00</td>
<td>0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>drift(_{COG})</td>
<td>A</td>
<td>-5.89</td>
<td>0.84</td>
<td>-7.53</td>
</tr>
<tr>
<td>drift(_{PP, COG})</td>
<td>A</td>
<td>0.48</td>
<td>0.09</td>
<td>0.30</td>
</tr>
<tr>
<td>T(_{0, PP})</td>
<td>( \eta_1 )</td>
<td>-0.15</td>
<td>0.11</td>
<td>-0.36</td>
</tr>
<tr>
<td>T(_{0, COG})</td>
<td>( \eta_1 )</td>
<td>0.30</td>
<td>0.05</td>
<td>0.18</td>
</tr>
<tr>
<td>diff(_{PP})</td>
<td>Q</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>diff(_{PP, COG})</td>
<td>Q</td>
<td>-0.69</td>
<td>0.12</td>
<td>-0.86</td>
</tr>
<tr>
<td>diff(_{COG})</td>
<td>Q</td>
<td>1.07</td>
<td>0.15</td>
<td>0.80</td>
</tr>
<tr>
<td>MANIFEST VAR</td>
<td>mvar(_{Power/HR})</td>
<td>( \Theta )</td>
<td>0.20</td>
<td>0.01</td>
</tr>
<tr>
<td>MANIFEST MEANS</td>
<td>mvar(_{RT})</td>
<td>( \Theta )</td>
<td>0.24</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>mm(_{Power/HR})</td>
<td>( \tau )</td>
<td>-0.38</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>mm(_{RT})</td>
<td>( \tau )</td>
<td>0.82</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Table S1: Group level results showing estimated population means including Bayesian posterior intervals of the alternative models that were compared with the full 2-CR (cross-effect) main model. Sample size \( n = 17 \). All alternative models contain two latent variables (physical (PP) and cognitive (COG) performance) with one manifest indicator, each (Power/HR and RT corrected for PE). The model with cross-effect COG \( \rightarrow \) PP only contains both auto-effects and the cross-effect COG on physical performance only, \( n = X \) free population mean parameters. The model with cross-effect PP \( \rightarrow \) COG contains both auto-effects and the cross-effect physical on cognitive performance only, \( n = X \) free population mean parameters. The model with no cross-effect contains both auto-effects only, \( n = X \) free population mean parameters. Est. mean from mean of the chains; BCI, 95% Bayesian credible interval, LL, lower limit, UL, upper limit; Bayesian model estimation: number of chains = 4, number of iterations = 8000.
References


12. Rebok GW, Carlson MC, Langbaum JBS. Training and Maintaining Memory Abilities in Healthy Older Adults: Traditional and Novel Approaches. Journals Gerontol Ser B


34. Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: A meta-analysis [11] No commercial party having a direct financial interest in the results of the research supporting this article has


64. World Health Organization. GLOBAL RECOMMENDATIONS ON PHYSICAL ACTIVITY FOR HEALTH. Geneva; 2010.


18. Gallardo-Gómez D, del Pozo-Cruz J, Noetel M, Álvarez-Barbosa F, Alfonso-Rosa RM, del Pozo Cruz B. Optimal dose and type of exercise to improve cognitive function in...

89. Forstmeier S, Maercker A. Motivational processes in mild cognitive impairment and Alzheimer’s disease: results from the Motivational Reserve in Alzheimer’s (MoReA) study. BMC Psychiatry [Internet]. 2015 Dec 17;15(1):293. Available from: http://www.biomedcentral.com/1471-244X/15/293


