Distinct neurofunctional alterations during motivational and hedonic processing of natural and monetary rewards in depression – a neuroimaging meta-analysis

Mercy Chepngetich Bore¹,², Xiqin Liu¹,², Xianyang Gan¹,², Lan Wang¹,², Ting Xu¹,², Stefania Ferraro¹,², Liyuan Li³, Bo Zhou¹, Jie Zhang³,⁴, Deniz Vatansever³,⁴, Benjamin Klugah-Brown¹,²*, Benjamin Becker¹,²*

¹Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China

²MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China

³Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China

⁴Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China

*Corresponding authors

Correspondence:

Benjamin Becker (ben_becker@gmx.de) or Benjamin Klugah-Brown (bklugah@gmail.com)

University of Electronic Science and Technology of China

Xiyuan Ave 2006, 611731 Chengdu, China
Abstract

Reward processing alterations have been suggested as candidate mechanism underlying anhedonia and apathy in depression. Neuroimaging studies have documented that neurofunctional alterations in mesocorticolimbic circuits may neurally mediate reward processing deficits in depression. However, common and distinct neurofunctional alterations during motivational and hedonic evaluation of monetary (extrinsic) and natural (intrinsic) rewards in depression have not been systematically examined. Here we capitalized on a series of pre-registered neuroimaging meta-analyses to (1) establish general reward-related neural alterations in depression, (2) determine common and distinct alterations during anticipation of monetary rewards, receipt of monetary rewards, and receipt of natural rewards, and, (3) characterize the differences on the behavioral, network and molecular level. The coordinate-based meta-analysis included a total of 633 depressed patients and 644 healthy controls and revealed generally decreased subgenual anterior cingulate cortex (sgACC) and striatal reactivity towards rewards in depression. Subsequent quantitative comparison analysis indicated that monetary rewards led to decreased hedonic reactivity in the right ventral caudate while natural rewards led to decreased reactivity in the bilateral putamen. These regions exhibited distinguishable profiles on the behavioral, network and receptor level. Further analyses demonstrated that the right thalamus and left putamen showed decreased activation during the anticipation of monetary reward. The present results indicate that distinguishable neurofunctional alterations may neurally mediate reward-processing alterations in depression in particular with respect to monetary and natural rewards.
Given that natural rewards prevail in everyday life, our findings suggest that reward-type specific interventions are warranted and challenge the generalizability of experimental tasks employing monetary incentives to capture reward dysregulations in everyday life.

Keywords: Reward; Depression; Striatum; Functional magnetic resonance imaging; Meta-analysis
Introduction

Pleasure and rewards constitute vital attractors that not only shape our momentary decisions, but also motivate future behavior. Deficits in reward processing have been proposed as a candidate mechanism underlying anhedonia, which describes a consistently diminished pleasure and interest in almost all daily life activities (1), (see also integration in the Research Domain Criteria framework: positive valence system (2,3). Anhedonia is a cardinal symptom of Major Depressive Disorder (MDD) and it represents a transdiagnostic symptom of several debilitating neurological and mental health disorders (4). With currently over 320 million people living with depression, MDD has become a leading cause of disability worldwide (5). While the established interventions can alleviate some of the symptoms of depression, anhedonia is not only inefficiently targeted by the available treatments, but it is also highly resistant (6–11). Understanding the specific dysfunctions of behavioral and neural reward processing in depression may thus provide better treatment and management options (12).

Reward processing encompasses an entire array of subprocesses that can be defined based on different perspectives including the class of external reinforcers as well as the stage and function of the rewarding process. With respect to the nature of the reinforcers, intrinsic rewards referring to non-conditioned and inherently pleasurable stimuli such as music or food, can be differentiated from extrinsic rewards (e.g., money) which are not inherently pleasurable but exert their motivational value via learned (conditioned) associations with intrinsic rewards (13,14). Moreover, the anticipation and
Receipt stages of rewards are commonly differentiated and considered to reflect motivational and hedonic subprocesses, respectively (15–17).

On the neural level, reward processing has been closely linked to activation in mesocorticolimbic systems, including the striatum and amygdala as well as medial prefrontal and anterior cingulate regions (13,18). While some evidence suggests that the specific neural systems vary as a function of the reinforcers and the stage of the reward process (16,19,20), the ventral striatum has been consistently engaged during the anticipation and receipt of monetary rewards (21,22) as well as the receipt of different intrinsic (natural) rewards such as food or music (23,24). In accordance with overarching frameworks (25,26), these meta-analytic findings may support the notion of a “common neural currency” for reward (27). However, see also (28), who suggests phylogenetically different classes of rewards.

Previous meta-analyses have provided convergent evidence for reward processing deficits in depression (1,29) with functional neuroimaging studies suggesting altered neural activity during reward processing (30–32). Alterations have been observed along the mesocorticolimbic reward circuit, including prefrontal regions such as the orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC), as well as subcortical regions including the striatum, amygdala, and hippocampus (30,33–35). Neurofunctional alterations in the striatum and ACC during monetary reward processing have been consistently observed during different stages of depression, including subthreshold depression (36), major depressive episodes (37) (30,38) or remitted depression (39), and may thus represent a common marker for
depression-associated reward deficits. However, findings with respect to depression-related alterations during natural reward processing have revealed less consistent results (12,40,41), and an accumulating number of recent electroencephalography (EEG) studies that directly compared processing of monetary and natural rewards in depression suggest not only common but also domain-specific neurofunctional alterations, for example, (42,43). Against this background, we examined if depression is characterized by a dysregulation of the ‘common neural currency’ for rewards by capitalizing on a robust fMRI meta-analytic strategy that allowed us to determine common and separable neurofunctional alterations during natural versus monetary reward processing and during anticipation versus receipt of reward in depression.

We conducted a preregistered coordinate-based meta-analysis according to the latest guidelines (44,45) and included case-control fMRI studies examining the anticipation and receipt of monetary and natural rewards in depression. To facilitate a robust determination, we employed Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), a novel method of performing neuroimaging meta-analyses (46). SDM-PSI allows (nearly) unbiased estimation of effect sizes and generation of neurofunctional maps based on both positive and negative differences and hence can produce signed differential effect size maps. In line with the goals of the present study, we employed a three-step approach to meta-analytically determine common and domain-specific reward dysfunctions in depression, including a pooled analysis determining non-specific reward alterations, as well as separate meta-analyses determining common and domain-specific hedonic dysregulations during the receipt of
monetary versus natural rewards or the anticipation and receipt of monetary rewards, respectively. We hypothesized domain-general alterations in the ventral striatal reward processing system (reflecting dysregulations in the ‘common neural currency’), but domain-specific alterations in prefrontal systems involved in more complex value and evaluation processes. To further characterize common and separable alterations, we next employed a series of connectivity and meta-analytic strategies to distinguish the identified regions on the behavioral, network, as well as molecular genetics and receptor levels.

Method

Data collection procedures, inclusion criteria and data extraction

The current pre-registered meta-analysis adhered to the guidelines of conducting coordinate-based neuroimaging meta-analyses (47). Procedures, hypotheses and analyses were pre-registered on the OSF-repository (https://osf.io/ay3r9). A comprehensive literature search was performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (45). The search aimed to identify case-control fMRI studies examining reward processing in patients with depression in comparison to healthy controls. For the literature search, biomedical and life science databases including PubMed (https://www.ncbi.nlm.nih.gov/pubmed) and Web of Science (https://www.webofscience.com/wos/alldb/basic-search) were utilized. Original case-control fMRI studies examining monetary and natural reward processing in depression were extracted and suitable studies from the reference lists of review
articles were additionally included. The literature was screened based on titles and abstracts returned by search results of the search terms: “functional magnetic resonance imaging OR fMRI” AND “depression OR major depressive disorder OR unipolar depression OR sub-clinical depression OR at-risk of depression” in combination with either “monetary reward” OR “monetary incentive delay” OR “natural reward” OR “social reward”. Studies written in English, published between 2001-2021 and reporting whole brain results in standard stereotactic space (Talairach or Montreal Neurological Institute) were included. Only peer-reviewed, original case-control studies comparing patients and healthy controls were included.

Additional exclusion criteria were: (a) studies focusing entirely on participants <18 years and >60 years of age, (b) studies focusing on other mood disorders, including bipolar disorder and postpartum depression, (c) studies reporting region-of-interest (ROI) results only, (d) studies focusing on other reward-related processes such as probabilistic reward learning, prediction error etc., (e) studies reporting findings from an identical dataset as already included studies. The systematic literature review identified 26 suitable neuroimaging studies according to the inclusion criteria (see Figure 1), 17 examined monetary reward and 10 examined natural reward (such as exposure to positive images, positive social feedback, or chocolate) processing in depression.

Aims and coordinate-based meta-analytic implementation

The present case-control neuroimaging meta-analysis aimed to segregate neurofunctional reward alterations in depression, in particular to disentangle general
from domain-specific dysregulations in the domains of (a) monetary versus natural reward processing as well as in the domains of (b) anticipation versus receipt processing of rewards. In an initial step, general reward processing alterations were examined in an overarching meta-analysis that pooled the data from all studies (analysis 1). Next, our primary meta-analysis determined domain-specific alterations in hedonic processing by means of two separate meta-analyses comparing alterations during the receipt of monetary rewards versus natural rewards in depression (analysis 2). Finally, domain-specific alterations with respect to anticipation versus receipt processing of monetary rewards in depression were disentangled by another meta-analysis (analysis 3). All analyses were implemented in Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) version 6.21 (https://www.sdmproject.com/) a novel and highly robust technique for performing neuroimaging meta-analyses (46).

The SDM-PSI approach followed the following steps: (a) Peak coordinates of between-group differences (patients versus healthy subjects) and their effect sizes in terms of either t/z values were extracted in accordance with the SDM inclusion criteria. Z-values representing coordinates from whole-brain between-group differences of depressed patients and healthy controls were transformed into t-values using the statistical converter (https://www.sdmproject.com/utilities/?show=Coordinates). (b) For studies reporting peak coordinates, the initial preprocessing step (Anisotropic full width half maximum (FWHM) = 20mm and voxel size = 2mm) estimated the lower and upper bounds (Hedges’ g) of the most probable effect size images (48). (c) The mean is analyzed by the maximum-likelihood estimation (MLE) and meta-analysis of non-
statistically significant unreported effects (MetaNSUE) algorithm. This not only estimates the most likely effect size and the standard error, but it also creates numerous imputations based on the estimates that are within the bounds (49). (d) Next, imputed study images are recreated. (e) Finally, the permutation test evaluated the combined meta-analysis images for statistical significance.

To ensure the independence of all studies and to evade any possible bias in our meta-analyses, the coordinates of each study was put in a separate text file according to the guidelines of conducting meta-analysis using SDM-PSI. All analyses were thresholded at \(p \leq 0.0025 \) uncorrected, \(k \geq 10 \) voxels. The generated maps were visualized using a multi-image analysis GUI (MANGO; http://ric.uthscsa.edu/mango). Furthermore, inter-study heterogeneity for each cluster was examined by the \(I^2 \) index which represents the proportion of the total variation caused by study heterogeneity (50). Generally, \(I^2 \) values have been categorized into three groups namely low (25%), moderate (50%) and high (70%) (20). Quantitative comparison analyses between monetary and natural reward outcomes were performed using Statistical Parametric Mapping (SPM12) software package (https://www.fil.ion.ucl.ac.uk/spm/).

Characterization of domain-specific hedonic dysregulations on the network, behavioral, genetic and receptor level

Given that our primary meta-analysis revealed distinct neurofunctional alterations during processing of monetary and natural rewards, we further characterized the identified signatures on the functional and neurobiological levels. First, meta-analytic...
network analyses were utilized to determine whether the identified regions represent nodes of separable networks. Functional decoding was conducted using the Neurosynth database (51) (https://www.neurosynth.org/). Peak coordinates of the identified signatures were used to generate region-specific unthresholded resting-state functional connectivity maps, meta-analytic co-activation maps and their respective conjunction maps. The resultant resting-state functional connectivity maps were thresholded at \(r > 0.2 \). The thresholded map was transformed into z-scores. Next, conjunction maps between the thresholded resting state functional connectivity and meta-analytic co-activation maps were generated for each ROI signature using SPM and the resultant regions were identified with the Anatomy toolbox (52). The functional connectivity maps represent brain regions co-activated across the resting-state fMRI time series with the seed regions. Meta-analytic co-activation maps symbolize co-activation of brain regions across all fMRI studies in the Neurosynth database. The combination of functional connectivity and meta-analytic co-activation maps allows for analyzing both task-independent and task-driven functional networks emerging from the seed region. Additional seed to whole brain functional connectivity analyses on the voxel level were conducted to provide a more fine-grained mapping of the common and separable intrinsic network organization of the identified striatal subregions (53).

To this end, data from an original independent study was included. To conduct functional connectivity analyses, data was collected from the Open Access Series of Imaging Studies (OASIS)-3 dataset (https://central.xnat.org) including \(n = 100 \) healthy subjects. Preprocessing was performed using Data Processing Assistant for Resting-State
fMRI (http://rfmri.org/DPARSF). Briefly, functional imaging preprocessing procedures consisted of the following steps: (a) Deletion of the initial 5 volumes of the time-series, (b) Motion correction using rigid body translation and rotation and exclusion of subjects with maximum motion > 2 mm or 2°, (c) Two-step procedure of normalization into standard stereotactic space including co-registration to anatomical images and application of the corresponding segmentation matrix to the functional time series. 6mm radius spheres centered at the corresponding peak coordinates (caudate: x=10, y=10, z=4 and putamen: x=22, y=8, z=-4) served as seed regions for the seed-to-whole-brain voxel-wise analyses implemented in Data Processing Assistant for Resting-State fMRI (http://rfmri.org/DPARSF).

Second, distinct behavioral functions of the regions were identified through meta-analytic topic mapping using peak coordinates of the identified brain regions by means of the Brain annotation toolbox (BAT) (54). The top twenty behavioral terms together with their correlation values were obtained. Third, to examine separable genetic underpinnings of the identified signatures (structurally defined by the Automated Anatomical Labeling, AAL2, atlas), we examined genetic expressions of these regions by means of the Brain annotation toolbox (BAT) (54). The aim was to determine which genes had the highest densities and separable expressions in the identified regions. Here, the top ten genes were acquired in terms of their p-values (permutation p values arranged in descending order, where \(p_{perm} < 0.05 \) is significant). Using PubMed gene (https://www.ncbi.nlm.nih.gov/gene), we determined the identified genes' main functions.
Fourth, given the proposed role of serotonin and dopamine in both reward processing and emotional dysregulations including depression (e.g. Liu et al., 2020; Martins et al., 2017; Hayes and Greenshaw, 2011), we determined the density of the corresponding receptors in the identified regions. To begin, the Positron Emission Tomography (PET) atlases of Serotonin (5-HT₁B) (https://xtra.nru.dk/FS5ht-atlas/) and Dopamine (DAT) (https://www.nitrc.org/projects/spmtemplates) were obtained. Next, the reference regions, i.e. cerebellum and occipital areas of 5-HT₁B and DAT respectively, were removed using WFU PickAtlas (v2.4) (55). Conjunction between the two no-reference region masks and their respective receptor maps was performed in SPM12. Lastly, the final conjunction maps were normalized using PyCharm platform (Edition 2021.2.2), based on Python (v 3.7.2). The resultant receptor map was then obtained. Additionally, 6mm sphere-defined ROIs of caudate and putamen masks were generated by MarsBaR ROI toolbox (http://marsbar.sourceforge.net) and the Cognitive and Affective Neuroscience Lab (CANlab) Core toolbox (https://canlabweb.colorado.edu/) was used to acquire the neurotransmitter density values.

Exploratory analyses of potential confounders - Linear Model analysis

Given the critical effects of anti-depressive medication on reward-related brain activity, we conducted a linear model analysis with medication status as a variable of interest to determine the potential effects of medication on neurofunctional alterations in the two primary domains (monetary and natural outcome). The analysis was run on SDM-PSI (Linear Model) where medicated studies and non-medicated studies in both datasets...
were coded 1 and 0, respectively. Moreover, we repeated the meta-analysis including only unmedicated studies in SDM-PSI to confirm the stability of the results, i.e. whether the results remain stable without medication or treatment. Moreover, given that previous studies have shown that age and gender distinctively regulate the brain’s activity when processing monetary and natural rewards (56–59), additional meta-regressions were performed to explore the influences of other potential confounders such as age and gender.

Results

The comprehensive literature search resulted in 26 suitable original fMRI studies on reward processing in depression, with a total of 1,277 participants (633 patients and 644 healthy controls). The database included patient data from monetary reward studies ($n=391$, mean age=31.47, $SD=8.41$) and natural reward studies ($n=242$, mean age=35.04, $SD=10.26$). There were no significant differences in age ($p = .21$, $t = 2.07$) and gender ($p = .97$, $t = 2.10$). Healthy controls data from monetary reward studies ($n=393$, mean age=30.95, $SD=7.89$) and natural reward studies ($n=251$, mean age=31.9, $SD=7.98$) had no significant differences in age ($p = .69$, $t = 2.08$) and gender ($p = .53$, $t = 2.26$). Figure 1 shows the flow diagram of the selection process. Demographic information of the included studies is displayed in Table 1 (see also Supplementary Table 1 for the characteristics of included studies and Supplementary Table 3 for the PRISMA checklist).
Neurofunctional reward alterations in depression

Analysis 1: General reward processing alterations in depression

Meta-analytic results obtained from the pooled studies of monetary and natural reward outcome revealed decreased activation in the right striatum (peak MNI coordinates = 14, 4, -8, z = -4.615, p < 0.0025, 294 voxels), with the cluster encompassing mainly the putamen and extending into the caudate, and the subgenual anterior cingulate (peak MNI coordinates = 0, 2, -8, z = -3.740, p < 0.0025, 35 voxels) in depression (Fig. 2). There was low between-study heterogeneity (I^2 = 2.55% and 6.76%). Funnel plots for both clusters were asymmetrical and the tests for publication bias failed to reach statistical significance (right putamen, p = 0.55 and anterior cingulate, p = 0.854) (to check examples of funnel plots generated in our meta-analysis, see Supplementary Figure 1).

Analysis 2: Domain-specific (monetary versus natural) reward processing alterations in depression

During monetary reward outcome, depressed patients exhibited decreased activation in the right caudate (peak MNI coordinates = 10, 10, 4, z = -4.260, p < 0.0025, 87 voxels) compared to healthy controls (Fig. 2B). Low heterogeneity was observed for this analysis (I^2 = 11.75%), with funnel plots showing asymmetry. There was no statistically significant publication bias (p = 0.57).

During natural reward outcome depressed patients exhibited decreased activation in more dorsal parts of the striatum with the clusters being specifically located in the bilateral putamen (right putamen, peak MNI coordinates = 22, 8, -4, z = -4.826, p <
0.0025, 223 voxels; left putamen, peak MNI coordinates = -14, 8, -6, z = -4.164, p < 0.0025, 143 voxels) (Fig. 2C). There was low between-study heterogeneity ($I^2 = 0.7\%$ and 2.08\%). Funnel plots illustrated asymmetry for these two clusters. Testing for potential publication bias was not statistically significant (left putamen, $p = 0.89$ and right putamen, $p = 0.95$).

Analysis 3: Stage-specific (anticipation versus outcome) reward processing alterations in depression

Examining stage-specific alterations during the anticipation and outcome of monetary reward showed decreased activation in the right thalamus (peak MNI coordinates = 18, -26, 12, $z = -3.214$, $p < 0.0025$, 18 voxels) and left putamen (peak MNI coordinates = -30, 4, -2, $z = 3.466$, $p < 0.0025$, 12 voxels) during anticipation (Fig. 2D) in depression relative to controls. Low heterogeneity was recorded for both clusters with asymmetric funnel plots ($I^2 = 4.17\%$ and 18.63\% for right thalamus and left putamen, respectively). Publication bias tests were not statistically significant (right thalamus, $p = 0.61$ and left putamen, $p = 0.99$). For monetary reward outcome, as discussed in analysis 2, patients displayed decreased activation in the right caudate (peak MNI coordinates = 10, 10, 4, $z = -4.260$, $p < 0.0025$, 87 voxels). Similarly, low heterogeneity was witnessed in this step ($I^2 = 11.75\%$), with funnel plots showing asymmetry. Publication bias failed to reach statistical significance ($p = 0.57$). There were no regions of increased activation between depressed patients and healthy controls across all four meta-analyses.
Domain-specific (natural vs monetary) reward dysregulations: regional disjunction, network level and behavioral characterization

In line with the main aim of the present study, we followed up the reward domain-specific neurofunctional alterations in depression. A conjunction/disjunction analysis was implemented to further determine common versus separable regions of altered monetary vs natural reward outcome processing in depression. The direct comparison did not reveal an overlap between neural alterations in the two domains. It confirmed that decreased monetary outcome activity was located in the right caudate. In contrast, decreased natural outcome alterations were located in more dorsal regions of the striatum, i.e., the bilateral putamen (see Fig. 3A, monetary reward alterations, M-N depicted in green and natural reward alterations, N-M depicted in blue).

Network-level and co-activation characterization of the identified striatal regions for monetary (Fig. 3B) and natural reward dysregulations (Fig. 3C) revealed functional connectivity, meta-analytic co-activation, and seed-based functional connectivity maps. The caudate region was identified for monetary reward outcome dysfunctions coupled with core regions of the mesocorticolimbic pathways, including bilateral ventral striatal regions, ventral tegmental area (VTA) and cortical midline structures, while the putamen region was identified for natural reward outcome dysfunctions coupled stronger with bilateral dorsal striatal regions as well as lateral frontal and insular regions. For further details, see also conjunction of the meta-analytic maps in Supplementary Figure 2.
Behavioral characterization of the identified regions (caudate and putamen) was conducted using the Brain annotation toolbox. Examination of the top 20 behavioral terms revealed that both regions were characterized by reward, motivation and emotional arousal associated terms, while the caudate region was strongly related to decision making and compulsive behavior and the putamen region was stronger involved in motor and behavioral control (see also Fig. 4A and Fig. 4B, taking note that a stronger association is depicted as smaller p-values, which indicates more significance).

Genetic and receptor level characterization

Genetic expression analyses revealed that S-antigen visual arrestin (SAG) was the most expressed gene in both regions of interest (caudate and putamen). Also, the top ten genes were generally highly similar. The summary of the top ten genes acquired for each region is displayed in Fig. 4C. Comparison of the mean neurotransmitter density values of DAT and 5HT neurotransmitter in the caudate (t = 10.2335, p < 0.001, df = 244) and putamen (t= 10.1430, p < 0.001, df = 244) is displayed in Fig. 4D (see also Supplementary Figure 3 for the normalized receptor maps of SHT and DAT).

Exploratory analyses

Meta-regression analyses revealed that the results obtained from the main meta-analysis were not influenced by age or gender (Supplementary Figure S4). Linear model analyses further revealed that medication had no significant effect on the alterations observed during natural reward outcome (left and right putamen). However, the linear model for medication effects during monetary outcome overlapped with the meta-
analytic effects of depression identified in the right caudate (Supplementary Figure S5).

To further determine a potential confounding effect of medication, we recomputed the analyses after excluding data from patients with medication and differences between patients and healthy controls in terms of decreased activity during monetary reward outcome remained stable in the right caudate (retaining data from 7/11 studies on monetary reward outcome, \(p < 0.0025 \)).

Discussion

Depressive mood and anhedonia represent key symptoms of major depression and have been associated with neurobiological dysregulations in reward and motivational processes. A growing body of studies have therefore utilized case-control fMRI designs to map the neurofunctional basis of reward dysregulations in individuals with depression. Several of these studies revealed altered neural activity in the mesocorticolimbic reward circuits in depression. However, it currently remains unclear whether the neurofunctional alterations vary as a function of the reward domain, i.e., natural or intrinsic rewards versus monetary or extrinsic rewards. We hereby conducted a pre-registered neuroimaging meta-analysis to systematically determine common and separable reward dysfunctions in depression. Quantitative analyses of 26 suitable neuroimaging studies focusing on reward-related processes in 633 patients and 644 healthy controls revealed that the right striatum and subgenual ACC exhibit generally reduced reward reactivity in patients with depression, with subsequent disjunction analyses demonstrating that more ventral parts of the right striatum (caudate) show
reduced reactivity during monetary reward outcome while more dorsal and bilateral parts of the striatum (putamen) show reduced reactivity during the receipt of natural rewards. Additional meta-analytic characterization and an independent fMRI dataset revealed that the two identified regions exhibit common as well as separable characteristics. On the network level, the caudate interacted with ventral striatum, ventral tegmental area (VTA), and cortical midline structures while the putamen exhibited stronger connectivity with more dorsal striatal and lateral fronto-insular regions. On the behavioral and molecular level, both regions were characterized by similar genetics, high dopaminergic neurotransmitter density and an involvement in reward-related processes. However, the putamen showed a stronger involvement in cognitive and motor control related processes plus a higher serotonergic receptor density. Finally, an exploratory meta-analytic examination of stage-specific reward alterations yielded decreased activation in the right thalamus and left putamen during monetary reward anticipation in depression.

Common alterations - general hedonic reward processing alterations in depression

The current meta-analysis revealed that the subgenual ACC and right putamen extending to the caudate, exhibited decreased reactivity in depression during general processing of reward. Our results align with several original studies that have demonstrated altered brain activity in these regions during reward processing in depression. The striatum has been associated with both, monetary and natural reward...
processing in healthy individuals (60–63) and dysfunctional reward processing in this region has been reported in several mental disorders, including depression, schizophrenia and addiction (30,64–68).

The subgenual ACC has been consistently involved in reward processing (69), as well as regulatory control in cognitive as well as emotional domains (70–72), and may serve an integrative function to evaluate rewards and guide the most appropriate choices between rewards (73). Recent neuropathological models suggest a key role of the sgACC in mood disorders including depression (74,75). In fact, it has been described as a region that lies between the cognitive and emotional networks of the brain, which is critical in the conveyance of emotional information from the limbic system to higher cognitive systems of the brain (76,77). A previous meta-analysis has also shown decreased volume of the sgACC in mood disorders (78). Reduced activation in this region is distinctively associated with depression as it cuts across behavioral, emotional and cognitive aspects.

Distinct neurofunctional alterations during hedonic processing of natural and monetary rewards

While our findings on the neurofunctional basis of general reward processing alterations in depression align with previous meta-analyses, the key aim of the present meta-analysis was to further segregate neurobiological dysregulations during hedonic processing of different rewards. We hypothesized a common ventral striatal deficit across natural and monetary rewards in depression, however we observed non-
overlapping alterations such that ventral caudal regions displayed reduced reactivity during monetary rewards while more dorsal striatal regions showed decreased reactivity towards natural rewards. Both regions have been involved in reward processing across domains (79) and general reward processing alterations in depression (30,62,80,81). However, the striatum is organized along a ventral to dorsal axis with respect to different behavioral domains and network-level interactions. The ventral parts of the caudate have been primarily involved in reward, reinforcement and incentive salience processing while the more dorsal parts of the striatum mediate sensorimotor processes and some executive functions such as inhibitory control (82–84). In line with this functional specialization of the striatum subregions, the identified caudate region exhibited strong connections with ventral parts of the striatum, the VTA and cortical midline structures strongly involved in reward-related processing while the putamen region coupled with dorsal striatal regions as well as lateral frontal and insular regions involved in interoceptive processes, pain empathy and regulatory control (82,85,86).

The conceptual and network level differentiation was additionally mirrored on the behavioral level such that the meta-analytic behavioral characterization indicated that both regions contribute to reward processes, but that the more ventral region was characterized by an additional involvement in compulsivity, learning and motivational processes while the more dorsal region additionally showed an involvement in motor and behavioral control processes. Together the neurofunctional, network and behavioral characterization may indicate that, (1) different neurobiological mechanisms underlie depression-related reward dysregulations in the hedonic processing of
monetary and natural rewards, and that, (2) the generalization and ecological validity of the prevailing reward paradigms incorporating small amounts of monetary incentives to situations in everyday life that engage primarily natural rewards is limited.

On the molecular level, both regions exhibited a similar genetic profile such that S-antigen visual arrestin (SAG), SLC35D3 and MME showed high expressions. SAG has been associated with the G-protein-coupled receptor reactivity and thus sensitivity to several neurohormones or neurotransmitters. The SLC35D3 gene has been associated with mid-brain and striatal dopamine signaling (87) while MME has been associated with the inactivation of several neuropeptides such as oxytocin (88) (detailed characterization see also Supplements, Table S2). Dopamine and oxytocin have been associated with network-level modulation of striatal circuits and reward processing across natural and monetary reward domains (53,89,90) and in interaction with the respective stimuli may shape context-dependent reward dysregulations in depression.

In terms of neurotransmitter expression, both regions exhibited a high expression of DA while the dorsal striatal region identified for natural reward processing deficits exhibited a considerably higher 5-HT expression. Both neurotransmitter systems have been strongly associated with the pathophysiology of depression (91,92) (but see also (93). Dopamine has been described as the common currency by which animals pursue goals and therefore alterations in the dopaminergic system could underlie symptoms including anhedonia (94). Serotonin has been found to play a role in emotional and reward processes, in particular (dysregulated) natural reward processing (95,96). Within the context of the present results differences in the serotonin system may reflect a
stronger engagement of serotonergic signaling in natural reward processing deficits in depression.

Stage-specific neurofunctional reward processing alterations in depression – anticipation vs outcome

While the outcome of rewards is commonly considered as a hedonic process, the anticipation of rewarding outcomes is commonly considered as a motivational process. Dysregulated motivational and approach tendencies towards pleasant events have long been associated with depression (97). However, previous findings in depression have remained largely inconsistent with respect to the anticipation of rewards. For instance, depressed patients have demonstrated elevated activation during monetary reward anticipation in the anterior cingulate (37,98) while other studies reported a relatively decreased anticipatory signal in striatal regions including the bilateral caudate, bilateral putamen, ventral striatum and globus pallidus (30,36,38). Partly resembling these previous findings, we observed decreased anticipatory activity during monetary rewards in the thalamus and putamen of depressed patients. The thalamus represents an early detection node for salient stimuli including rewards and its connections with the striatum are involved in orchestrating behavioral and attentional reactions in response to different environmental cues (99). Decreased striatal activity during the anticipation of reward has been reported in depression (30,62) as well as other mental disorders characterized by motivational dysregulations, such as schizophrenia and addiction (100,101) and thus may represent a transdiagnostic marker for deficient motivation and engagement.
The present findings have to be interpreted in the context of some limitations inherent to the meta-analytic approach and the available original studies. First, the exploratory linear model analysis revealed potential confounding effects of treatment on the identified region during monetary outcome. Previous studies have demonstrated effects of anti-depressive treatment on brain structure and function (102). Although natural reward processing was not affected and both results remained stable after excluding studies with medication, future original studies are required to explore effects of treatment on reward-related neural dysregulations in depression. Second, some studies mixed unmedicated and medicated patient groups when performing experiments in a single study and as pointed out by (98), this increases the chances of type II errors. Future studies may recruit patients who have a uniform medication status in order to promote more reliable and cohesive results in original studies and meta-analyses. Third, the number of studies for the anticipation of natural rewards was insufficient to explore differences between natural and monetary reward anticipation. Finally, the number of original studies was moderate, for example, only 10 original studies were eligible for inclusion natural reward outcome category.

In summary, the present meta-analysis supports the notion of general reward processing deficits in depression. However, the underlying neurofunctional dysregulations vary according to reward type (e.g., monetary and natural rewards) and sub-processes (e.g., anticipation and outcome). Previous work has largely focused on extrinsic (monetary) rewards to map disrupted reward processing in mental disorders such as depression. However, this may have overshadowed deficits in the processing of
natural rewards. Natural rewards prevail in everyday life and shape our social
interactions and thus dysregulations in this domain may lead to marked impairments in
everyday life. The present meta-analysis has revealed distinguishable neurofunctional
reward processing deficits in depression, suggesting that natural and monetary reward
processing alterations may be rooted in distinct neurobiological dysfunctions.

Funding

The present study was supported by the National Natural Science Foundation of China
(NSFC 82271583; 32250610208) and the China Brain Project (MOST2030, Grant No.
2022ZD0208500).

Conflict of interest

The authors declare that there were no partnerships whether commercial or financial,
that could be interpreted as a possible conflict of interest.

Data availability statement

Studies included in the meta-analyses have been cited in the manuscript. Coordinates will be
made available upon request.
References

70. Drevets WC, Savitz J, Trimble M. The Subgenual Anterior Cingulate Cortex in Mood Disorders. CNS Spectr [Internet]. 2008 [cited 2022 Sep 19];13(8):663. Available from: /pmc/articles/PMC2729429/

Fig. 1 Flow diagram of the systematic literature search and identification of suitable original studies.

Fig. 2 Results of the primary meta-analyses on dysfunctional reward processing in depression. A Display of regions that showed generally reduced reactivity during reward processing in depression as compared to healthy controls. Subsequent contrast meta-analyses revealed regions that are specifically dysfunctional during the hedonic processing of (B) monetary and natural (C) rewards. D shows region with altered activation in depression during the anticipation of monetary rewards (p < 0.0025 uncorrected, k ≥ 10 voxels)

Fig. 3 Regional and network level characterization of the monetary and natural reward outcome alterations in depression. A Conjunction and disjunction analyses of monetary versus natural outcome alterations in depression. Meta-analytic and voxel-wise mapping of the identified regions using Neurosynth and independent resting state fMRI data. B Brain networks of the identified caudate region of monetary reward outcome alterations. C Brain networks of the identified putamen region of natural reward outcome alterations. MAFC, meta-analytic functional connectivity; MACo, meta-analytic co-activation; VWFC, voxel-wise functional connectivity.

Fig. 4 A Meta-analytic topic mapping of the right caudate. B Meta-analytic topic mapping of the right putamen. The terms are arranged and read from top in clockwise direction according to p-values. C Genetic expression of the caudate (left side) and putamen (right side). The plot shows the various genetic symbols according to their respective correlation values. D Bar chart illustrating the mean density values of 5-HT and DAT.
Table 1. Demographic information of included studies

<table>
<thead>
<tr>
<th>Monetary rewards</th>
<th>Patients</th>
<th>Mean_p</th>
<th>SD</th>
<th>Medication</th>
<th>Controls</th>
<th>Mean_c</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fischer 2019</td>
<td>32/NA</td>
<td>17.87</td>
<td>2.58</td>
<td>0</td>
<td>18/NA</td>
<td>19.09</td>
<td>2.93</td>
</tr>
<tr>
<td>Mori 2016</td>
<td>15/9</td>
<td>18.5</td>
<td>0.6</td>
<td>0</td>
<td>15/7</td>
<td>19.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Ubl 2014</td>
<td>30/16</td>
<td>46</td>
<td>11.85</td>
<td>0</td>
<td>28/15</td>
<td>43.96</td>
<td>2.18</td>
</tr>
<tr>
<td>Martin-Soelch 2021</td>
<td>16/12</td>
<td>24.31</td>
<td>4.08</td>
<td>0</td>
<td>16/12</td>
<td>25.19</td>
<td>4.79</td>
</tr>
<tr>
<td>Pizzagalli 2009</td>
<td>26/15</td>
<td>43.17</td>
<td>12.98</td>
<td>0</td>
<td>31/13</td>
<td>38.8</td>
<td>14.48</td>
</tr>
<tr>
<td>Dichter 2012</td>
<td>19/15</td>
<td>23.6</td>
<td>4.09</td>
<td>0</td>
<td>19/12</td>
<td>27.9</td>
<td>6.3</td>
</tr>
<tr>
<td>Hall 2014</td>
<td>29/16</td>
<td>37.01</td>
<td>8.48</td>
<td>51.72</td>
<td>29/16</td>
<td>37.38</td>
<td>9.78</td>
</tr>
<tr>
<td>Arrondo 2015</td>
<td>24/7</td>
<td>33.08</td>
<td>9.15</td>
<td>54</td>
<td>21/4</td>
<td>34.33</td>
<td>10.11</td>
</tr>
<tr>
<td>Chase 2013</td>
<td>40/31</td>
<td>31.04</td>
<td>8.04</td>
<td>NA</td>
<td>37/25</td>
<td>33.09</td>
<td>6.23</td>
</tr>
<tr>
<td>Burrows 2021</td>
<td>88/61</td>
<td>34.34</td>
<td>11.06</td>
<td>70.45</td>
<td>44/25</td>
<td>30.91</td>
<td>10.15</td>
</tr>
<tr>
<td>Smoski 2009</td>
<td>14/7</td>
<td>34.8</td>
<td>14.3</td>
<td>0</td>
<td>15/9</td>
<td>30.8</td>
<td>9.7</td>
</tr>
<tr>
<td>*Smoski 2011</td>
<td>9/NA</td>
<td>34.4</td>
<td>15.1</td>
<td>44.44</td>
<td>13/NA</td>
<td>26.2</td>
<td>6.3</td>
</tr>
<tr>
<td>Segarra 2016</td>
<td>24/7</td>
<td>33.08</td>
<td>9.15</td>
<td>54.16</td>
<td>21/4</td>
<td>34.33</td>
<td>10.11</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Age</td>
<td>Sex</td>
<td>Duration</td>
<td>Participants</td>
<td>Age</td>
<td>Sex</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
<td>--------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Admon 2015</td>
<td>26/NA</td>
<td>42.66</td>
<td>11.72</td>
<td>0</td>
<td>29/NA</td>
<td>37.75</td>
<td>14.05</td>
</tr>
<tr>
<td>DelDonno 2019</td>
<td>23/16</td>
<td>25.09</td>
<td>3.32</td>
<td>0</td>
<td>27/23</td>
<td>29.15</td>
<td>9</td>
</tr>
<tr>
<td>Gorka 2014</td>
<td>9/6</td>
<td>25.4</td>
<td>7.7</td>
<td>11.11</td>
<td>18/13</td>
<td>29.5</td>
<td>13.1</td>
</tr>
<tr>
<td>Knutson 2008</td>
<td>14/NA</td>
<td>30.71</td>
<td>8.8</td>
<td>0</td>
<td>12/NA</td>
<td>28.67</td>
<td>4.25</td>
</tr>
<tr>
<td>Natural rewards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oh 2021</td>
<td>108/55</td>
<td>31.98</td>
<td>13.09</td>
<td>0</td>
<td>108/86</td>
<td>29.86</td>
<td>10.58</td>
</tr>
<tr>
<td>Epstein 2006</td>
<td>10/9</td>
<td>35.6</td>
<td>NA</td>
<td>0</td>
<td>12/7</td>
<td>32</td>
<td>NA</td>
</tr>
<tr>
<td>Gradin 2015</td>
<td>25/17</td>
<td>24.48</td>
<td>5.52</td>
<td>0</td>
<td>25/17</td>
<td>25.44</td>
<td>5.02</td>
</tr>
<tr>
<td>Keedwell 2005</td>
<td>12/8</td>
<td>43</td>
<td>9.8</td>
<td>91.67</td>
<td>12/8</td>
<td>36</td>
<td>14.6</td>
</tr>
<tr>
<td>McCabe 2009</td>
<td>13/11</td>
<td>NA</td>
<td>NA</td>
<td>46.15</td>
<td>14/9</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Kumari 2003</td>
<td>6/6</td>
<td>44</td>
<td>NA</td>
<td>0</td>
<td>6/6</td>
<td>43.5</td>
<td>NA</td>
</tr>
<tr>
<td>Canli 2004</td>
<td>15/12</td>
<td>35.1</td>
<td>NA</td>
<td>46.7</td>
<td>15/12</td>
<td>30.7</td>
<td>NA</td>
</tr>
<tr>
<td>Fournier 2013</td>
<td>26/18</td>
<td>30.6</td>
<td>7.8</td>
<td>26.92</td>
<td>28/16</td>
<td>32.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Gotlib 2005</td>
<td>18/13</td>
<td>35.2</td>
<td>10.262</td>
<td>50</td>
<td>18/13</td>
<td>30.8</td>
<td>NA</td>
</tr>
<tr>
<td>*Smoski 2011</td>
<td>9</td>
<td>34.4</td>
<td>15.1</td>
<td>44.44</td>
<td>13</td>
<td>26.2</td>
<td>6.3</td>
</tr>
</tbody>
</table>
N/F Total number of participants/Total number of female participants, Mean_p mean age of patients, Mean_c mean age of controls, SD standard deviation. *The coordinates of this study were merged into one text file when performing the general reward meta-analysis to preserve its independence.
Records identified through database search (n = 1564, 271)

Extra records from other sources (n = 0, 13)

Records after removing duplicates (n = 1543, 284)

Records screened (n = 1543, 284)

Monetary rewards

Natural rewards

Records excluded based on titles/abstracts (n = 1695)

Full-text articles assessed for eligibility (n = 82)

Full-text articles excluded with reasons (n = 43, 14)

ROI = 7, 5
VOI = 1, 0
No group differences = 9, 4
Association = 4, 2
Comorbid = 3, 1
Other tasks = 13, 1
Only patients = 2, 0
Another modality = 3, 1
Aging-related = 1, 0

Studies included in the meta-analysis (n = 26)

Monetary reward anticipation (n = 13)

Monetary reward outcome (n = 11)

Natural reward outcome (n = 10)
A General reward

\[y = 4 \quad z = -8 \]

B Monetary reward outcome

\[y = 10 \quad z = 5 \]

C Natural reward outcome

\[y = 6 \quad z = -4 \]

D Monetary reward anticipation

\[y = 16 \quad z = 4 \]

Brain Orientation: Left | Right

Brain Orientation: Right | Left