Monkeypox knowledge, concern, willingness to change behaviour, and seek vaccination:

Results of a national cross-sectional survey

James MacGibbon¹, Vincent Cornelisse²,³, Anthony K J Smith¹, Timothy R Broady¹, Mohamed A Hammoud², Benjamin R Bavinton², Heath Paynter⁴, Matthew Vaughan⁵, Edwina J Wright⁶,⁷,⁸, and Martin Holt¹

¹ Centre for Social Research in Health, UNSW Sydney, NSW, Australia
² Kirby Institute, UNSW Sydney, NSW, Australia
³ Kirketon Road Centre, NSW Health, Sydney, NSW, Australia
⁴ The Australian Federation of AIDS Organisations, Sydney, NSW, Australia
⁵ ACON, Sydney, NSW, Australia
⁶ Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
⁷ Burnet Institute, Melbourne, Australia
⁸ The Peter Doherty Institute of Infection and Immunity

Corresponding author:
James MacGibbon
j.macgibbon@unsw.edu.au

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Objectives: To assess knowledge and concern about monkeypox, acceptability of behavioural changes to reduce transmission risk, and willingness to be vaccinated among gay, bisexual and queer-identifying men and non-binary people.

Design: National, online cross-sectional survey with convenience sample, August–September 2022. Participants were recruited through community organisation promotions, online advertising, and direct email invitations.

Participants: Eligible participants were gay, bisexual or queer; identified as male (cisgender or transgender) or non-binary; aged 16 years or older; and lived in Australia. The completion rate was 70.76% (2287/3232 of those who started the survey).

Main outcome measures: Participant characteristics; knowledge and concern about monkeypox; recognition of monkeypox symptoms and transmission routes; vaccination history; acceptability of behavioural changes to reduce monkeypox risk, and willingness to be vaccinated.

Results: Of 2287 participants, most participants were male (2189/2287; 95.71%) and gay (1894/2287; 82.82%), nearly all had heard about monkeypox (2255/2287; 98.60%), and most were concerned about acquiring monkeypox (1461/2287; 64.42%). Most of the 2268 undiagnosed participants identified skin lesions (2087; 92.02%), skin rash (1977; 87.17%), and fever (1647; 72.62%) as potential symptoms, and prolonged and brief skin-to-skin contact as potential ways to acquire monkeypox (2124, 93.65%; and 1860, 82.01% respectively). The most acceptable behavioural changes were reducing or avoiding attendance at sex parties (1494; 65.87%) and sex-on-premises venues (1503; 66.40%), and having fewer sexual partners (1466; 64.64%). Most unvaccinated and undiagnosed participants were willing to be vaccinated (1457/1733; 84.07%).
Conclusions: People at risk of monkeypox should be supported to adopt acceptable risk reduction strategies and seek vaccination as supply increases.

Keywords: men who have sex with men, gay and bisexual men, vaccination, attitudes, Australia, monkeypox
Introduction

Monkeypox (MPX) is a viral zoonotic disease first identified in humans in 1970 and is endemic in Central and West African countries (1). In May 2022, health authorities identified an emerging MPX outbreak in non-endemic countries, in which >95% cases were recorded among gay and bisexual and other men who have sex with men (GBMSM) (1, 2). In July 2022, the World Health Organization declared MPX a public health emergency of international concern (2). Australia made MPX a nationally notifiable disease in June 2022 and declared the MPX outbreak a Communicable Disease Incident of National Significance in July 2022 (3).

MPX spreads primarily through direct contact with infected skin and bodily fluids, and by large respiratory droplets (4). Despite initial concerns of fomite transmission via contaminated surfaces, to date no such transmission has been documented during the current outbreak (4, 5). MPX infection is self-limited and requires self-isolation until lesions have healed (6, 7). Clinical care, including hospitalisation is required to manage secondary bacterial infections, ocular and gastrointestinal involvement and severe pain (6, 7). MPX is sometimes fatal (6, 7). More than 79,000 MPX cases have been recorded in 103 non-endemic countries, with 42 fatalities (8). Globally, the number of incident infections peaked in August 2022 at around 1,000 cases daily, and have declined since then (9). Australia recorded its first MPX cases in May 2022, and 141 cases by November 2022, two-thirds of which were acquired overseas (8).

Vaccinia vaccines, developed to protect against smallpox, offer protection against MPX (10, 11). In August 2022, the Australian Government acquired a limited supply of 3rd-generation, non-replicating Modified Vaccinia Ankara (MVA) vaccine, initially targeted to people at
highest risk of exposure to MPX virus or severe MPX illness (12). As was observed during COVID-19, particularly before widespread vaccine availability (13, 14), GBMSM will likely follow public health advice, promoted via community organisations, and adapt their behaviour to reduce their risk of acquiring MPX until they are vaccinated; for example by reducing the number of untraceable sexual partners and attendance at sex-on-premises venues and sex parties. Based on experience with COVID-19, we anticipate most GBMSM will be willing to be vaccinated against MPX (15, 16).

To identify education and health promotion needs for people at risk of MPX, and help guide the Australian vaccination program, we examined what GBMSM and non-binary people knew about MPX virus and what behavioural changes they would be able to implement in response to the outbreak. We anticipated that greater perceived risk would be associated with greater willingness to modify behaviour to avoid MPX and seek vaccination.

Method

Study design and participants

A national Australian, cross-sectional survey was conducted between 24 August and 12 September 2022 using Qualtrics software (Provo, UT). The survey was promoted through community partner organisations and paid advertisements on Facebook and Grindr, supplemented by email invitations to consenting participants of previous studies. Potential participants were directed to the study website, containing participant information and the survey link. Participants provided consent before starting the survey. Eligible participants identified as gay, bisexual or queer (GBQ); identified as male (cisgender or transgender) or non-binary; were aged 16 years or older; and lived in Australia. The study was approved by
the ethics committee of UNSW Sydney (HC220484) and the community organisation ACON (2022/14).

Measures

We collected data on demographics, physical health, recent sexual practices, HIV status, HIV treatment or pre-exposure prophylaxis (PrEP), sexually transmissible infection (STI) testing and history, vaccination history against smallpox or MPX, knowledge and concern about MPX, acceptability of behavioural changes in response to MPX, and willingness to be vaccinated. Adaptive routing was used to exclude irrelevant items, and response options were randomised in lists to reduce order bias. Participants who had been diagnosed with MPX were shown questions about their experience of MPX (not discussed in this article). The main outcome measures are detailed in Appendix 1 (see supplementary materials).

Statistical analyses

Descriptive statistics were computed for all variables. Pearson’s chi-squared tests identified significant associations between independent and dependent variables, and logistic regression was used to identify independent associations for key dependent variables (i.e., behavioural change measures and vaccine willingness). Multivariate analyses used block entry of variables that were significant at the bivariate level. Statistical assumptions were assessed, including model diagnostics for logistic regression, none of which were violated. Variables in the regression models had no missing observations. We report unadjusted and adjusted odds ratios (OR and aOR) with 95% confidence intervals (CI). Statistical significance was set at $p<.05$ (two-tailed). Analyses were conducted using Stata version 16.1 (StataCorp, College Station, TX).

Results

The survey was completed by 2287 of 3232 eligible people who commenced it (70.76% completion rate). The median age of the 2287 participants was 40 years (IQR=31–51), 1894
(82.82%) identified as gay, 2189 (95.71%) were male, 1701 (74.38%) were Australian born, 1550 (67.77%) were university educated, 1647 (72.02%) reported full-time employment, and 1877 (82.07%) lived in the capital city of their state/territory. Most participants lived in New South Wales (860; 37.60%) or Victoria (760; 33.20%). In total, 1944 (85.00%) were HIV-negative, 179 (7.83%) were HIV-positive, and 164 (7.17%) were untested or did not know their status. Within the prior 12 months, more than two thirds of the sample had been tested for HIV (1634; 71.45%) or other STIs (1616; 70.66%). In total, 1241 (54.27%) participants had ever used PrEP and 914 (39.97%) were taking PrEP at the time of the survey. Further details of participant characteristics are shown at Appendix 2, Table 1, online at mja.com.au.

Previous vaccination against smallpox or monkeypox. Nearly one quarter of participants had ever received a smallpox or monkeypox vaccine (541/2287; 23.66%). Most had received MVA vaccine (325/541; 60.1% of vaccinated participants or 14.21% of the total sample), a small proportion had received replication-competent 2nd-generation vaccinia vaccine (ACAM2000) (28/541; 5.2%), and more than one third did not know which vaccine they had received (188/541; 34.8%). Most were vaccinated after May 2022 (347/541; 64.1%), and had received the vaccine before potential exposure to MPX (283/347; 81.6%). Fifteen participants were vaccinated after potential exposure (15/347; 4.3%), and the remainder for another reason (49/357; 14.1%). Of participants vaccinated with MVA, most had received only one dose (320/325; 98.5%) and most received it in Australia (295/325; 90.8%). Further details of previous vaccination are shown at Appendix 2, Table 2.

Potential monkeypox risk factors. Of the 2287 participants, 706 (30.87%) had travelled overseas in the previous six months, and 1075 (47.00%) planned to travel in the next six months. In the six months preceding the survey, 599 (26.19%) participants had more than 10 male sexual partners, 1277 (55.84%) reported casual sex with male partners without condoms, 1248 (54.58%) reported anonymous sex, 804 (35.16%) reported group sex, and 731
(31.96%) had visited a sex-on-premises venue. Compared with unvaccinated participants, participants vaccinated since May 2022 were more likely to report recent and future overseas travel, and other potential MPX risk factors (see Appendix 2, Table 3 for comparisons).

Monkeypox knowledge and concern. Of the 2268 participants who had not been diagnosed with MPX, 32 (1.41%) had never heard of MPX before the survey, 1065 (46.96%) knew a ‘small amount’, 695 (30.65%) a ‘fair amount’, 356 (15.70%) ‘quite a bit’ and 120 (5.29%) ‘a lot’. The most common ways to learn about MPX were the media (1904/2255; 84.43%), conversations with friends or family (729/2255; 32.33%), and information provided by community organisations (660/2255; 29.27%). Among the 2268 undiagnosed participants, 323 (14.24%) knew someone who had been diagnosed with MPX, 1461 (64.42%) were concerned or very concerned about acquiring MPX, and 465 (20.50%) believed it likely or very likely they would acquire MPX. Vaccinated participants were more likely to report MPX knowledge and concern compared to unvaccinated participants, but there was no difference in perceived likelihood of acquiring MPX (see Appendix 2, Table 4 for all comparisons).

Recognition of monkeypox symptoms and transmission routes. The 2268 undiagnosed participants were asked to identify potential MPX symptoms and transmission routes. The most commonly identified symptoms were skin lesions (2087; 92.02%), skin rash (1977; 87.17%), and fever (1647; 72.62%). Box 1 shows other symptoms and uncertainty about potential symptoms (ranging from 5–43% for ‘don’t know’ responses).
Box 1 – Monkeypox symptom identification by 2268 participants who had not been diagnosed with monkeypox

Most participants identified prolonged skin-to-skin contact (2124; 93.65%), brief skin-to-skin contact (1860; 82.01%) and contact with bodily fluids (1692; 74.60%) as potential ways to acquire MPX. Box 2 shows knowledge of transmission routes and uncertainty about them (ranging from 5–36%). Participants with more than 10 male sexual partners in the previous six months were more likely to recognise potential MPX symptoms (and some transmission routes) compared to those with fewer partners (see Appendix 2, Table 5 for all comparisons).
Box 2 – Monkeypox transmission route identification by 2268 participants who had not been diagnosed with monkeypox

Acceptability of behavioural changes in response to monkeypox. Box 3 shows the acceptability of different behavioural changes among the 2268 undiagnosed participants. The most acceptable strategies were reducing or avoiding attendance at sex parties (1494; 65.87%) and sex-on-premises venues (1503; 66.40%), and having fewer sexual partners (1466; 64.64%). Multivariate analyses showed that concern about MPX and vaccination since May 2022 were independently associated with greater acceptability of these three strategies (see Appendix 2, Table 6 for multivariate results). The least acceptable strategies were not hugging people (445; 19.62%), avoiding densely populated venues (760; 33.51%), and not kissing people (771; 33.99%). Most participants were willing to avoid contact with people if diagnosed with MPX (2110/2268; 93.03%), but fewer participants were confident they could
avoid physical contact with people (1660/2268; 73.19%), work from home (1588/2268; 70.02%), or not share communal living spaces such as a bathroom, kitchen or bedroom (1222/1268; 53.88%). More than half of participants were comfortable with contact tracers disclosing a potential MPX diagnosis to casual sex partners (1377/2268; 60.71%; see Appendix 2, Table 7 for further details).

Box 3 – Endorsement of potential monkeypox risk-reduction strategies by 2268 participants who had not been diagnosed with monkeypox

<table>
<thead>
<tr>
<th>Strongly agree/Agree</th>
<th>Neutral</th>
<th>Disagree/Strongly disagree</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would avoid hugging people</td>
<td>20</td>
<td>20</td>
<td>59</td>
</tr>
<tr>
<td>Would only have sex with people who were vaccinated</td>
<td>32</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td>Would avoid densely populated venues</td>
<td>34</td>
<td>19</td>
<td>44</td>
</tr>
<tr>
<td>Would avoid kissing people</td>
<td>34</td>
<td>22</td>
<td>42</td>
</tr>
<tr>
<td>Would stop having casual sex until vaccinated*</td>
<td>37</td>
<td>22</td>
<td>34</td>
</tr>
<tr>
<td>Be able to tell if sex partners had visible monkeypox symptoms</td>
<td>42</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>Use condoms to reduce risk of acquiring monkeypox</td>
<td>48</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>Avoid sex with returned travellers</td>
<td>50</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Have fewer sex partners</td>
<td>65</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Reduce or avoid attendance at sex on premises venues</td>
<td>66</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Reduce or avoid attendance at sex parties</td>
<td>66</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

*This item was only shown to the 1733 participants who had not received a smallpox/monkeypox vaccination or been diagnosed with monkeypox. All items were presented in random order.

Willingness to be vaccinated against monkeypox. Among the 1733 participants who were unvaccinated and had not been diagnosed with MPX, 1457 were willing to be vaccinated (84.07%). Most were willing to receive the vaccine immediately as a precautionary measure.
(1337/1733; 77.15%); a smaller proportion indicated they would be vaccinated later if more MPX cases were reported in Australia (268/1733; 15.46%). Among the 1486 participants who had at least one male casual sex partner in the previous six months, vaccine acceptability was similar to the broader group (1275/1486, 85.80% vs. 1457/1733, 84.07%). Multivariate analysis showed bisexual participants and those who were unconcerned about MPX were less willing to be vaccinated and participants with greater numbers of recent sexual partners were more willing (see Appendix 2, Table 8 for multivariate results).

Discussion

This is the first national study of knowledge and attitudes to MPX among GBMSM in Australia. Most participants accurately identified common clinical symptoms (skin lesions and/or rash) and transmission routes (skin-to-skin contact). Early recognition of symptoms is an important component of public health responses to an infectious disease.

Nearly one quarter of participants reported a history of smallpox or monkeypox vaccination. As Australia never had universal smallpox vaccination (17, 18) and estimates suggest only 10% of contemporary Australians have been vaccinated against smallpox (19), it is likely that some participants mistakenly believed they had been vaccinated (20). It is unknown whether mistaken beliefs about historical vaccination may deter people from seeking vaccination against MPX, but it may be important for public education campaigns to highlight the limited coverage and protection offered by historical smallpox vaccination (7).

As we anticipated, almost two thirds of participants were willing to modify their sexual practices to reduce their risk of acquiring MPX (e.g., avoiding sex parties, sex-on-premises venues or having fewer sex partners). However, changes to social practices, such as avoiding
hugging or kissing, or avoiding popular venues, were rated as less acceptable. It is possible that changes to social behaviour were perceived as less acceptable after COVID-19 restrictions in Australia (‘pandemic fatigue’) (21) and because GBMSM correctly surmised that prolonged skin-to-skin contact represents a greater transmission risk. Previous research has found that GBMSM are unwilling to avoid kissing to reduce the risk of gonorrhoea (22). However, COVID-19 research showed that GBMSM modified their sexual practices to reduce transmission risk, particularly in the absence of vaccine protection (14, 16), gradually increasing levels of sexual activity after they were vaccinated (23). It is difficult for people to sustain behaviour that has a personal or social cost over time (24), so public health messages should consider what behaviour change may be achievable and acceptable for GBMSM during the MPX outbreak, in order for messaging to be effective. Ongoing surveillance of sexual behaviour, vaccine uptake, and behaviour change in response to MPX would be useful.

Lastly, there was very high willingness to receive MPX vaccination as it becomes available. Few factors distinguished between participants who were willing to be vaccinated or not, although bisexual participants and people who were less concerned about MPX were less willing, and people with more sexual partners were more willing. In general, this aligns with community-oriented messaging about MPX vaccination, which has encouraged more sexually active people to come forward first, while vaccine supplies have been limited. Our results suggest that targeted messaging for bisexual men may be warranted, explaining why vaccination is beneficial, and how vaccination may be accessed safely and discreetly. Such messaging may be particularly important to increase MPX vaccination rates in advance of World Pride, which is due to be held in Sydney in February 2023.
Limitations

We acknowledge the limitations of the analysis, which included the study’s non-random sample. As there are limited national data on GBMSM and non-binary people, the representativeness of our sample is unknown. However, the cross-sectional sample comprised a large proportion of people who were at potential risk of acquiring MPX (i.e., who reported potential risk behaviours, recent travel and future travel plans). Further, 19 (14.7%) of the 129 people (as of 12 September 2022) diagnosed with MPX in Australia responded to the survey (9). We also oversampled participants from New South Wales and Victoria, where most MPX cases were reported (3). Our findings may reflect those of people with greater interest in or risk of acquiring MPX in Australia.

Conclusion

Despite the rapid global emergence of MPX, Australia is well placed to avoid a large-scale local MPX outbreak. This can be achieved through large-scale uptake of MPX vaccination by at-risk people, and targeted education and awareness raising among GBMSM to explain the importance of temporary modifications of sexual practices during outbreaks while vaccination levels remain low. Our survey indicates high levels of willingness to receive MPX vaccination, but some people, namely bisexual men and GBMSM with lower numbers of sexual partners, may benefit from encouragement and support to get vaccinated. Our survey indicates that GBMSM are willing to modify some sexual practices to reduce their risk of MPX, but we caution that such behaviour modification may not be sustainable in the longer term, and hence risk reduction messaging must be carefully timed to achieve maximal impact during periods where there is a risk of transmission. While case numbers are currently low, Australia should seize the opportunity to increase vaccination coverage to reduce the chance of future outbreaks.
Declarations

Acknowledgements

The Centre for Social Research in Health and Kirby Institute receive funding from the Australian Government Department of Health and from state/territory health departments.

The funding sources did not have any involvement in the collection, analysis and interpretation of data, or in the writing of this manuscript and decision to submit for publication. No pharmaceutical funding was received for this study. In-kind creative services for the study recruitment materials were provided by Oskar Westerdal and Vincent Rommelaere. Professor Andrew Grulich is a member of the study’s project team and provided advice on the survey instrument.

Availability of data and material

A deidentified dataset may be available from the authors upon reasonable request, subject to ethical oversight being obtained by bona fide researchers.

Code availability

Syntax for the database coding and analysis may be available upon request.

Author contributions

All authors contributed to the study design, analysis and interpretation of findings. JM, TB and MH oversaw data collection. JM drafted the manuscript and conducted the quantitative analyses, supported by MH and VC. All authors reviewed and commented on drafts of the manuscript and agreed with the final version.

Compliance with ethical standards

The questionnaire and methodology for this study were approved by the Human Research Ethics Committee of UNSW Sydney (HC220484) and endorsed by the community organisation ACON (2022/14). Informed consent was obtained from all individual participants included in the study prior to their participation in the questionnaire.
References