Brain connectivity changes underlying depression and fatigue in relapsing-remitting multiple sclerosis: a systematic review

Authors:

^Agniete Kampaite^a,b, ^Rebecka Gustafsson^a, Elizabeth N. York^a,b,c, Peter Foley^a,b,c, Niall J. J. MacDougall^c,d, Mark Bastin^a,b, Siddharthan Chandran^a,c,e, ^^Adam D. Waldman^a,b, ^Rozanna Meijboom^a,b

^a Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
^b Edinburgh Imaging, University of Edinburgh, Edinburgh Imaging Facility, QMRI, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
^c Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
^d Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow G51 4TF, UK
^e UK Dementia Research Institute, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
^Equal contribution
^^Equal contribution
*Corresponding authors

Correspondence:

Dr Rozanna Meijboom
Edinburgh Imaging
Centre for Clinical Brain Sciences, University of Edinburgh
Edinburgh BioQuarter: Chancellors Building
Edinburgh EH16 4SB, United Kingdom
E-mail: rozanna.meijboom@ed.ac.uk

Prof Adam Waldman
Edinburgh Imaging
Centre for Clinical Brain Sciences, University of Edinburgh
Edinburgh BioQuarter: Chancellors Building
Edinburgh EH16 4SB, United Kingdom
E-mail: Adam.Waldman@ed.ac.uk

Declarations of interest: none

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Fatigue and depression are common, debilitating, and intertwined symptoms in people with relapsing-remitting multiple sclerosis (pwRRMS). To elucidate the relationship between depression/fatigue and brain connectivity in pwRRMS we conducted a systematic review. Searched databases were PubMed, Web-of-Science and Scopus. Inclusion criteria were: participants with RRMS; published between 2001-2021; fatigue and depression assessments validated for MS; brain structural, functional (fMRI) or diffusion MRI (dMRI). 16 dMRI (13 fatigue, 4 depression) and 18 fMRI (16 fatigue, 4 depression) studies were included. ~50% of studies reported no correlation between MRI measures and fatigue/depression. Positive findings showed that abnormal cortico-limbic structural and functional connectivity was associated with depression, and fatigue was linked to connectivity measures in cortico-thalamic-basal-ganglial networks. Additionally, both depression and fatigue were related to altered cingulum structural connectivity, and functional connectivity involving thalamus, cerebellum, frontal lobe, and pre-/postcentral gyri. These findings suggest neuropathological effects in these regions may underlie fatigue and depression in pwRRMS, but the overall results were inconclusive. Further studies using optimised imaging protocols and validated depression and fatigue measures are required to clarify the substrate underlying these symptoms in pwRRMS.

Keywords: pwRRMS; RRMS; MRI; Fatigue; Depression; fMRI; DTI; dMRI; structural MRI, structural connectivity, functional connectivity, NODDI, PSMD.
1 Introduction

1.1 Multiple sclerosis
Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease, with 2.3 million people diagnosed worldwide (1). Central nervous system (CNS) damage in MS is typically characterised by white matter lesions (WMLs) in the brain and/or spinal cord, which are visible on magnetic resonance imaging (MRI), although atrophy is also recognised as an important feature (2). Relapsing-remitting MS (RRMS) is the most common subtype (around 85% of cases) and is characterised by alternating periods of neurological dysfunction (relapses) and relative clinical stability (remissions) (3, 4). RRMS presents with a wide range of features, including motor, visual, balance and sensory impairment (3). Importantly, in addition to the more obvious physical manifestations of MS, 'hidden disability' such as fatigue and depression, affects most patients, is debilitating, and challenging to treat (5-7).

1.2 Depression and fatigue in MS
Higher prevalence of depression in MS than in the general population has been previously reported (8), and fatigue may affect 60-80% of people with newly diagnosed MS (9). The relationship between depression and fatigue is complex; although considered distinct entities, there is a high degree of comorbidity and their phenotypes overlap (e.g., anhedonia, sleep disturbance) (10, 11). Fatigue is considered both a symptom and a consequence of depression, and conversely, people with fatigue are more likely to report depressive symptoms (11, 12). Given their overlap and high prevalence in people with MS, a better understanding of the substrate for fatigue and depression, and their relationship to known MS pathobiology is necessary.

Depression is one of the most common psychiatric disorders, defined by depressed mood and/or loss of interest or pleasure (13). Other symptoms are significant weight and appetite changes; reduction of physical movement; fatigue or loss of energy; negative self-image; reduced concentration; and suicidal thoughts (13). There are various potential causes of depression, ranging from predisposing temperament and personality traits, exposure to traumatic and stressful life events, to genetic susceptibility (14, 15). Multiple assessment tools are available for reliably measuring depression, some of which have been specifically validated for use in MS (16). Depression is considered a co-morbidity of MS (7) and may be caused by reduced quality of life (17), including changes in mental wellbeing due to living with MS, side effects of medications, individual situations, and social circumstances (18). Some studies, however, suggest that MS-specific pathophysiology, i.e., atrophy and inflammation of the CNS, contribute to high prevalence of depression in MS patients (19, 20). This is supported by the observation that depression is more prevalent in MS than in other neurodegenerative/inflammatory disorders (21, 22). There is, however, no correlation between depression and level of disability or disease duration in RRMS (23).

Fatigue is a complex and ambiguous symptom. Not only is it considered both a symptom and a consequence of depression (12), but it is also associated with numerous other physical and psychiatric diagnoses, due to its broad physical, cognitive, and emotional components (11). Fatigue is difficult to define, but it has been described as "reversible motor and cognitive impairment, with reduced motivation and desire to rest" (24) or "a subjective lack of physical and/or mental energy that is perceived by the individual or caregiver to interfere with usual or desired activity" (25). Fatigue can appear spontaneously, or be brought on by a combination of internal or external factors, such as mental or physical activity, humidity, acute infection, and food ingestion (7). A distinction is made between performance fatigue and subjective (or perceived) fatigue, where performance fatigability occurs through repeated activities and can be measured through assessments capturing functional decline (26, 27). Subjective fatigue, on the other hand, is internally (and
subjectively) perceived or experienced by an individual (26). As subjective fatigue is a core symptom in people with MS (25), we will focus on this type of fatigue in the current review.

Measurement of subjective fatigue can prove difficult. A variety of fatigue scales are available - some of which are validated in MS (28, 29) - although a ‘gold standard’ has not been established (9). Some of these measures consider subjective fatigue as one concept (e.g., fatigue severity scale [FSS] (30)), where others (e.g., fatigue scale for motor and cognitive functions [FSMC] (31)) differentiate between cognitive fatigue (e.g., concentration, memory, decision making) and motor fatigue (stamina, muscle strength, physical energy). In MS, fatigue is categorised as primary (caused by neurological abnormalities) and secondary (resulting from MS symptomatology) (9, 32). The pathophysiology underlying primary MS fatigue is not yet clear (33), although previous studies have suggested overlapping brain abnormalities between fatigue and depression in MS (34, 35), which is unsurprising given their strong association (36).

Treatments for depression and fatigue in MS are limited, and there is some controversy regarding their efficacy (9, 37, 38). Currently, few treatments (i.e., Amantadine, Modafinil, and SSRIs) are available in the UK for fatigue-specific management in MS (38). However, a randomised, placebo-controlled, crossover, double-blind trial suggests that Amantadine and Modafinil are not better than placebo in improving MS fatigue and have more side effects (39). Additionally, antidepressants and cognitive behavioural therapy have had some success in reducing both depression and fatigue symptomatology in MS (6). Given the limited treatment success, underlying CNS changes of fatigue and depression in MS need to be elucidated, which may aid development of more effective targeted treatments for both symptoms in MS.

1.3 Magnetic resonance imaging in MS
MRI allows for non-invasive, in vivo, detection of underlying CNS damage in MS. MRI is sensitive to MS brain pathology, as shown by previous research (40). Conventional ('structural') MRI has been widely used to study brain abnormalities in people with RRMS (pwRRMS) and provides information on location and severity of structural tissue damage such as WML burden and atrophy (41, 42), through qualitative reads or volumetric analyses. However, the ability of conventional MRI to explain clinical symptomatology is limited (43), and evidence for a relationship between fatigue or depression and conventional MRI measures in mixed subtype MS is inconsistent (44, 45). Emerging techniques, such as diffusion MRI (dMRI) and functional MRI (fMRI), can be used to investigate the role of more subtle brain abnormalities in the development of clinical symptoms in MS.

1.3.1 Brain connectivity measures
Diffusion MRI and fMRI can be used to study how different regions of the brain are connected, in terms of structure and function respectively, and form brain networks (46, 47). In MS, damage to tissue microstructure (e.g., myelin and axons) is a core pathology even in early disease (48, 49). Both intact myelin and axons are essential for signal transfer in the brain and thus successful functioning of brain networks (50). Damage to brain microstructure directly impacts structural connectivity and may also change functional connectivity (51). Brain connectivity abnormalities likely result in clinical symptomatology and may be underlying of MS symptoms such as fatigue and depression (52, 53).

1.3.2 Diffusion MRI
Diffusion MRI is sensitive to occult tissue damage at a microstructural level, which cannot be detected by conventional MRI (54), and allows for studying structural brain connectivity. A widely used dMRI model is diffusion tensor imaging (DTI) (55). DTI uses brain water molecule displacement to estimate the organisation of white matter (WM) tracts and tissues at the microstructural level (56). DTI metrics, such as fractional anisotropy (FA) and mean diffusivity (MD), are sensitive to changes in this microstructure, and are thought to reflect...
myelin and axonal damage (54, 56). Decreases in FA and increases in MD in several WM tracts have been linked to clinical disability as well as fatigue and depression scores in people with MS (45, 57). More recently, a DTI marker called ‘peak width of skeletonized mean diffusivity (PSMD)’ (58) was proposed to reconstruct microstructural WM damage across the brain and provide a global measure of structural connectivity (59, 60). A newer dMRI model is neurite orientation dispersion and density imaging (NODDI), which allows for more specific characterisation of WM microstructure than DTI, i.e., neurite (axon and dendrite) density, and dispersion of neurite orientation (61). Previous studies using NODDI have shown that neurite density is affected in MS (49, 62, 63).

1.3.3 Functional MRI
Functional MRI provides an indirect measure of brain activity and functional connectivity, using the blood oxygenated level-dependent (BOLD) technique, which reflects changes in blood oxygenation, volume, and flow (64). Task-based fMRI can be used to identify brain activation in regions simultaneously involved in task performance, whereas resting-state fMRI (rs-fMRI) is used to explore intrinsic functional connectivity between areas of the brain, known as resting-state networks (i.e., default mode network, salient network, basal ganglia network), based on coherence of spontaneous fluctuations in BOLD signal (65-67). Previous literature has shown brain activity and functional connectivity changes in the frontal lobe, limbic system and basal ganglia linked to high cognitive fatigue (64, 68) and depression (69) in individuals with MS. Additionally, functional connectivity changes in the default mode network (DMN), comprising mainly the medial prefrontal cortex, precuneus, posterior cingulate gyrus and inferior parietal gyrus (70, 71), have been associated with cognitive impairment and depression in people with MS (72, 73). The sensorimotor network (SMN), including postcentral and precentral gyri and the supplementary motor area (SMA), has also been suggested to show changes in functional connectivity associated with fatigue in MS (74, 75).

1.4 Purpose
Previous systematic reviews concluded that abnormalities of the cortico-striato-thalamo-cortical loop underlie fatigue symptomatology in MS of varying subtypes (45, 76, 77). Moreover, depression severity in MS is associated with structural and fMRI changes in several brain regions, of which frontal and temporal lobes are the most common finding (5, 78).

Brain connectivity changes underlying depression, fatigue, or both, specific to pwRRMS have not, however, been reviewed. The dominant pathophysiological processes and relapsing-remitting clinical features in RRMS differ from progressive MS subtypes, and it is therefore important to study underlying brain changes related to fatigue and depression, specifically in this group. Moreover, to our knowledge, potential overlap of brain connectivity changes underlying depression and fatigue in pwRRMS have not been reviewed systematically.

The aim of this study is to systematically review the literature to a) summarise and b) further elucidate, the relationship between conventional structural MRI or brain connectivity and depression or fatigue in pwRRMS. This may provide new insights into brain changes in RRMS related to depression and fatigue.
2 Methods

Ethics committee approval was not required for the current review.

The work was focussed on areas that have previously been identified as major priorities for pwMS (79, 80).

2.1 Inclusion and exclusion criteria

A systematic review of published primary research articles on brain abnormalities measured with structural, diffusion or functional MRI and their associations with fatigue or depression in pwRRMS was conducted. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (81) were followed where possible (see supplement for the PRISMA checklist). Studies were included if they met the following inclusion criteria: (1) structural, diffusion or functional MRI was used to study brain changes, (2) included a minimum sample size of 20 participants, (3) assessed either RRMS alone or distinguished between MS subtypes, and (4) used depression or fatigue assessments validated for use in MS, based on three previous reviews of MS-related depression and fatigue (5, 45, 82) (Table 1). Studies were excluded if: (1) they did not distinguish between subjects with RRMS and other MS subtypes in their results and data analysis, (2) if the participants were under the age of 18, or (3) if they assessed the effects of disease modifying therapies (DMTs) on MRI or clinical measures (unless they controlled for DMT usage).

<table>
<thead>
<tr>
<th>Depression assessment tools</th>
<th>Fatigue assessment tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beck Depression Index (BDI) (83)</td>
<td>Fatigue Severity Scale (FSS) (29)</td>
</tr>
<tr>
<td>Beck Depression Index-II (BDI-II) (84)</td>
<td>Modified Fatigue Impact Scale (MFIS) (29)</td>
</tr>
<tr>
<td>Diagnostic and Statistical Manual V semi-structured interview (DSM-V) (85)</td>
<td>Fatigue Impact Scale (FIS) (86)</td>
</tr>
<tr>
<td>Centre for Epidemiological Studies – Depression (CES-D) (85)</td>
<td>Fatigue Scale for Motor and Cognitive functions (FSMC) (31)</td>
</tr>
<tr>
<td>Chicago Multiscale Depression Inventory (CMDI) (85)</td>
<td></td>
</tr>
<tr>
<td>Patient Health Questionare-9 (PHQ-9) (85)</td>
<td></td>
</tr>
<tr>
<td>Hospital Anxiety and Depression Scale (HADS) (87)</td>
<td></td>
</tr>
<tr>
<td>Hamilton Depression Rating Scale (HDRS) (88)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Depression and fatigue assessment scales validated for use in multiple sclerosis. Short descriptions of each measure can be found in Gümüş et al. (2018) and Cheung et al. (2010) (86, 89).

2.2 Search strategy and selection process

The literature search was conducted by two independent reviewers using three online databases: PubMed, Web-of-Science and Scopus, and considered publications up to 15-05-2021. The databases were searched using a title, abstract and keyword search, for publications written in English and published in the past 20 years (2001-2021). The following search terms were used: ‘fatigue’ or ‘depression’ or ‘depressive symptoms’, in combination with ‘relapsing-remitting multiple sclerosis’ or ‘relapsing remitting multiple sclerosis’, in combination with ‘magnetic resonance imaging’ or ‘MRI’ or ‘neuroimaging’ or ‘brain atrophy’ or ‘diffusion tensor imaging’ or ‘diffusion MRI’ or ‘dMRI’ or ‘NODDI’ or ‘neurite orientation dispersion and density imaging’ or ‘tractography’ or ‘structural connectivity’ or ‘PSMD’ or ‘Peak width of Skeletonized Mean Diffusivity ‘ or ‘functional MRI’ or ‘fMRI’ or ‘resting state’. After
duplicates were excluded, publication titles and abstracts were read by two independent reviewers and any studies clearly not meeting inclusion criteria were excluded. In case the abstract lacked sufficient information, a brief read of the paper was performed. The remaining studies were then read in full, and further articles were excluded using the criteria described in section 2.1 (Figure 1).

2.3 Analysis approach
Outcome measures comprised prespecified structural, diffusion and functional MRI measures. Structural measures included regional and global brain, WM, and grey matter (GM) volume, WML volume, global and regional lesion count, and brain parenchymal fraction (BPF). Diffusion measures included DTI-derived whole-brain, regional and tract-specific FA, MD, axial diffusivity (AD), and radial diffusivity (RD); as well as regional and tract-specific NODDI, and PSMD metrics. For fMRI, both task-based and resting-state fMRI measures were included.

A qualitative approach was used to summarise the observations in the identified studies, due to heterogeneity in outcome measures, population, and experimental approach. The number of comparable experimental designs was too small to perform meaningful quantitative meta-analysis. For transparency, all details about included studies and statistically significant results are summarised in Supplementary Table 4 and Table 2, respectively. Findings of no significant association between the examined clinical and MRI imaging variables are summarised in Supplementary Table 5.

2.4 Quality assessment
The Newcastle-Ottawa scale was used to assess the quality of the longitudinal studies included (90) and the ‘Appraisal tool for cross sectional studies’ (AXIS) was used to assess quality of cross-sectional studies (91). Two reviewers conducted the quality assessment independently. See the full overview of the quality assessment process in the supplement.

3. Results

3.1 Literature search and study characteristics
The initial database search (Figure 1) identified 503 candidate publications of which 50 studies met the inclusion criteria (Table 2). Ten out of these 50 studies investigated the associations between depression and MRI measures (20, 35, 92-98), 35/50 assessed fatigue in association with MRI outcomes (23, 54, 99-127), and 5/50 investigated both depression and fatigue in association with MRI measures (128-131). Substantially fewer papers examining associations between CNS abnormalities and depression met the inclusion criteria, with three studies using DTI and four using fMRI measures. Of note, we found very few studies that used NODDI or PSMD and none of them met the inclusion criteria. An overview of rejected studies along with reasons for their rejections is available upon request.

3.2 Quality Assessment
For quality assessment of cross-sectional studies, 22/44 studies fulfilled all criteria except for sample size justification and 39/44 studies fulfilled more than 80% of the criteria (Supplementary Tables 1, 3). It should be noted that none of the assessed studies justified their sample sizes by ad hoc statistical power (Selection bias), therefore, not a single study was awarded full points. The six longitudinal studies had good standard of comparability and displayed a low risk of selection bias (Supplementary Table 2).
Identification of studies via databases and registers

Records identified from:
- PubMed (n = 153)
- Scopus (n = 243)
- Web of Science (n = 107)

Records removed before screening:
- Duplicate records removed (n = 178)
- Records marked as ineligible by automation tools (n = 0)
- Records removed for other reasons (n = 0)

Records screened (n = 325)

Records excluded (n = 196)

Reports sought for retrieval (n = 129)

Reports not retrieved (n = 0)

Reports assessed for eligibility (n = 129)

Reports excluded:
- Did not relate D/F to MRI measure (n = 22)
- Did not assess D/F (n = 19)
- Did not use structural MRI, DTI or fMRI (n = 13)
- Small sample size (less than 20) (n = 8)
- Non-validated D/F self-assessment scale (n = 6)
- Assessed effects of drug/treatment (n = 6)
- Examined spinal cord and not brain (n = 2)
- Heterogenous MS group (do not distinguish RRMS results) (n = 7)
- Study protocols (n = 2)

Studies included in review (n = 50)

Reports of included studies (n = ?)

Figure 1. Flowchart of literature search (performed in May 2021). D: Depression, DTI: Diffusion tensor imaging, F: Fatigue, (f)MRI: (functional) magnetic resonance imaging, (RR)MS: (relapsing-remitting) multiple sclerosis.
3.3 Depression

3.3.1 Conventional MRI measures
Fourteen studies were identified that investigated associations between structural brain measures and depression (Table 2) (20, 35, 92-98, 128-132). 8/14 studies did not find any associations (Table 2) (94, 95, 98, 114, 128-130, 132) and 6/14 reported significant associations (Tables 2, 3) between structural measures and depression severity (20, 35, 92, 93, 96, 131). Of note, six of these 14 studies investigated WML measures (20, 92, 94, 95, 97, 98), but only two observed associations between depression and lesion load (20, 92).

Decreased volume of limbic structures was associated with high depression scores in three studies (35, 93, 96) (Figure 2). Additionally, changes in the frontal lobe were significantly associated with depression in two studies (Table 2, Figure 2), specifically showing increased lesion load and reduced tissue volume in RRMS patients with high depression scores (35, 92). An association between lower volume of the cerebellar right Vermis Crus I and depression score was also observed (131), as well as an overall increase in T2 lesion burden in depressed pwRRMS (20).

3.3.2 Structural connectivity
Four studies were identified that assessed associations between structural connectivity measures and depression in pwRRMS, all of which used DTI (20, 94, 132, 133) (Tables 2, 4), but only two found statistically significant relationships between structural connectivity and depression in pwRRMS.

Nigro et al. (94) observed increased local path length between the right hippocampus and right amygdala in participants with high BDI scores. Additionally, they found an increase in ‘shortest distance’ (i.e., shortest distance between couples of brain nodes) - suggestive of reduced structural connectivity - between both the right hippocampus and the right amygdala and several regions, including the dorsolateral- and ventrolateral prefrontal cortex (DLPFC, VLPFC), as well as the orbitofrontal cortex (94) (Tables 2, 4). Hassan et al. (133) observed a correlation between depression score and decreased FA in the cingulum, uncinate fasciculus, and fornix. In contrast, Rojas et al. (2017) did not detect any differences in global FA among pwRRMS with and without depression (20) and Golde et al. (2020) did not observe any correlation between DTI and depression measures (132).

3.3.3 Functional connectivity
Depression severity in relation to fMRI was examined in four studies (Tables 2, 5) (95, 98, 130, 132), of which three used rs-fMRI (98, 130, 132) and one used task-based (emotional processing) fMRI (95). Three studies reported significant findings.

Firstly, Carotenuto et al. (2020), in their rs-fMRI study, reported altered functional connectivity between cerebellum, brainstem, and amygdala and cortical regions in RRMS patients with high HDRS scores (98) (Table 2). Secondly, Riccelli et al. (2016) reported negative correlations between BDI and functional connectivity of the hippocampus with orbitofrontal cortex, as well as the amygdala and DLPFC, in a task-based fMRI study (95) (Table 2). They also observed an association between reduced activity of the subgenual cingulate cortex and depression severity (95). Lastly, Jaeger et al. (2019) observed associations between altered functional connectivity in regions of the SMN and high BDI scores (130).
3.4 Fatigue

3.4.1 Conventional MRI measures
Thirty-seven studies were identified that investigated associations between structural brain abnormalities and fatigue in pwRRMS (Table 2) (23, 54, 98-118, 120-129, 131, 132, 134-136). Twenty-seven studies did not observe any associations (Table 2) (23, 54, 101, 103, 104, 106-110, 112, 116-118, 120-122, 124-129, 132, 135, 136) and 10/37 reported significant associations (Tables 5, 6) between fatigue and structural brain changes. Of note, 23/37 studies investigated WMLs, but only two studies found significant associations between fatigue and WMLs (99, 105), and one observed a link between motor fatigue and cortical lesions (113).

Four studies linked fatigue in pwRRMS to thalamic atrophy (102, 105, 123, 134) and one to lesion load in the thalamus (113). Moreover, three studies associated fatigue with cerebellar atrophy (105, 131, 134) and three with basal ganglia structures (100, 102, 105). Additionally, fatigue was associated with decreased volume of the caudate nucleus (100, 102, 105), inferior parietal gyrus (100, 102) and corpus callosum (114, 134) (Figure 2, Table 3). Furthermore, Andreasen et al. (2010) observed correlations between fatigue scores and several regions in the parietal, frontal, insular and temporal lobes, as well as the cingulate gyrus (100). In addition, Gomez et al. (2020) observed associations between fatigue and the occipital lobe, brainstem, and cingulate gyrus (134). Lastly, a weak correlation was detected between motor fatigue and WML volumes (113). In contrast however, four studies reported an absence of associations between thalamic atrophy and fatigue scores (108, 112, 116, 121). Similarly, one study reported no associations between basal ganglia volume and fatigue scores (104) and another between the limbic system and fatigue scores (108).

3.4.2 Structural connectivity
Thirteen studies were identified that evaluated the relationship between fatigue and dMRI measures, all of which used DTI. Five out of thirteen studies did not report any significant findings (Table 2) (54, 101, 104, 106, 132) and 8/13 found significant associations (Tables 2, 5).

Two studies observed negative correlations between cingulum FA and fatigue scores in pwRRMS (Table 4, Figure 2) (109, 110). In addition, Pardini et al. reported lower FA in the inferior occipitofrontal fasciculus, internal capsule, anterior thalamic radiation, and forceps minor in fatigued RRMS patients (110). Similarly, Bauer et al. observed a lower number of connectivity streamlines in the corticospinal tract in fatigued RRMS patients (136), and Wilting et al. (2015) found that reduced FA and increased MD values of the thalamus and basal ganglia were associated with fatigue (113). Moreover, fatigue correlated with lower FA in the right temporal cortex, and higher MD, RD, and AD in the thalamocortical tracts (115). Furthermore, Zhou et al. found a positive correlation between fatigue score and increased MD and RD of the WM tract connecting two DMN regions (i.e., medial prefrontal cortex and inferior parietal gyrus – the WM tract was not further specified) (135). Nigro et al. found increased ‘shortest distance’ between both the right hippocampus and right amygdala and a series of regions including the dorsolateral and ventrolateral prefrontal cortex, orbitofrontal cortex, sensory-motor cortices and SMA in RRMS patients with fatigue (94).

3.4.3 Functional connectivity
Six out of sixteen studies looking at fatigue and fMRI used a task-based approach (23, 111, 118-120, 125), and 10/16 used rs-fMRI (106, 107, 117, 121, 122, 130, 132, 134, 135, 137) (Table 2). Only three studies (117, 135, 137) did not observe functional changes in fatigued RRMS patients, while thirteen out of sixteen studies reported associations with fatigue for one or more regions (Table 5, Figure 4).
The left dorsal premotor area (part of the SMN) showed significant associations with fatigue in three task-based fMRI studies assessing either cognitive processing (Symbol Digit Modalities and Paced Serial Addition Tests) (119) or motor processing using a finger-tapping (120) or grip task (111) (Table 2). Additionally, associations between functional changes of the right caudate nucleus and fatigue were observed in two rs-fMRI studies (106, 121) and one task-based fMRI study assessing motor processing through finger-tapping and the nine-hole peg test (23) (Table 2). Moreover, the thalamus (118, 125) and cerebellum (120, 125) were associated with fatigue in two task-based fMRI studies each. Most DMN regions displayed altered resting-state connectivity in association with high fatigue scores, however, only the precuneus was observed in more than one study (106, 125) (Table 2). Additionally, altered functional connectivity in the regions of the frontal (106, 130), occipito-temporal (107, 122, 132, 134), and parietal (134) lobes were associated with fatigue in pwRRMS. In addition, motor activation of parietal lobe (23, 118) and insular cortex (118) was altered in RRMS patients with fatigue.

3.5 Fatigue and depression: overlap

3.5.1 Studies investigating both depression and fatigue together
Five studies assessed both fatigue and depression. All (128-132) examined the associations between depression and fatigue and structural MR measures, but only one paper observed overlapping changes. Specifically, Lazzarotto et al. (2020) reported significant correlations between BDI scores and lower volume of the right cerebellar vermis crus I, and between FSS score and reduced volume of left cerebellar lobule V, but other than cerebellum involvement for both, no other overlapping brain areas were found (131). The four remaining studies reported a lack of significant correlations between conventional MRI and depression or fatigue scores (128-130, 132). One study by Golde et al. (2020) used DTI, but found no associations with depression or fatigue, nor any overlap between the two symptoms in rs-fMRI measures (132). Jaeger et al. (2019), on the other hand, reported two overlapping brain areas using rs-fMRI. Specifically, they observed negative correlations of both BDI and FSS scores with functional connectivity of the ventral striatum and post-central gyrus (130).

Given the small number of studies studying depression and fatigue together, and the lack of overlap, the five studies were included in the total counts/summaries of studies investigating depression and fatigue separately.

3.5.2 Studies focusing on either depression or fatigue alone
Five out of ten publications studying only depression in relation to MRI measures did not include fatigue assessments (92, 93, 96, 98), and no studies excluded individuals with high fatigue scores. The remaining 5/10 studies either controlled for fatigue status (20, 35, 97) or included fatigue as a covariate or a clinical symptom of no interest (94, 95). Of the 35 publications reporting results of MRI measures in relation to fatigue only, 23/35 included depression assessments (23, 100-103, 106, 110-115, 118, 119, 122-127), with 15/23 excluding participants with high depression scores (23, 100, 101, 106, 110-115, 118, 122, 123, 125, 127) and 8/23 controlling for depression status (102, 103, 119, 124, 126).

3.5.3 Overlapping brain regions
For conventional MRI, several brain structures suggested to be associated with depression severity were also observed to be involved in fatigue in pwRRMS. Specifically, thalamic, and cerebellar volume were negatively correlated with depression and fatigue scores in at least one study per symptom (96, 102, 105, 108, 113, 123, 131) (Figure 2, Table 3). For structural connectivity, overlap between associations reported for dMRI measures and fatigue or depression was observed in the cingulum (Table 4, Figure 2). For functional connectivity, the postcentral- and precentral gyrus of the SMN showed altered functional connectivity
associated with depression and fatigue scores in at least one separate study per symptom (106, 130) (Table 2). Additionally, functional connectivity changes of the thalamus, (98, 118, 122, 125), cerebellum (98, 125), DLPFC (120, 121, 130), and L-inferior frontal gyrus (98, 125) were observed in association with fatigue or depression in one study per symptom (Table 5 and Figure 2).
<table>
<thead>
<tr>
<th>Authors</th>
<th>Fatigue assessment</th>
<th>Depression assessment</th>
<th>MRI sequence</th>
<th>Structural MRI</th>
<th>Diffusion MRI</th>
<th>Functional MRI</th>
<th>Major findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benesova et al., 2003 (92)</td>
<td>N/A</td>
<td>HDRS ± 18: 3 patients had severe, 2 moderate, 5 light D</td>
<td>T1W, T2W</td>
<td>Whole brain</td>
<td>Lesion area</td>
<td>N/A</td>
<td>Bigger lesion area in frontal lobe in patients with D compared to nD.</td>
</tr>
<tr>
<td>Nygaard et al., 2015 (35)</td>
<td>FSS: mean(SD): 4(1.7); Max-min: 1-7; 49.2% patients had FSS > 4</td>
<td>BDI: mean(SD): RRMS: 8.4(5.9); HC: 3.9(4.0); Min-max: RRMS: 0–24; HC: 0–16; % BDI +12 - RRMS: 27.1; HC: 6.9; excluded BDI > 16</td>
<td>T1W, FLAIR</td>
<td>Cortical surface area, thickness, and volume</td>
<td>N/A</td>
<td>N/A</td>
<td>Smaller cortical volume of frontal pole, para orbitalia, middle frontal-, orbital frontal-, pre- and postcentral gyrus, temporal fusiform, parahippocampal region, L-lateral occipital, and L-inferior parietal gyrus in participants with D. Higher fatigue scores were associated with smaller cortical volumes in the rostral and caudal middle frontal, and in parts of the pre- and post-central regions, of the right hemisphere.</td>
</tr>
<tr>
<td>Hassan et al., 2016 (129)</td>
<td>FSS: nD 12 ± 5; D 14.1 ± 4</td>
<td>BDI-II, DSM II-V</td>
<td>T1W, T2W, FLAIR, DTI</td>
<td>Total brain, GM and WM lesion volumes</td>
<td>Mean FA in cortico-spinal tract</td>
<td>N/A</td>
<td>Negative correlation between BDI-II scores and total brain volume and neocortical GM volume. Positive correlation with T2 lesion volume. No differences in global FA and in WM volume.</td>
</tr>
<tr>
<td>Štecková et al., 2010 (93)</td>
<td>NA</td>
<td>BDI-II ± 13 HC: 1.6±5; RRMS: 9.5±1.6</td>
<td>T1W, T2W, FLAIR</td>
<td>Hippocampus volume</td>
<td>N/A</td>
<td>N/A</td>
<td>Reduced volume of CA23DS region in patients with D compared to nD.</td>
</tr>
<tr>
<td>Negro et al., 2015 (94)</td>
<td>FSS: range: nD 2.7 ± 1.4(1–5.6); D 5.3 ± 1.4(1–7.6)</td>
<td>CES-D: All MS patients 27.3(10.4); RRMS 25.9(10.8); SPMS 31.2(8.6); PPMS 26.9(10.8). FSSM: All MS patients 30.9(11.1); RRMS 28.5(11.5); SPMS 37.5(6.9); PPMS 31.7(8.6)</td>
<td>T1W, PD/T1W</td>
<td>Total WM lesion load, BPF</td>
<td>N/A</td>
<td>N/A</td>
<td>No significant correlations.</td>
</tr>
<tr>
<td>Gold et al., 2016 (96)</td>
<td>N/A</td>
<td>BDI-II ± 13.2 HC: 0.54; MSII:14.0±11.5 (2–47); MS10:11.3±8.8 (1–24); 17/43 patients were taking SSRI.</td>
<td>T1W, T2W, FLAIR</td>
<td>Thalamus volume</td>
<td>N/A</td>
<td>N/A</td>
<td>High BDI scores correlated with reduced volume of thalamus five years after diagnosis and increased volume ten years after diagnosis.</td>
</tr>
<tr>
<td>Stecková et al., 2014 (96)</td>
<td>N/A</td>
<td>CES-D: All MS patients 27.3(10.4); RRMS 25.9(10.8); SPMS 31.2(8.6); PPMS 26.9(10.8). FSSM: All MS patients 30.9(11.1); RRMS 28.5(11.5); SPMS 37.5(6.9); PPMS 31.7(8.6)</td>
<td>T1W, T2W, FLAIR</td>
<td>GM, WM volumes, lesion load</td>
<td>Tractography WM connectivity</td>
<td>N/A</td>
<td>No structural correlates to BDI scores. Increased shortened pathlength between R-hippocampus and R-amygdaula, dorsomedial and ventrolateral PFC and the occipitofrontal cortex.</td>
</tr>
<tr>
<td>Carotenuto et al., 2020 (98)</td>
<td>N/A</td>
<td>HDRS: means(SD): RRMS 6.39±4.21; HC 0.56±0.95</td>
<td>T1W, T2W, FLAIR, rs-MRI</td>
<td>Whole brain lesion volume</td>
<td>N/A</td>
<td>N/A</td>
<td>No structural correlates to HDRS scores. Reduction in serotonergic and noradrenergic activity as well as increased cholinergic activity was positively correlated with high HDRS scores.</td>
</tr>
<tr>
<td>Ricci et al., 2016 (95)</td>
<td>FSS: [range] RRMS 3.62 [1.83] 01–7</td>
<td>DSSM: BDI [range]: HC 7.35 (5.08) [0–16] RRMS 11.10 (9.92) [0–45]; BDI-Fast Screen [range]: HC 1.94 (1.52) [0–5] RRMS 3.12 (3.55) [0–16]; BDI-Somatic Subscale [range]: HC 5.16 (3.38) [0–10] RRMS 7.64 (6.15) [0–27]</td>
<td>T1W, T2W, FLAIR, rs-MRI: categorise emotions of grey-scale photographs of faces</td>
<td>Total lesion load</td>
<td>N/A</td>
<td>N/A</td>
<td>Decreased activation of R-subgenual cingulate cortex in patients with high BDI scores. Negative correlation between BDI scores and functional connectivity between L-hippocampus and L-orbitofrontal cortex, R-L-DLPC and R-amygdaula.</td>
</tr>
<tr>
<td>Hassan et al., 2019 (133)</td>
<td>N/A</td>
<td>DSSM: BDI: 9–29</td>
<td>T1W, T2W, FLAIR, DTI</td>
<td>N/A</td>
<td>FA in Limbic system</td>
<td>N/A</td>
<td>D patients showed decreased FA values in the cingulum, UF, and the fornix; no differences in the mean FA of the anterior thalamic radiations; compared to HC, significant reduction in the mean FA of the cingulum, UF and the fornix; D had reduced FA of the cingulum, uncinate fasciculus and the fornix. No significant difference was found between the FA values of the anterior thalamic radiations in both groups. No conventional MRI reported.</td>
</tr>
<tr>
<td>Hollebrandt et al., 2006 (129)</td>
<td>FSS: 23 patients had ≥ 4.5 (51% of the total group)</td>
<td>BDI: 24% of the patients with some symptoms of a depression (BDI≤ 10) and 7% with a definite depression (BDI≥20).</td>
<td>T1W, T2W, FLAIR</td>
<td>BPF, ventricular brain fraction</td>
<td>N/A</td>
<td>N/A</td>
<td>Ventricle brain fraction or BPF did not correlate with either BDI or FSS scores.</td>
</tr>
</tbody>
</table>
Fatigue

Hildebrandt and Elzing, 2014 (128)

F: FSS>5, nF: FSS≤5
Change in F(Mean SD): No increase: 5.4 (1.5); Increase: 3.1 (1.0); Change in depressive mood(Mean SD): No increase: 3.5 (13.9); Increase: 38.5 (19.4)
BDI=12 considered depressed. Excluded the items on tiredness and sleep disorders. No data reported
T1W BPF N/A N/A No significant correlations

Lazzarotto et al., 2020 (131)

F: FSS ≤ 5
Mild-moderate (2 – 5) and severe (5+): D=16 (2.44:6.55) mean 4.43 SD 1.28; nD = 15 (1.95-6) mean 2.64 SD 1.38
T1W, FLAIR, DIR Cerebellum and brainstem Volume
N/A N/A N/A BDI correlated with lower volume of R-vermis crus I and FSS with L-cerebellar lobule V atrophy.

Jaeger et al., 2019 (130)

BDI-II ≥ 20 excluded
BDI-II Median (IQR): F: 11 (7); nF: 3 (5.5); HC: 2 (4)
T1W, FLAIR, rs-MRI Volumes
N/A rs-MRI; ROI: caudate nucleus, putamen
No correlation between macrostructural volumes and fatigue. Negative correlation with BDI-II scores: L-ventral striatum and L-postcentral gyrus/R-precentral gyrus. Negative correlation with FSS scores: L-ventral striatum and R-precentral gyrus; R-ventral striatum and R-postcentral gyrus. Positive correlations with FSS scores: L-DLPFC and L-parietal operculum; R-DLPFC and L- anterior supramarginal gyrus; R-parietal operculum, L-pre/postcentral gyrus and R-anterior supramarginal gyrus.

Dolbe et al., 2020 (132)

FSS range: HF (5.1–5), LF (1–3), Total 4.35 (0.26)
T12W, TIW, FLAIR
HF: FSS ≥ 5
HF: FSS ≤ 3
5), LF (1–3), Total (1–7)
Mean FSS at year 1: HF: 5.8 (0.26), MF: 3.8 (0.42), LF 2.6 (0.46), Total 4.19 (1.3)
Excluded participants with diagnosed clinical depression
T2W, FLAIR, MR spectroscopy
T2 lesion load, normal appearing WM
N/A N/A N/A No significant correlations between whole-brain volume or structural connectivity measures. F scores correlated positively with FFG based FC to the MPFC and negatively with FFG-based FC to the brain across the brain. Fusiform gyrus-based FC correlated with fatigue.

Cavallari et al., 2016 (103)

MPIS median (range) all 23 (0–67) C 37 (0–67) non-C 13 (0–42); MFIS cognitive, median (range): All patients 11 (0–31); Converters 13 (1–31) non-converters 6 (0–20)
(1–33)
T1W BPF, total T2 lesion volume
N/A N/A N/A No significant correlations

Tomasevic et al., 2013 (112)

F: FSS ≥ 16
nF: MFIS < 15
FSS: mean (sd) 3.6 (1.8); MFIS tot: mean (sd) 26.6 (13.8)
BDI-II > 13 excluded
mean (sd) 7.2 (3.9)
T1W GD+, T2W, TIW, FLAIR
Whole brain, Thalamus volume, cortical thickness
N/A N/A N/A No significant correlations

Morgante et al., 2011 (124)

F: FSS > 4
nF: ≤ 4
mean FSS: nF 2.2 ± 0.9; F 4.9 ± 0.8
HDRS (mean+?): nF 6.1 ± 4.6; F 6.4 ± 4.8
T1W GD+, T2W, transcranial magnetic stimulation
Lesion load
N/A N/A N/A No significant correlations between lesion volume and fatigue

Teliez et al., 2008 (126)

F: FSS ≥ 5 and/or MFIS > 38
nF: FSS <4.0. means (SD) FSS: RRMS 4.8 (1.5); HC 3.2 (1.2); means (SD) MFIS: RRMS 35.2 (22.9) HC 18.3 (11.9); means (SD) FSS: F 5.9 (0.7); nF 3.6 (1.15); means (SD) MFIS: F 48.0 (20.6); nF 18.7 (12.4)
BDI BDI (means (SD)): RRMS 9.8 (9.1) HC 5.2 (3.4); F 12.2 (8.9); nF 5.6 (6.4)
T2W, proton magnetic resonance
Frontal WM, lentiform nucleus, lesion load
N/A N/A N/A No significant correlations between lesion volume and fatigue.

Yarraguntla et al., 2019 (127)

LF: FSS ≤ 3
MF: FSS 3–5
HF: FSS ≥ 5
Mean(SEM) FSS: baseline: HF 6(0.12), MF 4(0.14), LF 1.8(0.2); Total 4.35(0.26), FSS range: HF (5.1–7), MF (3.1–5), LF (1–3), Total (1–7)
Mean FSS at year 1: HF 5.8(0.26), MF 3.8(0.42), LF 2.6(0.46), Total 4.19(1.3)
Excluded participants with diagnosed clinical depression
T2W, FLAIR, MR spectroscopy
T2 lesion load, normal appearing WM
N/A N/A N/A No significant correlations between T2 lesion volume and fatigue.
<table>
<thead>
<tr>
<th>Author et al., 2018 (99)</th>
<th>F: FSS ≥ 4</th>
<th>MFIS Median (range) 23 (0–63)</th>
<th>NA</th>
<th>T1W, T2W, FLAIR</th>
<th>Whole brain lesion load</th>
<th>N/A</th>
<th>N/A</th>
<th>High FSS and MFIS correlated with increased lesion load in posterior corona radiata.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damasceno et al., 2016 (105)</td>
<td>F: FSS score > 4; FSS mean/SD RRMS 3.54 ± 1.69, HC 2.65 ± 0.88</td>
<td>Used our non-approved test</td>
<td>FLAIR, T1W, T1W</td>
<td>WM cortical lesions</td>
<td>N/A</td>
<td>N/A</td>
<td>Cerebellar cortical lesion volume was the only independent predictor of fatigue. Participants with F had higher GM lesion and GM volumes in cerebellum compared to nF. High FSS scores correlated with increased volume of thalamus, decreased volume of caudate and nucleus accumbens. No correlation to brain lesion volume nor to cortical and subcortical GM volumes.</td>
<td></td>
</tr>
<tr>
<td>Catalano et al., 2010 (102)</td>
<td>F: FSS ≥ 4 in all three examinations (baseline, 3 and 6 months); FSS mean: F: 5.0(1.75) (range 4.00–6.67) nF: 2.2 (1.0) (range 0–3.88)</td>
<td>D: BDI ≥ 18</td>
<td>FLAIR, T1W</td>
<td>Thalamic and basal ganglia volume, regional cortical thickness</td>
<td>N/A</td>
<td>N/A</td>
<td>Lower volume of putamen, caudate nucleus, thalamus, superior frontal gyrus and inferior parietal gyrus in participants with F compared to nF.</td>
<td></td>
</tr>
<tr>
<td>Yaldizli et al., 2011 (114)</td>
<td>FSS (mean and 95% CI) Total 3.37 ± 1.88 (2.92; 3.82) FSS≥4: 2.1 ± 1.04 (1.78; 2.43) FSS≤4: 5.27 ± 1.09 (4.85; 5.69)</td>
<td>BDI ≥ 15 excluded</td>
<td>T1W GD+, T1W, T2W, FLAIR</td>
<td>Corpus callosum volume</td>
<td>N/A</td>
<td>N/A</td>
<td>FSS correlated with the reduction in corpus callosum volume over 5-years compared to nF.</td>
<td></td>
</tr>
<tr>
<td>Saberi et al., 2021 (123)</td>
<td>MFIS</td>
<td>No scores</td>
<td>Excluded BDI/FS ≥ 10</td>
<td>T1W</td>
<td>Thalamic sub-region volume</td>
<td>N/A</td>
<td>N/A</td>
<td>Atrophy of left superior, anterior, and medial anterior thalamus was positively correlated with cognitive fatigue.</td>
</tr>
<tr>
<td>Niepel et al., 2006 (108)</td>
<td>F: FSS ≥ 5, nF: FSS ≤ 4.</td>
<td></td>
<td>3D FLASH, T2W</td>
<td>Thalamus, putamen, caudate nucleus T2 lesion load</td>
<td>N/A</td>
<td>N/A</td>
<td>No structural differences between groups.</td>
<td></td>
</tr>
<tr>
<td>Zellini et al., 2009 (116)</td>
<td>F: FSS ≥ 5</td>
<td>nF: FSS ≤ 4</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No structural differences between groups.</td>
<td></td>
</tr>
<tr>
<td>Bisecco et al., 2016 (101)</td>
<td>F: FSS > 4 Mean FSS (range): HC 2 (1–3.9), RRMS 3.6 (1–6.8); nF 2 (1–3.6); F 5.2 (2.6–8.6)</td>
<td>Excluded people with clinical depression</td>
<td>Used our non-approved test</td>
<td>T1W, DTI, T2W</td>
<td>Whole brain volume (lesion, GM, WM)</td>
<td>FA, MD, RD</td>
<td>N/A</td>
<td>No structural- or diffusion differences between groups.</td>
</tr>
<tr>
<td>Codella et al., 2002 (104)</td>
<td>F: FSS ≤ 4 Mean FSS (SD) nF 19.7 (5.2) F 38.9 (7.3)</td>
<td>N/A</td>
<td>DE TSE, 2D GE, pulsed gradient spin-echo planar</td>
<td></td>
<td>Magnetisation transfer ratio</td>
<td>MD</td>
<td>N/A</td>
<td>No structural- or diffusion differences between groups.</td>
</tr>
<tr>
<td>Andreasen et al., 2010 (109)</td>
<td>F: FSS ≥ 4 (median (range)): F: 6.3 (5–7); nF: 2.8 (1–4); HC: 2.7 (2–4);</td>
<td>MDI ≥ 25 excluded</td>
<td>T1W, T2W, FLAIR, DTI, MRS proton spectroscopy</td>
<td></td>
<td></td>
<td>FA, MD</td>
<td>N/A</td>
<td>High FSS negatively correlated with volume of: R-superior frontal, R-anterior cingulate, L-anterior frontal, R-middle temporal, R-superior temporal gyrus, L-anterior insula, R-superior parietal, R-inferior parietal, L-inferior parietal gyrus, and R-caudate nucleus. No diffusion correlates to FSS scores.</td>
</tr>
<tr>
<td>Pardini et al., 2015 (109)</td>
<td>F: FSS ≥ 37 (mean/SD); MFIS 27.6±17.3</td>
<td>N/A</td>
<td>T1W, PD/T2W, DTI</td>
<td>Whole brain volume</td>
<td>FA</td>
<td>N/A</td>
<td>Significant association between structural damage and fatigue levels in two discrete white matter clusters in the left cingulate bundle. The damage in these clusters was associated with loss of structural connectivity in the anterior and medial cingulate cortices, dorsolateral prefrontal areas and in the left caudate. MFIS was associated with WM diffusion measures nearby to the anterior and medial cingulate cortices, respectively.</td>
<td></td>
</tr>
<tr>
<td>Wiking et al., 2016 (113)</td>
<td>F: FSMM = 27 nF: FSMM = 22 RRMS (range) nF 33 (20–58) F 68 (51–97)</td>
<td>HADS > 10 excluded</td>
<td>T1W, FLAIR, DTI</td>
<td>GM, WM, and CSF fractions; BPF and lesion volume</td>
<td>MD, FA</td>
<td>N/A</td>
<td>Motor fatigue was weakly positively correlated with lesion volume and thalamic lesion load. Lesion volume was not correlated with cognitive fatigue. Higher MD and lower FA in the thalamus and basal ganglia (including the caudate nucleus, globus pallidus and putamen) in participants with cognitive fatigue.</td>
<td></td>
</tr>
<tr>
<td>Pardini et al., 2010 (110)</td>
<td>F: MFIS > 38 LF: MFIS < 38 RRMS 31.1±18</td>
<td>BDI ≥ 18 excluded</td>
<td>T1W, T2W, ROI volumes</td>
<td></td>
<td></td>
<td>N/A</td>
<td>No structural measures associated with MFIS scores. High MFIS scores negatively correlated with structural connectivity of: internal capsule, forceps minor, anterior thalamic radiation, and cingulate bundle and inferior frontal-occipital fissuclus. MFIS scores negatively correlated with FA values in the deep left frontal WM.</td>
<td></td>
</tr>
</tbody>
</table>
Farrugia et al., 2018 (110)

<table>
<thead>
<tr>
<th>Group</th>
<th>Feature</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excluded people with clinical depression</td>
<td>Thalamus, pallidum, R-temporal cortex</td>
<td>MD, FA</td>
</tr>
</tbody>
</table>

Zhou et al., 2016 (117)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFIS (Mean/SD)</td>
<td>N/A</td>
</tr>
<tr>
<td>T1W, T2W, FLAIR, DWI, DTI, 3D, FSPGR GD</td>
<td>Volume ROI: corpus callosum, thalamus, cerebellar peduncles</td>
</tr>
<tr>
<td>MD, FA</td>
<td>No structural or diffusion correlates with fatigue severity</td>
</tr>
</tbody>
</table>

Farrugia et al., 2018 (110)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSS (Mean/SD)</td>
<td>4.4/1.7</td>
</tr>
<tr>
<td>FSS mean(SEM)</td>
<td>4.35 ± 26 range (1–7)</td>
</tr>
<tr>
<td>Mean FSS at year 1.419 ± 3 range (1–7)</td>
<td></td>
</tr>
<tr>
<td>Mean FSS at baseline: mean(SEM) (Range):</td>
<td></td>
</tr>
<tr>
<td>HP: 6 ± 1.251–7</td>
<td>MF: 4 ± 143–1.5</td>
</tr>
<tr>
<td>LF: 1.89 ± 21–3</td>
<td>Total: 4.35 ± 261–7</td>
</tr>
</tbody>
</table>

Huang et al., 2015 (106)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSS Mean ±SEM(Range)</td>
<td>N/A</td>
</tr>
<tr>
<td>BDI ≥ 17 excluded</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Pick et al., 2015 (106)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSS Mean ±SEM(Range)</td>
<td>N/A</td>
</tr>
<tr>
<td>BDI > 16 excluded</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Pepi et al., 2002 (118)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: FSS ≥ 25</td>
<td>N/A</td>
</tr>
<tr>
<td>nF: FSS < 20</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Huang et al., 2015 (107)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFIS 17.0 ± 15.9</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Rocca et al., 2016 (23)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: MPIS ≥ 38</td>
<td>MADRS > 9 excluded</td>
</tr>
<tr>
<td>nF: MPIS < 38</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Rocca et al., 2009 (123)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: FSS ≥ 25</td>
<td>MADRS: Excluded individuals with clinical D</td>
</tr>
<tr>
<td>nF: FSS < 4</td>
<td>T1W, T2W, FLAIR, WM lesion load</td>
</tr>
</tbody>
</table>

Specogna et al., 2012 (120)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: FSS ≥ 5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Stojanovski et al., 2018 (111)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSS - Mean/Range/SD - RRMS</td>
<td>N/A</td>
</tr>
<tr>
<td>59.3 (20–92)</td>
<td>21.3 HC 26.0 (20–46) 8.0</td>
</tr>
<tr>
<td>FSSM MOTOR RRMS 28.8 (10–45) 10.6</td>
<td>HC 12.9 (10–23) 3.2</td>
</tr>
</tbody>
</table>

No F: finger tapping against thumb tapping |

No significant difference in lesion burden. P patients had greater activation of the premotor area, parietal to the movement at the level of the right putamen and of the middle frontal gyrus on the right DLFPC. F group showed bilateral activation of the SMA and cerebellum.

Participants with F had lower total intracranial volume compared to nF. Participants with F had lower recruitment of the bilateral putamen during the task.

Higher MD, RD, and AD in thalamocortical prefrontal WM tracts of individuals with high MFIS scores. No correlation between rs-MRI and fatigue scores.

No significant difference in lesion burden. P patients had greater activation of the premotor area, parietal to the movement at the level of the right putamen and of the middle frontal gyrus on the right DLFPC. F group showed bilateral activation of the SMA and cerebellum.

Participants with F had lower total intracranial volume compared to nF. Participants with F had lower recruitment of the L-dorsal premotor cortex and L-dorsomedial PFC compared to nF.
<table>
<thead>
<tr>
<th>Study</th>
<th>Sample size</th>
<th>Characteristics</th>
<th>Measures</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iancheva et al., 2016</td>
<td>N=50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain region</td>
<td>Depression</td>
<td>Overlap</td>
<td>Fatigue</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Brainstem</td>
<td>-</td>
<td>-</td>
<td>Gomez et al., 2013 (134)</td>
<td></td>
</tr>
<tr>
<td>Caudate nucleus</td>
<td>-</td>
<td>-</td>
<td>Andreasen et al., 2010 (100); Calabrese et al., 2010 (102); Damasceno et al., 2016 (105)</td>
<td></td>
</tr>
<tr>
<td>Cerebellum</td>
<td>Lazzarotto et al., 2020 (131)</td>
<td>Lazzarotto et al., 2020 (131); Damasceno et al., 2016 (105); Gomez et al., 2013 (134)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-cingulum</td>
<td>-</td>
<td>-</td>
<td>Pardini et al., 2015 (109)</td>
<td></td>
</tr>
<tr>
<td>Cingulate gyrus</td>
<td>-</td>
<td>-</td>
<td>Gomez et al., 2013 (134); Andreasen et al., 2010 (100)</td>
<td></td>
</tr>
<tr>
<td>Corona radiata</td>
<td>-</td>
<td>-</td>
<td>Alternatt et al., 2018 (99)</td>
<td></td>
</tr>
<tr>
<td>Corpus callosum</td>
<td>-</td>
<td>-</td>
<td>Yaldizli et al., 2011 (114); Gomez et al., 2013 (134)</td>
<td></td>
</tr>
<tr>
<td>Cortical grey matter</td>
<td>Rojas et al., 2017 (20)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>L-superior frontal gyrus</td>
<td>-</td>
<td>-</td>
<td>Andreasen et al., 2010 (100)</td>
<td></td>
</tr>
<tr>
<td>L-medial frontal gyrus</td>
<td>-</td>
<td>-</td>
<td>Gomez et al., 2013 (134)</td>
<td></td>
</tr>
<tr>
<td>Superior frontal gyrus</td>
<td>-</td>
<td>-</td>
<td>Andreasen et al., 2010 (100); Calabrese et al., 2010 (102)</td>
<td></td>
</tr>
<tr>
<td>Frontal lobe</td>
<td>Benesova et al., 2003 (92); Nygaard et al., 2015 (35)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Frontal pole</td>
<td>Nygaard et al., 2015 (35)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Middle temporal fusiform gyrus</td>
<td>Nygaard et al., 2015 (35)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hippocampus</td>
<td>Gold et al., 2010 (93)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>L-anterior insula</td>
<td>-</td>
<td>-</td>
<td>Andreasen et al., 2010 (100)</td>
<td></td>
</tr>
<tr>
<td>Nucleus accumbens</td>
<td>-</td>
<td>-</td>
<td>Damasceno et al., 2016 (105)</td>
<td></td>
</tr>
<tr>
<td>Occipital lobe</td>
<td>-</td>
<td>-</td>
<td>Gomez et al., 2013 (134)</td>
<td></td>
</tr>
<tr>
<td>L-lateral occipital lobe</td>
<td>Nygaard et al., 2015 (35)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pallidum</td>
<td>-</td>
<td>-</td>
<td>Yarraguntla et al., 2018 (115)</td>
<td></td>
</tr>
<tr>
<td>Paracentral gyrus</td>
<td>-</td>
<td>-</td>
<td>Gomez et al., 2013 (134)</td>
<td></td>
</tr>
<tr>
<td>Parahippocampal gyrus</td>
<td>Nygaard et al., 2015 (35)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Inferior parietal gyrus</td>
<td>-</td>
<td>-</td>
<td>Andreasen et al., 2010 (100); Calabrese et al., 2010 (102)</td>
<td></td>
</tr>
<tr>
<td>L-inferior parietal lobe</td>
<td>Nygaard et al., 2015 (35)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>R-superior parietal lobe</td>
<td>-</td>
<td>-</td>
<td>Andreasen et al., 2010 (100)</td>
<td></td>
</tr>
<tr>
<td>Pars Orbitalis</td>
<td>Nygaard et al., 2015 (35)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Postcentral gyrus</td>
<td>Nygaard et al., 2015 (35)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Precentral gyrus</td>
<td>Nygaard et al., 2015 (35)</td>
<td>Nygaard et al., 2015 (35); Gomez et al., 2013 (134)</td>
<td>Gomez et al., 2013 (134)</td>
<td></td>
</tr>
<tr>
<td>L-precuneus</td>
<td>-</td>
<td>-</td>
<td>Gomez et al., 2013 (134)</td>
<td></td>
</tr>
<tr>
<td>Brain region</td>
<td>Depression</td>
<td>Overlap</td>
<td>Fatigue</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Increased shortest distance between the right amygdala and orbitofrontal cortex (e.g., rectus gyrus)</td>
<td>Nigro et al., 2015 (94)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Increased shortest distance between the right amygdala and the DLPFC</td>
<td>Nigro et al., 2015 (94)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Increased shortest distance between the right amygdala and ventrolateral PFC (i.e., inferior frontal gyrus)</td>
<td>Nigro et al., 2015 (94)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Anterior thalamic radiation</td>
<td>-</td>
<td>-</td>
<td>Pardini et al., 2010 (110)</td>
<td></td>
</tr>
<tr>
<td>Basal Ganglia (Caudate Nucleus, Pallidus, Putamen)</td>
<td>-</td>
<td>-</td>
<td>Wilting et al., 2016 (133)</td>
<td></td>
</tr>
<tr>
<td>Cingulum</td>
<td>Hassan et al. 2019 (133)</td>
<td>Hassan et al. 2019 (133); Pardini et al., 2015 (109); Pardini et al., 2010 (110)</td>
<td>Pardini et al., 2015 (109); Pardini et al., 2010 (110)</td>
<td></td>
</tr>
<tr>
<td>Anterior/medial cingulate cortices</td>
<td>-</td>
<td>-</td>
<td>Pardini et al., 2015 (109)</td>
<td></td>
</tr>
<tr>
<td>Corticospinal tract</td>
<td>-</td>
<td>-</td>
<td>Bauer et al. 2020 (136)</td>
<td></td>
</tr>
<tr>
<td>Forceps minor</td>
<td>-</td>
<td>-</td>
<td>Pardini et al., 2010 (110)</td>
<td></td>
</tr>
<tr>
<td>Fornix</td>
<td>Hassan et al. 2019 (133)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Increased shortest distance between the right hippocampus and rectus gyrus</td>
<td>Nigro et al., 2015 (94)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Increased shortest distance between the right hippocampus and the DLPFC</td>
<td>Nigro et al., 2015 (94)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Increased shortest distance between the right hippocampus and ventrolateral PFC (i.e., inferior frontal gyrus)</td>
<td>Nigro et al., 2015 (94)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Inferior fronto-occipital fasciculus</td>
<td>-</td>
<td>-</td>
<td>Pardini et al., 2010 (110)</td>
<td></td>
</tr>
</tbody>
</table>

pwRRMS= patients with relapsing-remitting multiple sclerosis, MRI= magnetic resonance imaging, R=right, L=left.

Table 3. Brain regions suggested to be involved in depression and/or fatigue symptomatology in pwRRMS, assessed using conventional MRI, in 15/47 publications with positive findings.
<table>
<thead>
<tr>
<th>Brain region</th>
<th>Depression</th>
<th>Overlap</th>
<th>Fatigue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amygdala</td>
<td>Carotenuto et al., 2020 (98); Riccelli et al., 2016 (95)</td>
<td>-</td>
<td>Carotenuto et al., 2016 (95)</td>
</tr>
<tr>
<td>R-basal ganglia</td>
<td>-</td>
<td>-</td>
<td>Rocca et al., 2009 (125)</td>
</tr>
<tr>
<td>Brainstem</td>
<td>Carotenuto et al., 2020 (98)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Caudate nucleus</td>
<td>-</td>
<td>-</td>
<td>Finke et al., 2015 (106); Rocca et al., 2016 (23); Wu et al., 2016 (121)</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>Carotenuto et al., 2020 (98)</td>
<td>Rocca et al., 2009 (125); Carotenuto et al., 2020 (98); Specogna et al., 2012 (120)</td>
<td>Rocca et al., 2009 (125); Specogna et al., 2012 (120)</td>
</tr>
<tr>
<td>R-subgenual cingulate gyrus</td>
<td>Riccelli et al., 2016 (95)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R- Posterior cingulate gyrus</td>
<td>Carotenuto et al., 2020 (98)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cingulate motor area</td>
<td>-</td>
<td>-</td>
<td>Rocca et al., 2009 (125)</td>
</tr>
<tr>
<td>Dorsal Raphe</td>
<td>Carotenuto et al., 2020 (98)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L- Inferior frontal gyrus</td>
<td>Carotenuto et al., 2020 (98)</td>
<td>Carotenuto et al., 2020 (98); Rocca et al., 2009 (125)</td>
<td>Rocca et al., 2009 (125)</td>
</tr>
<tr>
<td>Middle frontal gyrus</td>
<td>-</td>
<td>-</td>
<td>Specogna et al., 2012 (120); Rocca et al., 2016 (23); Finke et al., 2015 (106);</td>
</tr>
<tr>
<td>Superior frontal gyrus</td>
<td>-</td>
<td>-</td>
<td>Rocca et al., 2016 (23); Pravatà et al., 2016 (122)</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>Carotenuto et al., 2020 (98); Riccelli et al., 2016 (95)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hypothalamus</td>
<td>Carotenuto et al., 2020 (98)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intraparietal sulcus</td>
<td>-</td>
<td>-</td>
<td>Filippi et al., 2002 (118)</td>
</tr>
<tr>
<td>R-lingual gyrus</td>
<td>Carotenuto et al., 2020 (98)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Locus Coeruleus</td>
<td>Carotenuto et al., 2020 (98)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nucleus accumbens</td>
<td>Carotenuto et al., 2020 (98)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brain Region</td>
<td>Coordinates</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Middle occipital gyrus</td>
<td></td>
<td>Pravatà et al., 2016 (122)</td>
<td></td>
</tr>
<tr>
<td>Occipito-temporal gyrus</td>
<td></td>
<td>Golde et al. 2020 (132)</td>
<td></td>
</tr>
<tr>
<td>L-orbitofrontal cortex</td>
<td>Riccelli et al., 2016 (95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pallidum</td>
<td></td>
<td>Finke et al., 2015 (106)</td>
<td></td>
</tr>
<tr>
<td>L-paracingulate gyrus</td>
<td></td>
<td>Finke et al., 2015 (106)</td>
<td></td>
</tr>
<tr>
<td>Parietal operculum</td>
<td></td>
<td>Jaeger et al., 2019 (130)</td>
<td></td>
</tr>
<tr>
<td>L-postcentral gyrus</td>
<td>Jaeger et al., 2019 (130)</td>
<td>Rocca et al., 2016 (23)</td>
<td></td>
</tr>
<tr>
<td>R-postcentral gyrus</td>
<td></td>
<td>Jaeger et al., 2019 (130)</td>
<td></td>
</tr>
<tr>
<td>L-precentral gyrus</td>
<td>Jaeger et al., 2019 (130)</td>
<td>Finke et al., 2015 (106); Jaeger et al., 2019 (130)</td>
<td></td>
</tr>
<tr>
<td>R-precentral gyrus</td>
<td>Jaeger et al., 2019 (130)</td>
<td>Jaeger et al., 2019 (130)</td>
<td></td>
</tr>
<tr>
<td>Precuneus</td>
<td></td>
<td>Rocca et al., 2009 (125); Finke et al., 2015 (106)</td>
<td></td>
</tr>
<tr>
<td>Prefrontal cortex</td>
<td></td>
<td>Finke et al., 2015 (106)</td>
<td></td>
</tr>
<tr>
<td>Dorsolateral prefrontal cortex</td>
<td>Riccelli et al., 2016 (95)</td>
<td>Jaeger et al., 2019 (130); Specogna et al., 2012 (120); Wu et al., 2016 (121); Riccelli et al., 2016 (95)</td>
<td></td>
</tr>
<tr>
<td>L-dorsomedial prefrontal cortex</td>
<td></td>
<td>Specogna et al., 2012 (120); Wu et al., 2016 (121); Jaeger et al., 2019 (130); Golde et al. 2020 (132)</td>
<td></td>
</tr>
<tr>
<td>Medial prefrontal cortex</td>
<td></td>
<td>Svolgaard et al., 2018 (111)</td>
<td></td>
</tr>
<tr>
<td>Ventral medial prefrontal cortex</td>
<td></td>
<td>Zhou et al, 2014 (135); Golde et al. 2020 (132)</td>
<td></td>
</tr>
<tr>
<td>Premotor cortex</td>
<td></td>
<td>Finke et al., 2015 (106)</td>
<td></td>
</tr>
<tr>
<td>L-pre-supplementary motor area</td>
<td></td>
<td>Iancheva et al., 2019 (119); Specogna et al., 2012 (120); Svolgaard et al., 2018 (111)</td>
<td></td>
</tr>
<tr>
<td>Putamen</td>
<td></td>
<td>Rocca et al., 2016 (23); Gomez et al., 2013 (134)</td>
<td></td>
</tr>
<tr>
<td>Ipsilateral Rolandic Operculum</td>
<td></td>
<td>Finke et al., 2015 (106); Rocca et al., 2016 (23); Specogna et al., 2012 (120); Filippi et al., 2002 (118)</td>
<td></td>
</tr>
<tr>
<td>L-secondary sensorimotor cortex</td>
<td></td>
<td>Rocca et al., 2009 (125)</td>
<td></td>
</tr>
<tr>
<td>Somatosensory cortex</td>
<td></td>
<td>Gomez et al., 2013 (134)</td>
<td></td>
</tr>
<tr>
<td>L-ventral striatum and the sensimotor cortex</td>
<td>Jaeger et al., 2019 (130)</td>
<td>Jaeger et al., 2019 (130)</td>
<td></td>
</tr>
<tr>
<td>R-subcallosal area</td>
<td>Carotenuto et al., 2020 (98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary motor area</td>
<td></td>
<td>Specogna et al., 2012 (120); Rocca et al., 2016 (23)</td>
<td></td>
</tr>
<tr>
<td>Supramarginal gyrus</td>
<td></td>
<td>Iancheva et al., 2019 (119); Jaeger et al., 2019 (130)</td>
<td></td>
</tr>
<tr>
<td>L-Superior temporal gyrus</td>
<td>Carotenuto et al., 2020 (98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle temporal gyrus</td>
<td></td>
<td>Rocca et al., 2016 (23); Pravatà et al., 2016 (122)</td>
<td></td>
</tr>
<tr>
<td>Brain Region</td>
<td>Reference 1</td>
<td>Reference 2</td>
<td>Reference 3</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>R-superior temporal gyrus</td>
<td>-</td>
<td>Huang et al., 2018 (107)</td>
<td></td>
</tr>
<tr>
<td>Thalamus</td>
<td>Carotenuto et al., 2020 (98)</td>
<td>Filippi et al., 2002 (118); Carotenuto et al., 2020 (98); Rocca et al., 2009 (125)</td>
<td>Filippi et al., 2002 (118); Rocca et al., 2009 (125)</td>
</tr>
<tr>
<td>Ventral Tegmental Area</td>
<td>Carotenuto et al., 2020 (98)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

pwRRMS = patients with relapsing-remitting multiple sclerosis, fMRI = functional magnetic resonance imaging, L=left, R=right

Table 5. Brain regions suggested to be involved in depression and/or fatigue in pwRRMS using functional connectivity measures, in 15/18 publications with positive findings.
Figure 2. Sagittal (A), axial (B), and coronal (C) view of brain regions suggested to be involved in depression (magenta), fatigue (blue) or both* (yellow) in >1 study, using conventional MRI, structural and functional connectivity. Brain regions were extracted from brain atlases available in FSL (138) and superimposed on a template T1w image, available in MRICron (139). Results from included publications were compiled and summarised in this figure by the authors of this study, using MRICron (139). Am.: amygdala, CC: corpus callosum, Cing.: cingulum, CN: caudate nucleus, DLPFC: dorsolateral prefrontal cortex, FL: frontal lobe, Hpp.: hippocampus, IPG: inferior parietal gyrus, L-IFG: L-inferior frontal gyrus, MFG: middle frontal gyrus, MTG: middle temporal gyrus, P: putamen, PCG: precentral gyrus, PMC: premotor cortex, PoCG: postcentral gyrus, Pr.: precuneus, SFG: superior frontal gyrus, SG: supramarginal gyrus. *Overlapping brain regions between symptoms, in at least 1 study for each symptom.
4. Discussion

This study systematically examined the literature for conventional MRI, structural and functional brain connectivity features associated with fatigue and depression in individuals with RRMS. Brain connectivity changes underlying fatigue have been observed in the corticothalamic-basal ganglia networks, while abnormal connectivity in the cortico-limbic networks was associated with depression. Some overlapping changes in depression and fatigue were observed for structural connectivity of the cingulum, and functional connectivity of the cerebellum, thalamus, and frontal lobe. Overall, the literature reported mixed results, with half of the studies observing no significant associations and a limited number of studies investigating brain connectivity changes underlying depression in pwRRMS.

4.1 Brain connectivity changes underlying depression in pwRRMS

4.1.1 Cortico-limbic network
Depression in pwRRMS was associated with areas of the limbic system, especially the hippocampus and amygdala in some included studies (140). Nigro et al. (2015) reported structural connectivity changes between the hippocampus, amygdala, and frontal areas in RRMS patients with depression (94). Functional connectivity changes of the amygdala and hippocampus were also observed (95, 98) as was hippocampal atrophy (132). Their involvement in depression is perhaps unsurprising as both regions are associated with emotion-related functions. The limbic system in general is thought to be responsible for emotional responses, long-term memory, fear conditioning, sleep, motivation, and social cognition (141), many of which involved in depression. The hippocampus specifically is a part of the cholinergic system - involved in arousal, attention, cognition, and memory - and relates to emotion-regulating brain regions (146). The amygdala is linked to emotion regulation and memory, as well as fear conditioning (142). Previous literature supports the role of hippocampal and amygdala involvement in major depression disorder (MDD). The hippocampus, in particular, plays a key role in depression (142), with ample studies observing hippocampal atrophy and functional changes in MDD (143-147). It has also been previously suggested that neuroinflammation in the hippocampus contributes to development of depression in mixed subtype MS (148). Studies have also shown altered amygdala functional connectivity in depression in MS of various types (149, 150) as well as abnormal functional connectivity between the amygdala and other brain regions in people with MDD (151).

4.1.1.1 Fronto-limbic network: PFC
Disrupted connectivity between limbic structures and the frontal lobe may be underlying depressive symptomatology in pwRRMS, according to some included studies. RRMS patients with high depression scores showed structural connectivity changes in several regions of the fronto-limbic network, i.e., between the hippocampus or amygdala and the PFC, which are all involved in emotional behaviour, cognition, and motor control (94, 98). This is in line with previous research showing that abnormal structural connectivity of the fronto-limbic network may be evident in MDD (152, 153). Furthermore, functional connectivity between the DLPFC and limbic structures was also linked to depression in pwRRMS (95). The DLPFC controls working memory, goal-directed action, abstract reasoning and attention, and impairments of these functions may contribute to depression (154).

4.1.1.2 Orbitofrontal cortex and cingulate cortex
Additionally, functional connectivity changes between the orbitofrontal cortex and hippocampus (96), as well as orbital frontal atrophy (35), were also related to depression in pwRRMS in some included studies. As the orbitofrontal cortex has a key role in emotion and decision-making, as well as reward circuits (155), its association with MDD is not surprising
Moreover, functional connectivity changes of the subgenual anterior cingulate cortex (ACC) (95), as well as the cholinergic network (e.g., nucleus basalis, angular gyrus, amygdala and postcentral and supramarginal gyri) (98), was associated with depression in pwRRMS. The ACC is involved in regulating emotion, and its atrophy has been linked to anhedonia and MDD (157, 158). Changes in choline levels within the AAC and frontal lobe have been observed in MDD and might be a potential marker for treatment outcomes in depressed patients (98, 159, 160).

4.1.1.3 Fronto-limbic network: cingulum, fornix and uncinate fasciculus
Hassan et al. (2019) observed structural connectivity changes in RRMS patients with depression in the WM pathways within the fronto-limbic network, i.e., the cingulum, fornix and uncinate fasciculus (133). The uncinate fasciculus connects the temporal lobe (containing the hippocampus and amygdala) and PFC (161). It is involved in cognitive functioning, especially spatial and episodic verbal memory (161). The fornix is the major pathway of the hippocampus and is associated with verbal memory (162). The cingulum is associated with attention and executive functioning, and connects frontal, parietal and temporal lobes. Indeed, microstructural changes in the cingulum and uncinate fasciculus were correlated with depressive symptoms in MDD (163).

4.1.1.4 Monoamine networks
In addition, Carotenuto et al. (2020) observed altered serotonergic-noradrenergic networks (e.g., between cerebellum and nucleus accumbens, hypothalamus, amygdala, thalamus, locus coerules, ventral tegmental area; brainstem and hypothalamus) in RRMS patients with depression (98). These networks were linked to functional connectivity pathways between the cerebellum and hypothalamus, amygdala, and thalamus in depressed pwRRMS (98). Indeed, the monoaminergic hypothesis suggests that imbalances within serotonergic-noradrenergic systems contribute to depression (164). The serotonin network connects to cortical, limbic and brainstem regions, and is linked to the sensory, motor, or limbic systems (98, 165). Additionally, serotonin modulates fronto-limbic circuitry in depression (166). Meanwhile, adrenergic pathways terminate in the frontal cortex, the amygdala and the ventral striatum, and noradrenaline system controls executive functioning, cognition, and motivation (167, 168). Loss of dopamine and noradrenaline network connectivity in the limbic system has been linked to depression in Parkinson’s disease (167).

4.1.2 Summary
Depression in RRMS patients was mostly associated with connectivity and structural changes in cortico-limbic network, especially parts involved in fronto-limbic system: hippocampus, amygdala and PFC. It is, however, difficult to draw firm conclusions from our study, as limited studies investigated brain connectivity underlying depression in pwRRMS. Overall, these findings suggest that clinical manifestations of depression in people with pwRRMS and MDD may have a shared biological basis, i.e., neurodegeneration in terms of myelin and axonal loss, and atrophy, of similar brain regions (78). It would be of interest to compare brain changes in MDD with depression in pwRRMS, which may improve understanding of disease mechanisms in both conditions and could potentially lead to better treatments. Given depression is a highly common and debilitating symptom in pwRRMS (5), there is a great need for studies assessing depression in relation to MRI outcomes, particularly studies with a longitudinal design assessing brain changes underlying depression throughout the disease course.
4.2 Brain connectivity underlying fatigue in pwRRMS

4.2.1 Cortico-limbic system

4.2.1.1 Thalamus
Both functional (118, 125) and structural connectivity (113) changes of the thalamus are associated with fatigue in pwRRMS, according to some included studies. Moreover, fatigue in pwRRMS was associated with thalamic atrophy in two studies (102, 105), while a study by Wilting et al. found a correlation between thalamic WML volume and fatigue measures in pwRRMS (113). This is supported by findings from Arm et al. (2019), reporting similar results for all MS subtypes (45). Indeed, many previous studies have found the thalamus to be implicated in fatigue mixed subtype MS (169). The thalamus controls many functions, ranging from relaying sensory and motor signals (170), as well as regulation of consciousness and alertness (171), and is also involved in cognitive functioning (172) and in regulating the sleep-wake cycle (173). Fatigue has been previously linked to structural damage of the thalamus in post-stroke patients (174), as well as prefrontal cortex and thalamus atrophy in chronic fatigue syndrome (175).

Structural connectivity of the anterior thalamic radiation, connecting the thalamus with the PFC and cingulate gyrus, was also found to be associated with fatigue in pwRRMS in one study (110). This is in line with observed structural connectivity changes in thalamic radiation, which have been associated with fatigue in individuals with traumatic brain injury. These findings suggest that impaired communication between cortical and thalamic areas may contribute to the development of fatigue (176, 177).

4.2.1.2 Frontal lobe
The PFC showed altered functional activity and connectivity, as well as atrophy, in RRMS patients with fatigue in some included studies (106, 111, 135). Part of the PFC, the PFC, may play a key role in fatigue in MS (not specific to RRMS). Specifically, it is part of the ‘cortico-thalamo-striato-cortical loop’, which has been suggested to underlie fatigue in generic MS (77, 178). In line with these findings, previous research has found links between fatigue and DLPFC activity in healthy subjects and has also suggested the DLPFC as one of the central ‘nodes’ of the fatigue network in healthy individuals (179, 180). Moreover, studies found that transcranial direct current stimulation of the DLPFC improved fatigue in (RR)MS (178, 181).

The superior frontal gyrus (SFG) and middle frontal gyrus (MFG) showed changes in functional connectivity (106, 122) and activation (23, 120) in relation to fatigue in pwRRMS, according to some included studies. This is supported by observed SFG and MFG atrophy, as well as cortical thickness changes in the MFG (100, 102, 134). The SFG and MFG both control working memory, but the SFG is thought to contribute to higher cognitive functions, while MFG is related to attention, especially reorienting to unexpected stimuli (182, 183). Previously, Sepulcre et al. (2009) reported that fatigue correlated with atrophy in both the SFG and MFG in mixed subtype MS (184).

Functional connectivity changes were also observed in brain motor areas in some included studies. The premotor cortex plays a role in motor fatigue specifically, in healthy individuals (185), and is involved in planning and organizing movements and actions (186). Furthermore, SMA contributes to the simple motor control and pre-SMA is involved in complex cognitive and motor control (187, 188). Both SMA and pre-SMA showed changes in activation due to fatigue, with the former being more activated in motor fatigue especially (188). Additionally, fatigue in pwRRMS was also found to be associated with functional changes in the pre- and postcentral gyrus of the SMN, controlling voluntary motor movement and proprioception, respectively (189). This is supported by previously observed decreased functional activity of
the precentral cortex (190, 191) in chronic fatigue syndrome (175). Similarly, functional connectivity of the postcentral gyrus was also affected in chronic fatigue syndrome (191).

4.2.1.3 Parietal lobe
Functional connectivity changes of the supramarginal gyrus and precuneus were both associated with fatigue in pwRRMS in some included studies. In line with this, reduced functional connectivity of the supramarginal gyrus and postcentral gyrus was associated with fatigue in chronic fatigue syndrome (191), and FC in supramarginal gyrus was associated with fatigue in traumatic brain injury (192). The supramarginal gyrus is a part of the frontoparietal network, and plays a role in attention, verbal working memory and emotional responses (192-194). The precuneus, on the other hand, is involved in higher-order neurocognitive processes, including motor coordination, mental rotation, and episodic memory retrieval (195). Indeed, Chen et al. (2020) previously reported that cognitive fatigue in generic MS was correlated with reduced functional connectivity of the precuneus (196).

4.2.1.4 Cingulum and cingulate gyrus
Fatigue in pwRRMS was associated with structural (109) and functional connectivity changes (109, 125), as well as atrophy, in the cingulate gyrus (100, 134) in some included studies. It is a key component of the limbic system (197), and is involved in processing emotions and behaviour regulation (198). Indeed, previous research associated abnormal functional connectivity change of the cingulate with fatigue in chronic fatigue syndrome (199). The cingulate gyrus is closely connected to the cingulum, which links it with subcortical nuclei (200). Both structural and functional connectivity changes of the cingulum were associated with fatigue (109, 110, 125). The cingulum is a prominent WM tract required for motivational processes, mood modulation, and emotion recognition (110). Previously, a link between lesions in the cingulum and fatigue has been observed in mixed subtype MS (184). Additionally, fatigue in Parkinson’s disease was correlated with altered functional connectivity in the cingulum (201).

4.2.2 Basal ganglia
Basal ganglia regions also play a role in fatigue symptomatology in pwRRMS, as both structural (113) and functional connectivity (23, 102, 106, 115, 121, 125, 130) changes, and atrophy (23, 100, 102, 105, 106, 120), were observed in RRMS patients with fatigue. The basal ganglia nuclei are primarily responsible for motor control, motor learning, executive functions, and behaviours, as well as emotions (202). Previous research by Nakagawa et al. (2016) suggested that abnormal function of the motor and dopaminergic system in the basal ganglia, which are associated with motivation and reward, are underlying fatigue in chronic fatigue syndrome (203). This is further supported by basal ganglia changes in association with fatigue in Parkinson’s disease and in healthy subjects (204).

Abnormal activation of basal ganglia has also been observed in fatigued RRMS patients (205, 206) by two included studies. This is in line with healthy ageing research showing that cortico-striatal networks play a role in fatigue (207). The striatum (a basal ganglia nuclei) is associated with cognitive control and motivation (208), both functions related to fatigue (209). A key WM tract in the fronto-striatal network is the inferior fronto-occipital fasciculus, which has shown structural connectivity abnormalities in fatigue in pwRRMS (110). In support of this, inferior fronto-occipital fasciculus atrophy has been observed in people with chronic fatigue syndrome (210). Interestingly, previous research has suggested the dopamine imbalance hypothesis, which supposes that fatigue arises due to a dopamine imbalance within the fronto-striatal network in pwRRMS (211). Furthermore, it has also been suggested that connectivity changes in this tract may negatively affect the integration of sensory information and inhibition control over impulses and emotion (212), leading to fatigue.
Another WM tract important for basal ganglia functioning is the internal capsule. It connects the basal ganglia with the limbic network (99, 213) and contributes to physical movement and perception of sensory information (214). Here, we observed that structural connectivity of the internal capsule was associated with fatigue scores in pwRRMS (110). This is supported by previous findings showing reduced white matter microstructural integrity of the internal capsule in fatigue in traumatic brain injury (214).

4.2.3 Cerebellum

Functional connectivity of the cerebellum was associated with fatigue scores in pwRRMS (120, 125) in some included studies. In line with this, cerebellar lesion volume was identified as an independent predictor of fatigue in pwRRMS (105). Similarly, cerebellar volume has previously been found to predict fatigue severity changes in early MS (215). The cerebellum plays a critical role in sensorimotor behaviour, automation (216) and cognitive tasks (131). Indeed, increased activation in cerebellum in mixed subtype MS was linked to cognitive fatigue during a task-switching task (217) and changes in cerebellar activity in healthy volunteers were associated with a motor fatigue in fMRI study (188).

4.2.4 Summary

The existing literature indicate that structural and functional changes in regions of the cortico-thalamocortical and cortical-subcortical circuits are associated with fatigue. There seems to be an overlap of different MRI measures relating to fatigue in thalamus, basal ganglia, cingulum, cerebellum, cingulate, frontal, and parietal lobes in patients with RRMS. Most of these regions are thought to be involved in motor and cognitive functions as well as reward seeking behaviour which fatigue has been previously shown to affect (218-220). Overall, these results suggest a link between fatigue and neurodegenerative processes in specific areas of the brain. The similarities between brain changes associated with fatigue in pwRRMS and other disorders suggest that damage to distinct structures could lead to development of fatigue. It may also indicate a possibility for shared treatments such as cognitive behavioural therapy and balance and/or multicomponent exercise, both of which show promising results in chronic fatigue syndrome (221, 222). However, about half of the literature in this review reported negative findings, and the positive findings were highly variable.

4.3 Overlapping brain connectivity changes associated with depression and fatigue in pwRRMS

Depression and fatigue are interlinked and overlap in symptomatology (9, 36), making it difficult to differentiate between them in pwRRMS. This is further complicated by the multidimensional nature of fatigue and the influence of factors such as sleep disturbance and neuropathic pain on both depression and fatigue in people with mixed subtype MS (223). Previous literature investigating associations between depression and fatigue in people with any subtype of MS have given disparate results, but with consensus that there is some association between them (224, 225). The current review indeed suggests that there may be overlap in brain changes underlying fatigue and depression in pwRRMS. Specifically, structural connectivity in cingulum and functional connectivity in cerebellum, thalamus, PFC, and pre/post-central gyri. There is ample evidence of these regions’ involvement in both depression and fatigue (109, 110, 131, 171, 200, 226, 227). Both depression and fatigue were associated with connectivity changes in the cortico-limbic network, and especially the fronto-limbic network. However, especially due to limited studies investigating depression in pwRRMS, more research is needed to pinpoint the underlying mechanisms driving these comorbidities.
4.4 Limitations of studies included in the systematic review

First, studies included in the review were heterogeneous in methodology, particularly around study design, fatigue, and depression assessments (e.g., inclusion/exclusion criteria), imaging protocols (including different MRI systems and strengths), sample size, and reporting of results. Furthermore, studies used different data processing protocols and statistical analysis approaches. Lack of standardisation in acquisition and imaging processing methods significantly reduces the ability of researchers to combine data meaningfully from different studies. Such differences make it difficult to formally compare studies and replication studies are needed.

Secondly, the innate and complex interaction and overlap between fatigue and depression limits interpretation of the findings. We tried to limit the variation by only including depression and fatigue assessments validated in MS and by focusing on the most ‘popular’ imaging techniques. As depression and fatigue are multifaceted disorders, with variable symptoms and manifestations, separating the symptoms by their function (as was done for motor/cognitive fatigue) could help to clarify the issue in the future. Moreover, many studies assessing the link between MRI outcomes and fatigue did not consider depression status - and vice versa. This makes it challenging to attribute findings to one symptom alone, especially as depression and fatigue are so intertwined.

Moreover, some studies were focusing on regions previously associated with depression and fatigue in RRMS, thus, potentially overlooking other significant parts of the brain.

Similarly, very few studies investigated both symptoms together, preventing any firm conclusions to be drawn on shared disease mechanisms in the brain between fatigue and depression in pwRRMS. Therefore, overlapping results are based on comparing study outcomes for fatigue and depression separately. This illustrates the lack of research on the link between depression and fatigue in pwRRMS and indicates future research should focus on further elucidation of underlying disease mechanisms for both symptoms combined, particularly using advanced imaging methods that allow for detection of more subtle brain changes.

4.5 Limitations of this study

The scope of our review was limited, resulting from database screenings done without citation mapping. We expect, however, that as three databases were explored, most relevant literature has been covered. Only publications in English were considered, which may mean some findings have been missed. Additionally, studies assessing the effects of drug treatments were excluded and hence relevant information potentially unrelated to the therapy may have been missed. Furthermore, in order to reduce possibly incorrect conclusions based on samples with low numbers of participants, we chose a cut-off value of ≥20. Although we realise this is an arbitrary threshold, we had to balance between excluding too few or too many papers.

We also only focused on brain connectivity using dMRI and fMRI and did not consider other microstructural or physiological imaging methods (e.g., magnetisation transfer imaging, MR spectroscopy, or positron emission tomography). Moreover, there were very few studies using NODDI or PSMD, and none met our inclusion criteria. Future reviews should include such measures to further elucidate common mechanisms for fatigue and depression in pwRRMS. Additionally, we did not include spinal cord imaging studies given the relative lack of studies investigating spinal cord connectivity, likely due to technical limitations (228).

Furthermore, we did not formally assess publication bias, however, aimed to provide a complete overview of positive and negative outcomes.
Lastly, qualitative approach prevents accurately assessing the strength of interactions. The studies included in this review used standard statistical significance cut-off values, and where correlations were statistically significant, they tended to be weak. In the future, a rigorous quantitative analysis could elucidate the heterogeneity of the current results.

4.6 Conclusion
Overall, the results presented were highly variable; half of those reviewed found no significant associations between brain connectivity measures and depression or fatigue. Studies reporting positive findings showed that a) brain connectivity and macrostructural changes in the cortico-thalamic-basal ganglial network were associated with fatigue in pwRRMS, b) cortico-limbic networks were associated with depression in pwRRMS, and c) structural connectivity in the cingulum and functional connectivity in the cerebellum, thalamus, PFC, and pre/post-central gyri were affected in both fatigue and depression in pwRRMS. This may suggest that disease processes within these regions may be responsible for depression and fatigue in pwRRMS, albeit not consistent findings across the literature. These mixed findings are most likely due to heterogeneous methodology across the studies. Only a small number of studies investigated brain connectivity in depression, or in both depression and fatigue combined. Moreover, the complex relationship and overlap between these two phenomena complicates interpretation of findings. Further adequately powered studies using optimised structural, microstructural, and functional imaging measures in well-characterised RRMS cohorts with validated indices of fatigue and depression are required to determine jointly affected brain areas in depression and fatigue, and further elucidate disease mechanisms underlying these symptoms. Moreover, studies employing additional imaging modalities such as positron emission tomography (PET) could be reviewed to further investigate the relationship between brain changes and fatigue/depression in pwRRMS.

Acknowledgements

For open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.

Funding

Funding for authors came from the MS Society Edinburgh Centre for MS Research [grant reference 133] (AK, RM), Chief Scientist Office – SPRINT MND/MS program (ENY), the Anne Rowling Regenerative Neurology Clinic (ENY), and the UK Dementia Research Institute which receives its funding from UK DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK (SC).

Competing interests

The authors declare no conflicts of interest relevant to this paper.
References

137. Wu L, Huang M, Zhou F, Zeng X, Gong H. Distributed causality in resting-state network connectivity in the acute and remitting phases of RRMS. BMC Neuroscience. 2020;21(1).
143. MacQueen G, Frodl T. The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Molecular Psychiatry. 2011;16(3):252-64.

211. Dobryakova E, Genova HM, DeLuca J, Wylie GR. The Dopamine Imbalance Hypothesis of Fatigue in Multiple Sclerosis and Other Neurological Disorders. Frontiers in Neurology. 2015;6.

Copyright © 2021, StatPearls Publishing LLC.; 2021.

