ARTICLE TYPE: Full length

TITLE: Role of STING/TMEM173 mutation in systemic lupus erythematosus: from animal model to intrinsic human genetics

SHORT TITLE: STING mutation in SLE

AUTHORS: Pichpisith Pierre Vejvisithsakul1,7, Satima Wanachate2, Pintip Ngamjanaporn2, Chisanu Thumarat1, Thaniutta Suangtama2, Asada Leelahavanichkul3,4, Nattiya Hirankan5, Trairak Pisitkun6, Soren Riis Paludan7, Prapaporn Pisitkun1,2*

AFFILIATIONS:

1 Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

2 Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

3 Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

4 Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand.

5 Centre of Excellent in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University.

6 Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

7 Department of Biomedicine, Aarhus University, Aarhus, Denmark

* CORRESPONDING AUTHOR:

Prapaporn Pisitkun, M.D.

270 RamaVI Road,

Ratchathewi, Bangkok, 10400, Thailand

Email: Prapaporn.pis@mahidol.ac.th

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
CONFLICT OF INTEREST STATEMENT:

The authors declare that the research was conducted without any commercial or financial relationships that could be interpreted as a potential conflict of interest.

FUNDING

This research project was supported by the Faculty of Medicine Ramathibodi Hospital (CF_65001), Mahidol University (Basic Research Fund: the fiscal year 2022), the Second Century Fund, Chulalongkorn University (C2F), and International Network for Lupus Research, International Research Network, Thailand (IRN59W0004).
Abstract

Objective: We aim to confirm the function of Sting/Tmem173 in pristane-induced lupus and identify the role of STING/TMEM173 variants in SLE susceptibility.

Methods: Pristane-induced lupus model was introduced in the Sting-deficient mice (ENU-induced Goldenticket mutant mice). Autoantibody, histopathology, and immunophenotypes were analyzed after pristane injection for six months. Isolated DNA from 302 SLE patients and 173 healthy donors were tested for STING genotyping. We calculated the Odd Ratios of each STING variant and the inheritance patterns that significantly increased SLE susceptibility. Then, we analyzed the associations between STING genotypes and lupus phenotypes.

Results: The absence of STING signaling in the Goldenticket mutant mice reduced the autoantibody production and severity of glomerulonephritis in pristane-induced lupus. The human STING mutation at p.R284S (gain-of-function) significantly increased the SLE risk in autosomal dominant pattern [OR = 64.0860 (95%CI = 22.8605-179.6555), p < 0.0001], while the mutation at p.R232H (loss of function) reduced the SLE risk in autosomal recessive pattern [OR = 0.2515 (95%CI = 0.1648-0.3836), p < 0.0001]. The combination of STING variants in a specific inheritance pattern increased the higher OR than a single variant. The patient who had p.R284S with p.R232H showed milder disease activity than those who had p.R284S alone at the time of diagnosis.

Conclusion: The inhibition of STING rescued autoimmune phenotypes in pristane-induced lupus. Gain-of-function STING mutation increased SLE susceptibility and severity of the disease. These data suggested the critical function via STING-mediated signaling in SLE. Targeted at STING may provide a favorable outcome in SLE patients.

Keywords: STING, Tmem173, Pristane-induced lupus, mutation, SLE
INTRODUCTION

Systemic lupus erythematosus (SLE) is one of the most common systemic autoimmune diseases. The pathogenesis of SLE is complex, requiring the interaction between genetic susceptibility and the triggering factors in the environment. The prevalence and severity of SLE differ among genetic backgrounds (1, 2). The involvement of vital organs and treatment efficacy among ethnicities determine the outcome (3, 4). Type I interferon (IFN) is a critical cytokine that induces lupus disease. Interruption of type I IFN receptor ameliorates lupus-like phenotypes in NZB mice (5) and protects the development of pristane-induced lupus (6). The mice with Tlr7 over-expression showed a rise in interferon-inducible genes and developed lupus phenotypes (7, 8). The nucleic sensing signaling pathways strongly initiate type I interferon production (9).

TREX1 (Three Prime Repair Exonuclease 1) degrades excess intracellular single-strand DNA to prevent the activation of interferon-stimulated genes (10). Trex1-deficient mice develop autoimmunity mediated through the type I IFN signaling (11). The mutations in the human TREX1 gene cause Aicardi-Goutières syndrome and chilblain lupus (12, 13). The absence of cGAS (Cyclic GMP–AMP synthase) and Sting (Stimulator of interferon genes) signaling abrogates the lethal autoimmune phenotypes in Trex1-deficient mice (14, 15).

Pristane-induced lupus mice show interferon signatures and similar phenotypes with human SLE (4). IFNAR-deficient mice do not develop autoantibodies and lupus nephritis in the pristane-induced model (6). Tlr9-deficient C57BL/6 mice develop less histological renal injury and immune complex deposition than wild-type mice in pristane-induced lupus (16). However, Tlr9-deficient BALB/C mice show worsening renal pathology compared to wild-type (17). These data suggested the critical role of the mouse background in lupus development.

STING mutations are identified in patients with type I interferonopathies, so-called STING-associated vasculopathy with onset in infancy (SAVI) (18-20). The STING gain-of-function mutations have been identified in inflammatory lupus-like disease and familial chilblain lupus (21, 22). However, the analysis of three STING mutations in exon five 5 did not show an association with systemic autoimmune disease (23). The absence of STING aggravates inflammation and increases autoantibody production in the autoimmune MRL Fas^{−/−} mice (24). Activation of STING signaling induces B cell death, and the absence of STING accelerates autoimmune arthritis in the collagen-induced arthritis model (25). Nevertheless, a previous study shows that STING signaling in dendritic cells promotes plasmacytoid dendritic cell differentiation and initiates lupus phenotypes in the 129/B6.Fcgr2b-deficient mice (26).
Thus, we aim to conduct a proof-of-concept study to identify whether STING is a potential targeted molecule for SLE therapy. We deployed pristane-induced lupus in the Sting-deficient Goldenticket mouse on a C57BL/6 background (27). The mutant mouse shows the loss of STING and type I IFN signaling function, which behaved as functional Sting-deficient mice. Pristane-induced lupus in the Sting-deficient (goldenticket or Sting^{gt/gt}) mice did not develop anti-dsDNA and lupus nephritis. Also, the Sting^{gt/gt} mice limited the expansion of plasmacytoid dendritic cells after pristane injection, a similar finding to the 129/B6.Fcgr2b-deficient lupus mice (26). The Sting^{gt/gt} mice derived from the N-ethyl-N-nitrosourea-induced mutation may influence differences in autoimmune phenotypes between models. Thus, the STING inhibitor was designed to specifically target STING signaling to determine STING’s role in lupus (28). The STING antagonist (ISD017) interfering with STIM1 inhibits lupus pathology in the lupus-prone 129/B6.Fcgr2b-deficient mice. ISD017 also reduces the CXCL10 production from SLE patients’ peripheral blood mononuclear cells (PBMC) (28).

Single nucleotide polymorphisms (SNPs) of STING/Tmem173 in human are common in the population and affects the immune response against viral infection (29). Here, we identified that the STING gain-of-function mutation increased SLE risk in humans, while STING loss-of-function reduced the risk. The combination of STING variants showed the additive risk of SLE. In summary, we confirmed that loss-of-STING function rescued autoimmune phenotypes in pristane-induced lupus and identified STING variants and mutations associated with the SLE risk in humans. Our data suggested that STING plays a vital role in SLE and is a potential target for therapeutic intervention.

MATERIALS AND METHODS

Pristane-induced lupus mouse model. The Sting^{gt/gt} mice (the goldenticket or Tmem173^{gt}) mice were created via chemically inducing mutagen with N-ethyl-N-nitrosourea (ENU) (27). The C57BL/6 WT and Sting^{gt/gt} mice (8-10 weeks old) were intraperitoneally injected with 500 µl of pristane or tetramethylpentadecane (TMPD) (#P2870, SIGMA-ALDRICH Co., MO, USA) (4). All experiments were performed with the approval of the Animal Experimentation Ethics Committee of Chulalongkorn University Medical School with all relevant institutional guidelines.

Autoantibody detection. The anti-dsDNA was performed from the sera (1;100) collected six months after pristane injection by ELISA (26). The anti-nuclear antibody (ANA) was detected in diluted sera (1;2000) by immunofluorescence technique (26).

Flow cytometry. The isolated splenocytes were performed as described (26). The isolated splenocytes (1 x 10⁶ cells) were stained with antibodies, as mentioned in the Supplementary material.
Immunohistochemistry. The mice were euthanized six months after pristane injection. The whole lung was infused with paraformaldehyde and immersed in 4% paraformaldehyde/PBS. The kidneys were fixed with 4% paraformaldehyde/PBS. The tissues were embedded in paraffin, sectioned, and stained with H&E. Tissues were blindly graded using glomerular and interstitial scores for kidneys and diffuse pulmonary hemorrhage and interstitial inflammation for lungs (30, 31).

Study population. One hundred seventy-three healthy blood donors and 302 SLE patients followed up between 2016-2021 at Ramathibodi hospital were enrolled. The inclusion criteria are > 18 years and diagnosed SLE using the 1997 ACR criteria (32) or SLICC criteria 2012 (33) for SLE classification. The exclusion criteria are a history of cancer. The medical records were reviewed and analyzed if the patients had followed up for at least five years since the diagnosis. The study (MURA2015/731 and MURA2021/177) was approved by the Faculty of Medicine Ramathibodi Hospital ethics committee and conducted according to the guidelines of the Declaration of Helsinki.

Identification of STING genotype in SLE patients. We designed TaqMan probes to detect STING variants at c.212G>A (R71H, rs11554776, Assay ID C_62979_10), c.689G>C (G230A, rs78233829, Assay ID C_104371077_10), c.695G>A (R232H, rs1131769, Assay ID C_26015196_10), c.878G>A (R293Q, rs7380824, Assay ID C_28947918_10), and mutation at c.852G>T were designed and customized by the author (R284S, Assay ID ANXGV44).

Clinical assessment. Disease activity at diagnosis, 1st and 5th year of follow-up was assessed by systemic lupus erythematosus disease activity index 2000 (SLEDAI-2K) (34), and remission was defined as clinical SLEDAI = 0 and physician global assessment <0.5 by the 2021 DORIS definition of remission in SLE (35). Disease flare was defined as SLEDAI-2K increase ≥3 (34). End organ damage in 5th year of follow-up as measured by Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (36).

Statistical analysis. The descriptive characteristics were presented by mean ± standard deviation and frequencies (%). The categorical variables were compared using Chi-squared or Fisher's exact test. The continuous variables were compared using a t-test or Mann-Whitney U-test between two groups. Logistic regression and linear regression analysis were performed to identify the independent factors associated with inheritance patterns and the effect of the variants in SLE patients. All analyses were performed using STATA version 15 (Stat Corp., College Station, Texas, USA), and the statistical significance was defined as a p-value of <0.05.
RESULTS

Sting/Tmem173 mediated autoantibody production in Pristane-induced lupus. Autoreactive B cells produced the anti-nuclear antibody (ANA), the autoantibody commonly found in lupus disease. Pristane induced autoantibody production, including anti-Sm, RNP, dsDNA, chromatin, and ribosomal P (37, 38). We tested for ANA from the sera collected six months after pristane injection to demonstrate whether STING affects autoantibody production. The pattern of ANA showed similarity in both C57/BL6-WT and Sting$^{gt/gt}$ mice. However, the intensity of ANA staining identified by immunofluorescence was significantly reduced in Sting$^{gt/gt}$ mice compared to C57/BL6-WT mice (Figures 1A-1B). Also, the level of anti-dsDNA titers did not increase by pristane injection in the Sting$^{gt/gt}$ mice (Figure 1C).

Sting/Tmem173 is involved in spontaneous germinal center B cell development and plasma cell differentiation, requiring autoantibody production in the Fcgr2b-deficient mice (26). The expansion of germinal center B cells (Figure 1D) and plasma cells (Figure 1F) were absent in the Sting$^{gt/gt}$ mice after pristane injection. However, Pristane induced the mean fluorescence intensity of MHC (IAb) on B cells representing the antigen-presenting ability, in a similar pattern in both WT and Sting$^{gt/gt}$ B cells (Figure 1E). The data suggested that STING is involved in autoantibody production, germinal center formation, and plasma cell expansion.

Sting/Tmem173 facilitated adaptive and innate immunity activation in Pristane-induced lupus. Dendritic cell (DC) expansion did not occur in the Sting$^{gt/gt}$ mice after pristane injection (Figures 2A-2B). Although Pristane induced the activating classical DC (cDC) in comparable numbers in WT and Sting$^{gt/gt}$ mice (Fig.2C-2D), the expansion of plasmacytoid dendritic cells (pDC) was absent in Sting$^{gt/gt}$ mice but not WT mice (Figures 2E-2F). The induction of neutrophils increased in both WT and Sting$^{gt/gt}$ (Figures 2G-2H). The increase in the macrophage numbers only occurred in WT mice (Figures 2I-2J). Interestingly, both WT and Sting$^{gt/gt}$ mice showed a rise in MHC expression in cDC and macrophages after pristane injection (Figures 2K-2L). The data suggested STING participated in pDC and macrophage expansion in pristane-induced lupus.

Activated DC primed naive T cells to become effector memory cells. The expansion of effector memory T cells in the Fcgr2b-deficient mice declined without STING signaling (26). However, the proportion of effector memory T cells in WT and Sting-gt increased in the pristane-induced lupus model (Supplementary Figure 1A). The IFN-γ-producing T helper cells expanded, but IL-17A-producing T helper cells decreased after
pristan e injection in the Sting+/- mice (Supplementary Figures 1B-1C). STING antagonist reduced the double-negative (DN) T cells in the Fcgr2b-deficient mice (28). Similarly, pristan e injection in the Sting+/- mice did not increase the DN-T cells (Supplementary Figure 1D). DN-T cells produced both IFN-\gamma and IL-17A in lupus mice (39). Interestingly, IL-17A+ DN-T cells, not IFN-\gamma+ DN-T cells, were reduced in the Sting+/- mice in pristan e-induced lupus (Supplementary Figures 1E-1F).

STING-mediated inflammatory pathology in Pristane-induced lupus. The glomerular showed increased cellularity and mesangial expansion in WT and the Sting+/- mice (Figure 3A). However, the Sting+/- mice developed lower glomerular and interstitial scores than WT mice after Pristane injection (Figures 3B-3C). The lungs of Sting+/- mice significantly showed less inflammatory reaction compared to WT mice. The pathology showed diffuse pulmonary hemorrhage in WT mice but considerably decreased in the Sting+/- mice (Figures 3D-3E). We did not detect the difference in the interstitial inflammation scores in WT and the Sting+/- mice (Figure 3F); the severity in the WT mice showed mild infiltration. The data suggested that STING was responsible for the inflammatory response to Pristane-induced lupus.

STING variants and inheritance patterns in SLE patients. To explore the role of STING in human SLE, we decided to test the effect of STING variants on the genetic susceptibility of SLE. The SLE patients in this study were diagnosed at various ages (Supplementary Figure 2), not relatives. We tested the common STING single nucleotide polymorphisms (SNPs) that create missense mutation and have been reported in the general population as the followings: Rs11554776 (c.212G>A, R71H), Rs78233829 (c.689G>C, G230A), Rs7380824 (c.878G>A, R293Q), and Rs1131769 (c.695G>A, R232H) (40). To identify the risk of SLE patients with STING gain-of-function mutation, we examined the STING mutant (c.852G>T, R284S), which did not require cyclic dinucleotides to increase activity and was reported in STING-induced inflammatory disease (41).

We identified the inheritance pattern of each variant. Three hundred two patients with SLE and 173 healthy donors were tested for STING SNPs and mutation. The results showed that G230A and R284S increased OR with autosomal dominant inheritance pattern while R71H and R293Q with autosomal recessive pattern increased the OR for SLE (Table 1). Interestingly, the gain-of-function mutation at R284S is the highest risk allele [OR = 64.086 (95%CI 22.8605 –179.6555), p<0.0001]. Interestingly, R232H was described as a loss-of-function Sting mutation (42) decreased the OR of SLE [OR = 0.2515 (95%CI = 0.1648-0.3836), p<0.0001].
The genotype pattern of STING variants in SLE susceptibility. Our analysis showed that \textit{R71H} and \textit{R293Q} in autorecessive inheritance and \textit{G230A} in autosomal dominant increased the OR for SLE (Table 1). Thus, we defined the HAQ alleles in this study as \textit{H\textsubscript{AR}A\textsubscript{AD}Q\textsubscript{AR}} and divided them into complete-HAQ alleles, incomplete-HAQ alleles, and absence-HAQ alleles. The complete-HAQ alleles mean substitution in all three variants with the \textit{H\textsubscript{AR}A\textsubscript{AD}Q\textsubscript{AR}} pattern, and incomplete-HAQ alleles mean substitution in at least one but not all three variants. If patients have no substitution, we defined it as the absence-HAQ allele. The complete-HAQ group increased the SLE risk [OR=2.7256 (95%CI 1.5838-4.6905), \textit{p}<0.0001]. The absent-HAQ group decreased the OR for SLE [OR=0.3583 (95%CI=0.2166-0.5926), \textit{p}<0.0001], while the incomplete-HAQ did not increase the SLE risk (Table 2). The result suggested the additional effect of HAQ alleles in specific inheritance patterns increases SLE risk in this population.

The mutation at \textit{R284S} is a gain-of-function of STING, which increases IFN-I in the absence of ligands (43), and dramatically enhances the SLE risk when detected in the complete-HAQ background [OR=128.5714 (95%CI 14.5033-1139.778), \textit{p-value}<0.0001] (Table 2). Interestingly, the loss of function STING mutation (\textit{R232H}) significantly decreased SLE risk in the complete-HAQ susceptibility background [OR = 0.16 (95%CI 0.0430-0.5950), \textit{p-value} 0.006] (Table 2). The data suggested the complex interaction of STING genes in SLE susceptibility and the synergistic effect of multiple STING alleles on human SLE susceptibility.

Comparison of clinical manifestations among STING genotype patterns in SLE patients. Among 302 patients with STING genotypes, only 201 patients showed complete medical records for the analysis (Supplementary Figure 2). The distributions of HAQ alleles, R284S, and R232H, were shown (Supplementary Figure 2). Almost all of these SLE patients showed R284S mutation (199 out of 201). Thus, we compared the clinical manifestation between complete-HAQ and non-complete-HAQ on the R284S background and did not see a difference in clinical parameters (Table 3). The data suggested that R284S, the gain-of-function allele, is the dominant variant causing the SLE phenotypes over the HAQ alleles. Furthermore, we analyzed the effect of R232H, the loss-of-function allele, on the non-complete-HAQ with R284S background and identified the lower SLE disease activity at the time of diagnosis (Table 3). These data suggested that SLE patients with non-risk alleles of \textit{STING} could benefit from the loss-of-function mutation to present with low disease activity at diagnosis.

DISCUSSION

The background of the lupus mouse models suggested the different mechanisms involved in disease development (4). The MRL.Fasbr mice, which do not have IFN signatures, require STING-mediated signaling, but the disease aggravates in the absence of STING (4, 24). In contrast, the lack of STING signaling rescues the Trex1-deficient mice, requiring type I IFN-mediated signaling (11, 14, 15). The 129/B6.Fcgr2b-deficient
mice contained 129 loci autoimmune susceptibility increased IFN signature and survived without STING mediated pathway (26). The enrichment of type I IFN signature in the lupus mouse might indicate the role of STING in disease development in a specific model.

We detected the decrease of ANA, anti-dsDNA together with germinal center B cells, and plasma cells in the Sting-deficient on Golden ticket mutant mice, similar findings reported in the 129/B6. Fcgr2b-deficient mice (26). The Sting^{gt^{gt}} mice reduced the expansion of pDC, and the numbers of neutrophils and macrophages after pristane injection, while the conventional dendritic cells did not change. The differentiation of pDC is STING-dependent (26). However, the mean fluorescence intensity of MHC-II on macrophages was higher in the Sting^{gt^{gt}} mice, which suggested the phenotype of activated macrophages was STING-independent. These data suggested the diverse role of STING signaling on individual cell types, which might affect organ-specific phenotypes.

The activated cDC promotes Tem differentiation in the 129/B6. Fcgr2b-deficient mice (26). The expansion of cDC was STING-dependent in the 129/B6. Fcgr2b-deficient mice but not in pristane-induced lupus. In contrast to the 129/B6. Fcgr2b-deficient mice whose T effector memory cells (Tem) were reduced in the absence of STING, the pristane-induced lupus model induced the Tem in both the Sting^{gt^{gt}} and WT mice in a similar manner. The difference in Tem phenotypes between these two models may derive from the ability of activated cDC to prime T cells. Lupus mouse models and human SLE studies show the increase of double-negative T cells (DN-T), which produced both IFN-γ and IL-17A (39, 44). Blocking the IL-17 signaling pathway ameliorates glomerulonephritis (39). Only IL-17⁺CD4⁺ cells but not IFN-γ⁺ CD4⁺ cells decreased in the Sting^{gt^{gt}} mice after pristane injection. Reducing IL-17-producing cells could be one of the mechanisms that reduce lupus nephritis severity.

In this study, we induced the lupus phenotypes (LN and DPH) in WT mice, allowing us to compare STING-deficient’s effect on Golden ticket mutant mice (Sting^{gt^{gt}}) on lupus development. The severity of lupus nephritis and diffuse pulmonary hemorrhage in the Sting^{gt^{gt}} mice reduced significantly compared to WT after pristane injection. The findings suggested STING participated in the pathogenesis of pristane-induced lupus in the Sting^{gt^{gt}} mice. In contrast, a recent study shows that STING put a break on pristane-induced lupus mediated through endosomal Toll-like receptors. The Sting-deficient mice increased anti-nuclear antibodies, peritoneal macrophages, and CD11b⁺ Ly6C^{hi} inflammatory monocytes in the spleen. However, Pristane could not induce lupus nephritis in the WT mice in that study (45). The difference in findings in these two studies
could be the backgrounds of the Sting-deficient mice. The Sting

gt,gt was created by the ENU mutagen (27), which could induce other mutations around the Sting locus and might influence lupus pathogenesis. The mice used in the previous study were Sting deletion (46). The mouse models that show the high activity of type I IFN required a STING signaling pathway (26, 47) while the MRL.Fasfr mice, mediated through endosomal TLRs, show the opposite result (24, 48).

In addition, a previous study did not induce lupus phenotypes (LN and DPH) after pristane injection (45). The lack of specific lupus pathology may suggest low expression of type I IFN in that environment, affecting the STING signaling mechanisms. Hence, it is difficult to justify whether the interruption of STING signaling did not affect lupus. Since the STING signaling pathway has demonstrated various functions in different cell types, models, and backgrounds, the evaluation of immunological markers without the disease-specific pathology may not draw the precise conclusion of pathogenesis overall. The complexity of lupus mouse models leads to the diverse mechanisms of SLE. STING mutations have been identified in human autoinflammatory disease and interferonopathies (18, 21). The specific STING inhibitor (ISD017) can ameliorate glomerulonephritis in the Fcgr2b-deficient mice and reduce ISG responses in peripheral blood mononuclear cells (PBMC) from SLE patients (28). The data suggested the intrinsic mechanism of STING underlying human SLE. Thus, we identified the STING role in human SLE by looking at the SNPs and mutation of STING in our SLE patients.

A previous study on multiple autoimmune diseases to identify STING SNP on exon five (Rs7380272) did not show the difference between patients and controls (23), which could be due to the small sample size or other STING variants associated with SLE susceptibility. We hypothesized that individual SNPs of STING’s effect on SLE risk would be minor, and the combinations of these SNPs might yield greater risk.

The R71H, G230A, and R293Q variants are HAQ alleles and could be found in up to 20% of the population (49). Although the HAQ homozygous allele was described as a loss-of-function mutation resulting in defective stimulation of type I IFN (50), another study showed that HAQ STING homozygous allele HAQ is indeed functionally responsive to cyclic dinucleotide (51). The R71H and R293Q variants cause the type I IFN-stimulating defect of HAQ, while the G230A variant was only a gain-of-function mutation in STING and resulted in an increased type I IFN (52). Here, we detected the inheritance pattern of each variant from SLE patients who showed a significant OR and combined the inheritance pattern of each variant (HAR AAD QAR), considerably increasing the OR. The combination of 284S (gain-of-function) on top of the HAR AAD QAR inheritance pattern dramatically augmented SLE risk in this Thai population. Also, the loss-of-function STING variant (232H) reduced the SLE risk and disease severity at the time of diagnosis. This analysis revealed the risk of SLE development could derive from a perfect combination of STING variants providing synergistic
effects. Our study showed that all SLE patients had at least one mutation, and almost all of the patients had a gain-of-function mutation, the R284S variant. This finding suggests that STING mutation may play an essential role in lupus development and may be a new target for SLE treatment.

CONCLUSION

Our mouse and human SLE data suggested that STING-mediated signaling showed promising targeted intervention. Although some mouse models showed unencouraging results in inhibiting STING for lupus treatment, the difference in the results may depend on the background of the mice and intrinsic mechanisms that promote type I IFN production. Human SLE has high heterogeneity in disease phenotypes, severity, and genetic susceptibility. Since we identified that STING variants and mutation increased SLE risk, STING genetics could be a biomarker to identify patients who will respond to STING targeted treatment.

AUTHOR CONTRIBUTIONS

PV, PP, TP, NH, and SP conceived the concept and design of this project. PV and PP designed the experiments. PP and TP supervised the experiments. PV and CT performed the experiments. PP, SW, and PN recruited patients. TS collected clinical samples. PV, CT, and SW collected demographic data from patients. AL, PV, and PP scored the pathological status of tissues. PV, SW, PN, and PP analyzed the data. PV and PP wrote and finalized the manuscript. All the authors reviewed, contributed, and approved this submitted manuscript.

ACKNOWLEDGEMENTS

We thank all the great supporters who helped and facilitated us in performing this research. We appreciate our team members, Arthid Thim-uam and Mookmanee Tansakul, for helpful experimental suggestions and discussions, and the CUSB team members, especially Phitchapha Praykhunthod, Isara Alee, and Papasara Chantawichitwong, for your hands. Thanks to Meng-Shin Shiao, Saisuda Noojaroen, and Pamorn Chittavanich for arranging the facility to perform experiments.

Ethics approval

All mouse experiments were performed with the approval of the Animal Experimentation Ethics Committee of Chulalongkorn University Medical School with all relevant institutional guidelines (007/2561). The SLE study (COA. MURA2015/731) was approved by the Faculty of Medicine Ramathibodi Hospital ethics committee and conducted according to the guidelines of the Declaration of Helsinki.

Data availability
Data are available upon reasonable request.

References

Figure Legends

Figure 1. *Sting/Tmem173* mediated autoantibody production in Pristane-induced lupus.

(A) Confocal microscopy shows staining of an anti-nuclear antibody (ANA) of Sting WT (*Sting*^{+/+}) and Sting-deficient (*Sting*^{−/−}) mouse sera at 1:2000 dilution. The ANA patterns show cytoplasmic homogenous (yellow arrow), mitotic (blue arrow), rim (white arrow), and nucleolar (red arrow). Scale bar 50 µM at 40X magnification and 25 µM at 80X magnification. (B) The fluorescence intensity of ANA was scored at the dilution of 1:2,000. (C) Detection of anti-double-stranded DNA (dsDNA) (1:100) using ELISA, read out at the wavelength of 450 nm. (D) Flow cytometry analysis of splenocytes shows the percentage and cell number of germinal center B cells (B220⁺GL-7⁺FAS⁺) and plasma cells (B220⁺CD138⁺). (E) The mean fluorescence intensity (MFI) of IAb⁺ represents MHC II expression in the B cells. Data are shown as mean ± SEM; *p*-values indicated in the figures (N = 16-18 mice/group).

Figure 2. *Sting/Tmem173* facilitated plasmacytoid dendritic cells and macrophage expansion in Pristane-induced lupus.

The isolated splenocytes were stained and analyzed by flow cytometry. Data show the proportion and the absolute number of cells (A–B) DC (CD11c⁺), (C – D) activated cDC (CD11c⁺CD11b⁺mPDCA1Ab⁺), (E – F) pDC (CD11c⁺CD11b⁺mPDCA⁺), (G – H) neutrophils (CD11b⁺Ly6g⁺), and (I – J) macrophages (CD11c⁺F480⁺). (K-L) The MFI of IAb⁺ represents MHC II expression of (K) DC and (L) macrophages. Data are shown as mean ± SEM; *p*-values indicated in the figures (N = 16-18 mice/group).

Figure 3. STING mediated inflammatory pathology in Pristane-induced lupus.

The tissues (kidney and lung) were sectioned and stained with Hematoxylin and eosin stain (H&E). (A) The section of kidneys from pristane-induced mice showed glomerulonephritis (scale bar 100 µm). (B–C) The kidney histopathology was graded for (B) glomerulonephritis (glomerular score) and (C) interstitial nephritis (interstitial score). (D) The lung sections showed diffuse pulmonary hemorrhage from pristane-induced mice (scale bar 100 µm). (E-F) The lung histopathology was graded for (E) diffuse pulmonary hemorrhage and (F) interstitial inflammation scores. Data are shown as mean ± SEM; *p*-values indicated in the figures (N = 16-18 mice/group).
<table>
<thead>
<tr>
<th>Rs number</th>
<th>variants</th>
<th>Inheritance pattern</th>
<th>Autosomal dominant</th>
<th>Autosomal recessive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OR</td>
<td>95%CI</td>
<td>p-value</td>
</tr>
<tr>
<td>Rs11554776</td>
<td>c.212G>A</td>
<td>1.0962</td>
<td>0.7494-1.6036</td>
<td>0.636</td>
</tr>
<tr>
<td></td>
<td>R71H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rs78233829</td>
<td>c.689G>C</td>
<td>3.8474</td>
<td>2.3973-6.1747</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>G230A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rs7380824</td>
<td>c.878G>A</td>
<td>0.9475</td>
<td>0.6423-1.3976</td>
<td>0.786</td>
</tr>
<tr>
<td></td>
<td>R293Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rs1131769</td>
<td>c.695G>A</td>
<td>0.8236</td>
<td>0.3913-1.7335</td>
<td>0.609</td>
</tr>
<tr>
<td></td>
<td>R232H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>c.852G>T</td>
<td>64.0860</td>
<td>22.8605-179.6555</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>R284S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotype pattern</td>
<td>Healthy</td>
<td>SLE</td>
<td>OR</td>
<td>95%CI</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Complete-HAQ</td>
<td>19</td>
<td>76</td>
<td>2.7256</td>
<td>1.5838-4.6905</td>
</tr>
<tr>
<td>Incomplete-HAQ</td>
<td>111</td>
<td>194</td>
<td>1.0033</td>
<td>0.6794-1.4815</td>
</tr>
<tr>
<td>Absent-HAQ</td>
<td>43</td>
<td>32</td>
<td>0.3583</td>
<td>0.2166-0.5926</td>
</tr>
<tr>
<td>Complete HAQ w/o S284</td>
<td>12</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Complete HAQ w/S284</td>
<td>7</td>
<td>75</td>
<td>128.5714</td>
<td>14.5033-1139.778</td>
</tr>
<tr>
<td>Complete HAQ w/o H232</td>
<td>3</td>
<td>41</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Complete HAQ w/ H232</td>
<td>16</td>
<td>35</td>
<td>0.16</td>
<td>0.0430-0.5950</td>
</tr>
</tbody>
</table>
Table 3. Comparison of clinical manifestations among STING genotype patterns in SLE patients

<table>
<thead>
<tr>
<th>Clinical Parameters</th>
<th>Total SLE (N = 201)</th>
<th>R284S w/o R232H (N = 104)</th>
<th>Non-complete HAQ w/R284S (N = 149)</th>
<th>p-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of onset (Mean±SD)</td>
<td>29.67±10.60</td>
<td>31.96±11.95</td>
<td>29.25±8.81</td>
<td>0.219</td>
<td>0.888</td>
</tr>
<tr>
<td>Female</td>
<td>192 (95.52)</td>
<td>25 (96.15)</td>
<td>74 (94.87)</td>
<td>0.791</td>
<td>1.000</td>
</tr>
<tr>
<td>Skin involvement</td>
<td>181 (90.05)</td>
<td>25 (96.15)</td>
<td>72 (92.31)</td>
<td>0.498</td>
<td>0.208</td>
</tr>
<tr>
<td>MSK involvement</td>
<td>150 (74.63)</td>
<td>17 (65.38)</td>
<td>57 (73.08)</td>
<td>0.453</td>
<td>0.536</td>
</tr>
<tr>
<td>Renal involvement</td>
<td>149 (75.43)</td>
<td>20 (68.92)</td>
<td>55 (70.51)</td>
<td>0.528</td>
<td>0.242</td>
</tr>
<tr>
<td>Hematological involvement</td>
<td>145 (72.34)</td>
<td>19 (70.68)</td>
<td>56 (71.79)</td>
<td>0.900</td>
<td>0.996</td>
</tr>
<tr>
<td>Cardiopulmonary involvement</td>
<td>30 (14.93)</td>
<td>6 (23.08)</td>
<td>9 (11.54)</td>
<td>0.196</td>
<td>0.347</td>
</tr>
<tr>
<td>Neurological involvement</td>
<td>46 (22.89)</td>
<td>7 (26.92)</td>
<td>19 (24.36)</td>
<td>0.794</td>
<td>0.793</td>
</tr>
<tr>
<td>GI involvement</td>
<td>16 (7.96)</td>
<td>4 (15.38)</td>
<td>5 (6.41)</td>
<td>0.223</td>
<td>0.634</td>
</tr>
<tr>
<td>Constitutional symptoms</td>
<td>62 (30.85)</td>
<td>7 (26.92)</td>
<td>25 (32.05)</td>
<td>0.624</td>
<td>0.480</td>
</tr>
<tr>
<td>anti-sm</td>
<td>36 (17.91)</td>
<td>8 (30.77)</td>
<td>15 (19.23)</td>
<td>0.220</td>
<td>0.548</td>
</tr>
<tr>
<td>anti-dsDNA</td>
<td>111 (55.22)</td>
<td>16 (61.54)</td>
<td>42 (53.85)</td>
<td>0.494</td>
<td>0.514</td>
</tr>
<tr>
<td>SLEDAL score at diagnosis (Mean±SD)</td>
<td>12.12±6.93</td>
<td>11.92±6.58</td>
<td>13.26±6.86</td>
<td>0.384</td>
<td>0.131</td>
</tr>
<tr>
<td>Mild and moderate activity</td>
<td>119 (59.2)</td>
<td>15 (57.69)</td>
<td>39 (50.00)</td>
<td>0.497</td>
<td>0.018*</td>
</tr>
<tr>
<td>Serum activity</td>
<td>82 (40.80)</td>
<td>11 (42.31)</td>
<td>39 (50.00)</td>
<td>22 (30.99)</td>
<td>39 (50.00)</td>
</tr>
<tr>
<td>Remission at 1st year</td>
<td>56 (27.8)</td>
<td>8 (30.77)</td>
<td>20 (25.64)</td>
<td>0.61</td>
<td>0.968</td>
</tr>
<tr>
<td>Remission at 5th year</td>
<td>89 (44.28)</td>
<td>14 (53.85)</td>
<td>33 (42.31)</td>
<td>0.61</td>
<td>0.609</td>
</tr>
<tr>
<td>Disease flare ≥ 2 times</td>
<td>22 (10.95)</td>
<td>5 (19.23)</td>
<td>6 (7.69)</td>
<td>0.137</td>
<td>0.64</td>
</tr>
<tr>
<td>Free of steroids in 5th year</td>
<td>42 (2.89)</td>
<td>6 (23.08)</td>
<td>15 (19.23)</td>
<td>0.672</td>
<td>0.369</td>
</tr>
<tr>
<td>Free of immunosuppressive at 5th year</td>
<td>29 (14.5)</td>
<td>7 (26.92)</td>
<td>11 (14.10)</td>
<td>0.145</td>
<td>0.269</td>
</tr>
<tr>
<td>SLICC/ACR damage score ≥ 1 in 5th year</td>
<td>54 (26.67)</td>
<td>5 (19.23)</td>
<td>24 (30.77)</td>
<td>0.256</td>
<td>0.122</td>
</tr>
<tr>
<td>Death</td>
<td>4 (1.99%)</td>
<td>1 (3.85)</td>
<td>0 (0)</td>
<td>0.25</td>
<td>0 (1.41)</td>
</tr>
</tbody>
</table>

Definition: non-complete HAQ = both incomplete and absence HAQ.