To test or not? Xpert MTB/RIF as an alternative to smear microscopy to guide line probe assay testing for drug-resistant tuberculosis

Pillay S1,2, de Vos M1, Sohn H3, Ghebrekristos Y2, Dolby T2, Warren RM1, Theron G1

Affiliations: 1DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
2National Health Laboratory Services, Green Point, Cape Town, South Africa
3Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD

USA

Samantha Pillay: samanthap@sun.ac.za
Margaretha de Vos: Margaretha.DeVos@finddx.org
Hojoon Sohn: hsohn6@jhu.edu
Yonas Ghebrekristos: yonasg@sun.ac.za
Tania Dolby: Tania.Dolby@nhls.ac.za
Rob Mark Warren: rw1@sun.ac.za
Grant Theron: gtheron@sun.ac.za

Corresponding author: Grant Theron
Email: gtheron@sun.ac.za
Contact number: +27 21 938 9693

Address:
BMRI Building, 2nd floor, Room 2035
Department of Molecular Biology and Human Genetics
Francie van Zijl Drive, Tygerberg Campus
Stellenbosch University
7505
South Africa

Running title: Xpert to improve line probe assay testing for TB drug resistance

Key words: tuberculosis, drug-resistance, line probe assay

Title character count: 134

Abstract word count: 250/250

Manuscript word count: 2493 (2500 words)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Xpert MTB/RIF (Xpert) revolutionised tuberculosis (TB) diagnosis, however, laboratory decision making on whether widely-used reflex drug susceptibility assays (MTBDR_{plus}, MTBDR_{sl}) are done on specimens is often based on smear microscopy status.

Method: We performed receiver operator characteristic (ROC) curve analyses using sputum bacterial load measures [smear microscopy grade, Xpert semi-quantitation category and minimum cycle threshold (C_{Tmin}) values] for the classification of “likely non-actionable” (not resistant or susceptible) line probe assays results. We evaluated the actionable-to-non-actionable result ratio and pay-offs with missed isoniazid and fluoroquinolone resistance compared to if LPAs were done universally.

Findings: Smear-negatives were more likely than smear-positives to generate a non-actionable MTBDR_{plus} [23% (133/559) vs. 4% (15/381)] or MTBDR_{sl} [39% (220/559) vs. 12% (47/381)] result, however, excluding smear-negatives would result in missed rapid diagnoses [e.g., only 51% (273/537) of LPA-diagnosable isoniazid resistance detected if smear-negatives omitted]. Within smear-negatives, testing ≥ “medium” specimens had a high ratio of actionable-to-non-actionable results (12.8 or a 4-fold improvement vs. test all for MTBDR_{plus}, 4.5 or 3-fold improvement for MTBDR_{sl}), which would capture 64% (168/264) and 77% (34/44) of LPA-detectable resistance. If C_{Tmin} were used, greater resolution and higher ratios offset against fewer missed resistant cases were obtained.

Conclusion: Routinely-generated Xpert quantitative information permits identification of smear-negatives in whom the ratio of actionable-to-non-actionable LPA results may prove acceptably high to laboratories depending on their local contexts. Xpert C_{Tmin} or, if unavailable, semiquantitation category should be used to guide reflex DST; permitting the rational expansion of direct DST to certain paucibacillary specimens.

Words: 249/250
Introduction

Reflex drug susceptibility testing (DST) should be done in all rifampicin-resistant tuberculosis (TB) cases to enable rapid effective treatment. Achieving this depends on testing specimens, including smear-negative specimens, directly. However, the widely-used World Health Organization (WHO)-endorsed line probe assays (LPAs) MTBDRplus and especially MTBDRsl (both Bruker, Germany) perform sub-optimally on paucibacillary specimens (1) and can fail to generate an actionable (resistance or susceptible) result. Culture is hence often required to generate material for testing; however, culture is costly and slow.

Non-actionable MTBDRplus and MTBDRsl results in our setting occur in ~24 and ~40% of Xpert MTB/RIF (Xpert)-positive smear-negative patients, and are a bigger cause of missed resistance than diminished LPA sensitivity (2). Laboratories hence typically use smear status to guide whether LPA testing is done directly or indirectly and may choose not to test smear-negative specimens, however, this reduces rapid diagnoses. Alternatively, if LPAs are done on smear-negative specimens, wasteful expenditure (consumables and labour to do a MTBDRsl are ~$50 (3)), care cascade loss (requests for additional specimen is typically only triggered once the LPA is known to be non-actionable are often unsuccessfully fulfilled), and reduced user confidence can all result if a non-actionable result occurs. Therefore, despite the WHO recommendation that MTBDRsl is done on smear-negative specimens, direct testing is often in reality limited to smear-positive specimens, even in well-resourced settings (4, 5). This undermines LPAs’ potential impact, which remain the only widely-deployed molecular DSTs for first- and second-line resistance. LPAs may indeed work well on some smear-negatives; however, as smear microscopy is a crude and insensitive categorical measure of bacterial load, laboratories are unable to identify this subset upfront prior to LPAs (6).

We hypothesised that, in situations where Xpert is a frontline TB test, its molecular quantitative information could be used to exclude a priori certain specimens from unnecessary LPA testing; thereby permitting LPAs to be applied more efficiently (i.e., on specimens with a reduced non-actionable result risk) and, if laboratories do not test smear-negative specimens, LPAs could be
expanded to include some smear-negatives. In other words, pre-existing quantitative information routinely generated by Xpert could be used to improve LPA-based laboratory decision making and the drug-resistant TB care cascade. We also evaluate if smear grade would be more useful than smear status (positive, negative) for situations where Xpert is not available.
Methods

Microbiology

We analysed Auramine smear microscopy, Xpert MTB/RIF (v4.3), MTBDRplus and MTBDRsl (both v2) results from 951 patients programmatically-diagnosed with Xpert rifampicin-resistant TB from 01/06/2016-30/09/2019 at a high-volume laboratory in a previously-described cohort (2). All patients had sputum tested directly with both LPAs irrespective of smear status.

Analyses

We did receiver operator characteristic (ROC) curve analyses (GraphPad v6, USA) using different sputum bacterial load measures to classify if MTBDRplus or MTBDRsl were non-actionable (not resistant or susceptible; defined as when bands corresponding to the amplification control or TB detection are absent or, if both present, ≥1 drug class locus control band was absent). Smear microscopy grade (per (7)), Xpert semi-quantitation category and minimum cycle threshold (C_{Tmin}) values (rounded to nearest integer) were analysed, and sensitivity and specificity (95% binomial confidence intervals) for non-actionable results evaluated. We identified thresholds corresponding to Youden’s index (8), rule-out (≥95% sensitivity; almost all non-actionables correctly identified) and rule-in (≥95% specificity; almost all actionables correctly identified) scenarios; expecting rule-in to be most appropriate because it would not incorrectly exclude patients from the benefits of rapid LPA testing.

We calculated, at each threshold, how many actionable results are generated before a non-actionable is encountered (ratio of actionable-to-non-actionable results) and how maximising this ratio was offset against missed LPA-based isoniazid and fluoroquinolone diagnoses.

Ethics

This study was approved by the Health Research Ethics Committee of Stellenbosch University (N16/04/045) and Western Province Department of Health (2016/RP18/637).
Results

Non-actionable LPAs and missed resistance diagnoses stratified by smear status and grade

Non-actionable result rates irrespective of smear status for MTBDR\textit{plus} and MTBDR\textit{sl} were 19% (148/792) and 40% (267/673) (actionable-to-non-actionable results ratios of 5.4 and 2.5, respectively).

Smear-negative specimens were, compared to smear-positives, more likely to generate a non-actionable MTBDR\textit{plus} [23% (133/559) vs. 4% (15/381); \(p=0.001\)] or MTBDR\textit{sl} [39% (220/559) vs. 12% (47/381); \(p<0.001\)] result (ratios of 3.2 and 24.4 for MTBDR\textit{plus}, 1.5 and 7.1 for MTBDR\textit{sl}, respectively). Non-actionable results, a receiver operating characteristic (ROC) curve of smear grade to detect non-actionable results, and the balance between the number of actionable results per non-actionable result and missed rapid drug resistance diagnoses are in **Figure 1** (positive and negative predictive values in **Supplementary Figure 1**).

\textit{MTBDR\textit{plus}}

Smear-negativity as a threshold to identify non-actionables had a sensitivity and specificity of 90% (133/148) and 54% (426/792), respectively. Most non-actionable results occurred in smear-negatives (**Figure 1A**), but smear grade had suboptimal area under the curve (AUC) for predicting non-actionable results (**Figure 1B**). The actionable-to-non-actionable ratio improves as increasing grades are used to exclude specimens (\(\leq\)that grade) from testing, however, this is offset against missed resistance (**Figure 1C**). For example, to improve this ratio to 21.5 (threshold \(\leq\)scanty or, in other words, any smear-positive tested), 51% (273/537) of LPA-diagnosable isoniazid resistance would be detected (**Supplementary Table 1**).

\textit{MTBDR\textit{sl}}

Smear-negativity had a sensitivity and specificity of 83% (220/266) and 54% (339/674) for non-actionable results. The actionable-to-non-actionable ratio was less than MTBDR\textit{plus}'s, driven by more frequent non-actionable results in smear-negatives [39% (220/559) vs. 23% (133/559)] for MTBDR\textit{plus}, \(p<0.001\)]. For example, MTBDR\textit{sl}'s highest ratio was 16 (**Figure 1D** whereas for MTBDR\textit{plus} it was 109 (~7-fold higher). If smear-negative specimens were excluded from
 MTBDRsl, only 58% (60/104) of LPA-diagnosable fluoroquinolone resistance would be detected (Supplementary Table 1).

Xpert MTB/RIF semi-quantitation category

All patients

MTBDRplus: Like smear grade, non-actionable results were more frequent at lower semi-quantitation categories (Figure 2A), however, non-actionable rates in the “very low” and “low” categories were higher than in smear-negatives overall [49% (62/126) and 29% (62/210) in each category respectively vs. 23% (133/559; p<0.001 and p=0.103)]. Semi-quantitation category had higher AUC than smear grade, yet no semi-quantitation category threshold approached the rule-in criterion (~95% specificity, Figure 2B). The largest improvement in the ratio of actionables-to-non-actionables occurred when specimens in the lowest two semi-quantitation categories were excluded (5.4 when all tested to 24.2 if ≥medium tested) and this was accompanied by a moderate reduction in detected resistance (22%) (Figure 2C). In other words, if ≥medium was used, ~5-fold fewer non-actionables would occur and 78% (419/537) of potentially detectable resistance would still be detected.

MTBDRsl: Like MTBDRplus, MTBDRsl non-actionable rates in “very low” and “low” were higher than in smear-negative patients [71% (90/126) and 49% (102/210) in each category respectively vs. 39% (220/559; p<0.001 and p=0.021)]. MTBDRsl never obtained similar actionable-to-non-actionable ratios to MTBDRplus when specimens with the same semi-quantitation category were compared. Importantly, if ≥medium was used (specimens less than this excluded as “likely non-actionable), this ratio improved ~3-fold from 2.5 to 7.2 with 88% (92/104) of potentially detectable resistance detected (Figure 2D).

Smear-negatives

MTBDRplus: If laboratories that do not test smear-negative patients wish to partly expand testing, they may test smear-negatives who are ≥medium (ratio 12.8 vs. 3.2 for the test all strategy or 4-fold improvement), which would still capture 64% (168/264) of detectable resistance (Figure 2E). Within smear-negatives, 20% (114/559), 33% (182/559), 36% (200/559), and 11% (63/559) were “very low”,
“low”, “medium”, and “high”, respectively; meaning 47% (263/559) of smear-negatives would be ≥medium (this rule could hence significantly expand testing in smear-negatives).

MTBDR\textsubscript{s}l: Similarly, if MTBDR\textsubscript{s}l was done on ≥medium smear-negatives, the ratio would improve from 1.5 for the test all strategy to 4.5 (3-fold improvement), with 77% (34/44) of detectable resistance (Figure 2F).

By Xpert MTB/RIF C\textsubscript{Tmin}

All patients

MTBDR\textsubscript{plus}: C\textsubscript{Tmin} had, compared to Xpert semi-quantitation category and smear grade, higher AUC for non-actionable results (Figure 3A) and was the only bacillary load readout that met the rule-in criterion. 11% (86/792) of patients were C\textsubscript{Tmin} ≥29. This threshold had 95% (750/792) specificity, meaning 5% (42/792) of actionables would be misclassified as “likely non-actionable” and hence excluded from MTBDR\textsubscript{plus} (Supplementary Table 1). C\textsubscript{Tmin} ≥29 sensitivity was 30% (44/148), meaning 44 non-actionables would be correctly classified as “likely non-actionable” (non-actionables reduced by a third). NPV was 80% (750/854) meaning that, for every ten patients C\textsubscript{Tmin} <29 (hence classified as “likely actionable”), eight would indeed be actionable and other two non-actionable (false-negative). PPV was 51% (44/86), meaning approximately half of patients C\textsubscript{Tmin} ≥29 (hence classified as non-actionable), would indeed be non-actionable and the others actionable (false-positive) (Supplementary Figure 1). Ratios of actionable-to-non-actionable results like those for semiquantitation category were obtained, peaking at ~77 (C\textsubscript{Tmin} 12; estimates less than this were imprecise due to few specimens with very low C\textsubscript{Tmin}s) (Figure 3B). At C\textsubscript{Tmin} ≥29, this ratio would be 6.4 (improved from the test-all ratio of 5.4) and this would come at the cost of missing 5% (25/537) of potentially-detectable resistance.

MTBDR\textsubscript{s}l: 19% (129/674) of patients had C\textsubscript{Tmin} ≥28, which had a rule-in specificity of 95% (638/674), meaning 5% (36/674) of actionables would be misclassified as “likely non-actionable” (Figure 3A). Sensitivity was 34% (90/266); hence 90 non-actionables would be correctly classified as “likely non-actionable”, permitting a one third reduction in non-actionables. NPV was like that for
MTBDRplus (Supplementary Figure 1) but PPV higher [71% (90/126; p=0.003 vs. MTBDRplus),
meaning approximately 7/10 people with C_{Tmin} ≥28 (hence classified as non-actionable), would indeed
be non-actionable and the other 3/10 actionable (false-positive). Ratios of actionable-to-non-
actionable results peaked at ~38 (C_{Tmin} 16), less than half that of MTBDRplus. At the C_{Tmin} ≥28
threshold, this ratio would be 7.0 (compared to the test-all ratio of 5.0, 1.4-fold or 40% improvement)
and would result only 4% (4/104) of potentially detectable resistance being missed.

Smear-negative patients

MTBDRplus: Compared to overall, C_{Tmin} had less AUC in smear-negatives but similar rule-in
threshold (Figure 3D). Even at the same C_{Tmin}s, lower actionable-to-non-actionable ratios occurred in
smear-negatives (Figure 3E; for example, 13.8 vs. 24 overall at C_{Tmin} 20.). If the rule-in threshold of
C_{Tmin} <29 was used, this ratio was 4.4 (compared to 3.2 for the test-all smear-negatives strategy,
representing a 38% improvement) and resulted in 91% (241/264) of potentially detectable resistance
captured. Furthermore, ratios ≥10 were possible, permitting MTBDRplus to be expanded to at least
some smear-negatives (C_{Tmin} <23; 67% (177/264) of smear-negatives and 67% (177/264) of LPA-
detectable resistance was C_{Tmin} <23.

MTBDRsl: If the rule-in threshold of C_{Tmin} <29 was used, this ratio was 1.7 (compared to 1.5 for the
test-all smear-negatives strategy, a 13% improvement) and resulted in 93% (41/44) of potentially
detectable resistance detected. MTBDRsl on specimens with C_{Tmin} <19 would have a ratio of 5.4
(Figure 3F), which may be more acceptable in settings where smear-negative testing is not routinely
done. This ratio was more than the test-all strategy (3.6-fold improvement) and use of ≥medium semi-
quantitation category (ratio of 4.5). 36% (119/332) of smear-negatives were C_{Tmin} <19, corresponding
to 45% (24/44) of detectable resistance. Predictive values of this approach in smear-negatives,
including for MTBDRplus, are in Supplementary Figure 1.
Discussion

LPAs are WHO-recommended first- and second-line rapid DSTs, however, they are not always done directly on specimens in which they may provide an actionable resistant or susceptible result, in part due to elevated non-actionable result risk in smear-negatives. This can deprive patients of the benefits of early DST possible using presently available tests. Although better DSTs, especially for second-line resistance, are doubtlessly required, the use of existing widely-available technologies should be optimised.

Our key findings regarding smear-negative specimens are: 1) testing specimens below certain C_{Tmin} thresholds with MTBDRplus reduces non-actionable result rates and allows most LPA-detectable isoniazid resistance to be detected, 2) for MTBDRsl, which usually results in 1.5 actionables per non-actionable, ratios close to five are attainable ($C_{\text{Tmin}} < 19$), permitting 45% of detectable fluoroquinolone resistance to be detected, and 3) in settings where C_{Tmin} are unavailable, Xpert semi-quantitation category $\geq $medium would expand LPA testing to almost half of smear-negatives. Our study provides a framework for how LPA testing on smear-negatives can be made more efficient.

The precise threshold (and type of readout) used to determine whether LPA testing on smear-negatives should proceed will depend on locally-acceptable ratios of actionable-to-non-actionable results versus the proportion of potentially-detectable isoniazid or fluoroquinolone resistance laboratories are comfortable excluding from the potential benefits of direct LPA DST. For example, for MTBDRplus on smear-negatives, $C_{\text{Tmin}} < 29$ improves the ratio of actionable-to-non-actionable results by a third and detects $> 90\%$ of resistance whereas $C_{\text{Tmin}} < 23$ permits more than ten actionable results before a non-actionable result occurs yet still detects two-thirds of resistance. For MTBDRsl, smaller reductions in ratio compared to MTBDRplus occur and more resistance is missed as lower bacillary load specimens are excluded with decreasing C_{Tmin}. However, improvements in the ratio for MTBDRsl on smear-negatives (3.6-fold or from 1.7 to 5.4, $C_{\text{Tmin}} < 19$) would still occur.

Our findings also demonstrate that, where WHO-recommended rapid molecular diagnostic tests are available, smear microscopy, which comes at additional expense and is less accurate at informing when “likely actionable” LPA testing should occur, is increasingly redundant for guiding downstream
laboratory decision making given the large range of Xpert $C_{T\text{min}}$s (and to a lesser extent semi-quantitation categories) within smear-negatives. We therefore suggest PCR test quantitative readouts are used where not all TB-positive specimens undergo automatically reflex DST [this includes MTBDRplus for isoniazid resistance, given the prevalence of rifampicin mono-resistant TB (2, 9)].

Our analytical approach can serve as a framework for reflex DSTs other than the LPAs, such as Xpert MTB/XDR (10) and FluoroType MTBDR (11) and others (12), all of which will likely be expensive. Furthermore, the principle of applying molecular (as opposed to visual) quantitative information to determine downstream DST algorithms is agnostic to other frontline TB tests (13, 14) including the Truenat assays (15). Importantly, such frontline tests are increasingly targeting multicopy genes that genotypic DSTs do not include, resulting in large limit of detection differences. Thus, knowing which TB-positive specimens may proceed onward to downstream DST with high actionable result likelihood is a need that will grow.

A strength and limitation is that our study is from a programmatic context, which permitted large sample size, however, the exact thresholds used may require validation in other settings or laboratories. Our study was therefore intended to demonstrate proof-of-concept and illustrate what, purely from a laboratory perspective, such payoffs may look like. Although our findings permit using Xpert to rationally expand the use of existing LPAs to certain paucibacillary specimens ordinarily excluded, we affirm that, resource-permitting, isoniazid and fluoroquinolones DST should be attempted directly on any TB-positive rifampicin-resistant specimen irrespective of smear status (16). Hence, our findings will primarily be of interest to settings where direct MTBDRplus or MTBDRsl testing of smear-negatives is not done (1, 17). Lastly, future work should include Ultra as opposed to Xpert.

In summary, we demonstrated how LPAs may be expanded to a significant proportion of smear-negative patients. Xpert $C_{T\text{min}}$s or, failing that, Xpert semi-quantitation category is superior to informing reflex LPA testing than smear status, and the utility of molecular quantitative information generated already as part of the TB diagnostic process for informing other reflex tests requires consideration.
Conflicts of interest

Authors declare no conflict of interest.

Funding

Hain Lifesciences donated MTBDRsl kits and GT and RW have receiving funding from Hain Lifesciences for other studies. Hain Lifesciences had no role in this study. GT acknowledges funding from the EDCTP2 programme supported by the European Union (RIA2018D-2509, PreFIT; RIA2018D-2493, SeroSelectTB; RIA2020I-3305, CAGE-TB) and the National Institutes of Health (D43TW010350; U01AI152087; U54EB027049; R01AI136894).

Acknowledgements

The authors thank the National Health Laboratory Services, Cape Town, South Africa, and Hain Lifesciences.

Author Contributions

SP, MdV, GT, and RW conceived experiments. TD and SP provided specimens and data. SP conducted experiments and analysed data. All authors reviewed the manuscript and provided critical input.
References

Figure legends

Figure 1. Smear grade’s association with non-actionable LPA results, its ability to discriminate “likely non-actionable” from “likely actionable” results (if ≤ each grade) and pay-offs between the ratio of actionable-to-non-actionable results with the overall proportion of LPA-detected resistance. (A) Non-actionable results were more frequent at lower than higher grades and more so for MTBDRsl than MTBDRplus. In-column percentages reflect the proportion patients with a non-actionable result. (B) Smear grade had moderate AUCs for identifying “likely non-actionable” results (dashed lines 95% CIs) but no grade approached 95% specificity. (C) and (D) show the ratio of actionable-to-non-actionable results (solid lines, left y-axes) and how this improves as specimens with a certain smear grade (or greater) are tested by MTBDRplus or MTBDRsl respectively.

Abbreviations: AUCs-area under curve, CI-confidence intervals, FQR-fluoroquinolone resistance, INHR-isoniazid resistance, LPA-line probe assay, P-positive, SC-scanty, Xpert-Xpert MTB/RIF.

Figure 2. Xpert semi-quantitation category, non-actionable LPA results, and associated pay-offs with missed resistance as specimens ≤ specific semi-quantitation categories are excluded due to being flagged as “likely non-actionable”. (A) Trends for semi-quantitation category mirrored those for smear grade. (B) This translated into excellent AUCs for discriminating “likely non-actionable results” (dashed lines 95% CIs) but no optimal rule-in threshold was identifiable. (C) and (D) shows the ratio of actionable-to-non-actionable results (solid lines, left y-axes) and how this improves as specimens with higher semi-quantitation categories are tested by MTBDRplus or MTBDRsl, respectively. (E) and (F) are limited to smear-negative specimens. Abbreviations: AUCs-area under curve, CI-confidence intervals, FQR-fluoroquinolone resistance, H-high, INHR-isoniazid resistance, LPA-line probe assay, L-low, M-medium, NPV-negative predictive value, P-positive, PPV-positive predictive value, VL-very low, Xpert-Xpert MTB/RIF.
Figure 3. Xpert $C_{T_{\text{min}}}$’s ability to discriminate “likely non-actionable” from “likely actionable” LPA results. (A) A ROC curve for all specimens showing AUCs (dashed lines 95% CIs, rule-in thresholds shown) and, in (B) and (C), pay-offs between the ratios of actionable-to-non-actionable results and missed resistance for MTBDR$_{plus}$ and MTBDR$_{sl}$. (D-E) are the same but restricted to smear-negative patients. Ratios were highest at low $C_{T_{\text{min}}}$ and slowly decreased as LPA testing was expanded to include samples with higher $C_{T_{\text{min}}}$s, which had the upside of increasing detected resistance. AUCs and these ratios were less for smear-negative vs. all patients. Above $C_{T_{\text{min}}}$ x-axes are Xpert semiquantitation categories. Abbreviations: AUC-area under curve, CI-confidence intervals, $C_{T_{\text{min}}}$—cycle threshold (minimum), FQs-fluoroquinolones, INH-isoniazid, LPA-line probe assay, NPV-negative predictive value, P-positive, PPV-positive predictive value, ROC-receiver operator characteristic, Xpert-Xpert MTB/RIF.
Figure 1.

Smear grade to predict if MTBDRplus or MTBDRsl will be non-actionable

A

Bar chart showing the distribution of nonactionable results across smear grades.

B

Graph showing the area under the curve (AUC) with 95% confidence intervals for sensitivity and 1-specificity.

C

Graph showing the distribution of actionable and nonactionable results across smear grades.

D

Graph showing the percentage of LPA-detected INH and FQ results.
Figure 2.

Xpert semi-quantitation category to predict if MTBDR_{plus} or MTBDR_{sl} will be non-actionable

A

Overall

Actionable

Non-actionable

<table>
<thead>
<tr>
<th>Category</th>
<th>Actionable</th>
<th>Non-actionable</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL</td>
<td>126</td>
<td>49%</td>
</tr>
<tr>
<td>L</td>
<td>212</td>
<td>71%</td>
</tr>
<tr>
<td>M</td>
<td>363</td>
<td>49%</td>
</tr>
<tr>
<td>H</td>
<td>239</td>
<td>6%</td>
</tr>
</tbody>
</table>

MTBDR_{plus}

MTBDR_{sl}

B

AUCs (95% CI)

0.82 (0.75-0.85)

0.79 (0.76-0.82)

C

Actionables per non-actionables (solid line)

D

LPA-detected INH included (%, dashed line)

E

Smear-negative

F

LPA-detected FQ included (%, dashed line)
Figure 3

Xpert \(C_{\text{TMmin}} \) to predict if MTBDRplus or MTBDRsl will be non-actionable

![Graph A](image1)

Overall

![Graph B](image2)

![Graph C](image3)

Smear-negatives

![Graph D](image4)

![Graph E](image5)

![Graph F](image6)