Enhanced cholera surveillance as a tool for improving vaccination campaign efficiency

Hanmeng Xu¹*, Kaiyue Zou¹*, Kirsten E. Wiens¹,², Espoir Bwenge Malembaka¹,³, Andrew S. Azman¹, Elizabeth C. Lee¹

¹ Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
² Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, USA
³ Center for Tropical Diseases and Global Health (CTDGH), Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo

* denotes equal contribution

Abstract

Introduction
Oral cholera vaccines (OCVs), though in short supply globally, can effectively reduce the risk of cholera caused by pandemic Vibrio cholerae O1, which is highly variable in space and time. Few cholera surveillance systems perform systematic confirmatory testing for V. cholerae, which limits the efficient selection of vaccination campaign targets and public health impact of OCV.

Methods
We developed a spatial modeling framework that simulates vaccine targeting and changing cholera susceptibility and burden for 35 countries in Africa from 2022-2035. We explored the relative gains in efficiency across 18 vaccination scenarios that varied by their vaccination targeting approach and confirmatory testing capacity. Efficiency was calculated as the number of true cholera cases averted per 1,000 fully vaccinated persons.

Results
Scenarios with more restrictive targeting- defined by greater bacteriological confirmation capacity, smaller geographic targeting scale, and higher incidence rate thresholds- were associated with higher vaccination campaign efficiency. The most restrictive scenario averted 9.41 (95% PI: 7.76-11.88) cases per 1,000 fully vaccinated persons. This was 10 times more efficient than the least restrictive scenario, which vaccinated roughly 20 times as many people and only averted about 2 times as many cases. Scenarios that based targeting according to clinical surveillance averted the most cases, at the cost of using many more vaccines. Across modeled countries, scenarios with national laboratory confirmation at the national level had substantially improved efficiency compared to clinical surveillance alone, while district-level laboratory capacity yielded only minor additional gains.

Conclusion

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Less restrictive targeting of vaccination campaigns averts the most cholera cases, while district-level bacteriological confirmation capacity that enables targeting of districts with the highest burden of true cholera represents the most efficient use of vaccine. Nevertheless, these modeling scenarios represent simplified versions of complex logistical and decision-making challenges in cholera surveillance and vaccine distribution. In reality, building testing capacity at levels in-between the national and district-levels is likely to best balance surveillance data quality with feasibility.

Introduction

Cholera remains a major public health threat in areas with limited access to safe water and sanitation services. Africa bears a substantial part of the global burden of cholera with an estimated 87 million people living in high incidence districts (i.e., > 1 suspected case per 1,000 people) [1,2]. However, these estimates rely primarily on data from passive clinical surveillance with infrequent laboratory confirmation, which may not reflect true cholera burden.

Cholera incidence varies greatly across space and time. The majority of suspected cases reported in Africa during 2010-2016 were from less than 5% of the population [2,3] and 65% of outbreaks during 2010-2019 occurred in only four countries [4]. Even in high incidence populations, cholera occurs across the endemic-epidemic spectrum, including locations with year-around transmission to those with outbreaks recurring every three to five years, and no reported cases in interim periods [5]. This heterogeneity challenges national surveillance systems, which may need multiple case definitions and reporting protocols to accommodate different transmission settings. When both cholera epidemiology and surveillance reporting vary widely, targeting disease control efficiently is extremely difficult.

Previous work has shown that targeting cholera control efforts to areas with high historical burden, particularly disease-specific measures such as vaccines, can make substantial improvements to the cost-effectiveness and public health impact of these interventions [6]. Yet the cholera surveillance programs required to enable such targeting are lacking. While most cholera-affected countries in Africa perform passive clinic-based cholera surveillance, there is substantial variation in case definitions, geographic reporting coverage, data quality, and case detection practices [3,7–9]. Further, systematic laboratory confirmation of clinical cholera cases through culture and PCR testing is challenging due to limited laboratory resources and materials supply chains. Among suspected cholera outbreaks in Africa from 2010-2019, laboratory testing data were reported in 25% of outbreaks and only 13% reported at least one confirmed cholera case [4]. While rapid diagnostic tests (RDTs) for \textit{V. cholerae} O1/O139 detection are being increasingly adopted for outbreak detection and case screening, their widespread use is relatively new, performance across tests and in different settings is variable, and global standards for their use and interpretation for surveillance are still under consideration [7,10].

A recent systematic review and meta-analysis found that only 49% of systematically-tested clinical cholera cases represented true \textit{V. cholerae} infections, and the odds of a true infection were higher in outbreak settings [11]. With potentially half of clinical cases coming from other diarrhea-causing pathogens like enterotoxigenic \textit{E. coli}, \textit{Cryptosporidium}, and
Shigella [12–14], the current practice of prioritizing the world’s limited supply of cholera vaccine largely on clinical cholera surveillance could be highly inefficient. Fine-scale OCV targeting supported by improved bacteriological confirmation capacity would substantially increase campaign efficiency and vaccine impact while simultaneously reducing the number of campaign sites and target population sizes in a given country.

Focusing on cholera-affected countries in Africa where district-level cholera incidence estimates are available, we build upon an existing modeling framework [6] to explore the potential gains in vaccination campaign impact and efficiency that may be observed with improved *V. cholerae* confirmation capacity and finer spatial resolution targeting.

Methods

We modeled the impact of vaccination campaigns under different scenarios and calculated the vaccine impact and efficiency relative to a scenario with no vaccination. Here, we describe the model input data and parameters, the components of targeting scenarios, the simulation framework, and calculation of efficiency.

Model inputs

Cholera incidence rates

We modeled the incidence of both clinical (i.e., suspected cholera) and laboratory-confirmed cholera at the grid-cell level and then aggregated these to administrative units when considering vaccination allocation decisions. We used previously published gridded estimates of mean clinical cholera incidence from 2010-2016 in 35 countries, which we re-scaled from 20 km x 20 km to 5 km x 5 km [2]. We assumed that mean annual incidence rates of clinical cholera, in the absence of any modeled vaccination, would remain constant from 2022 through 2035, but the number of cases could increase as the population size grew each year. We then summarized the clinical cholera incidence in each administrative unit as the population-weighted mean of each of its grid cells.

Based on a meta-analysis of cholera positivity rates [11], we assumed that only a fraction of clinical cholera case incidence was due to true cholera. To simulate the incidence rate of ‘true cholera’ we multiplied the clinical incidence rate in each administrative unit by a positivity proportion (“*V. cholerae* positivity”) assigned to that unit, which we drew from the posterior predictive distribution (Beta distribution with alpha = 1.562 and beta =1.638) of the meta-analysis. *V. cholerae* positivity was drawn randomly for each administrative unit and simulation, but was assumed constant across years and modeling scenarios.

We defined administrative areas according to the Global Administrative area database (GADM) using the R package GADMtools (version 3.9.1) [15]. Hereafter, first-level administrative units are called “provinces” and second-level administrative units are called “districts.”
Vaccine properties

As in a previous modeling study [6], we assumed that complete vaccination had a direct protective effect of 66% in the first year, which waned to 0% after five years. Indirect vaccine effects were modeled as a relative reduction in incidence rate for unvaccinated individuals according to the corresponding grid cell’s vaccination coverage. We assumed 68% of individuals over 1 year old in the targeted administrative unit received two doses of vaccine in the vaccination year and otherwise none, similar to a previous study [6].

Population data

Annual country population estimates and projections were from UN World Population Prospects [16]. The spatial distribution of population within a country followed the relative population proportions of the unconstrained 2020 1 km x 1 km WorldPop population raster after it was aggregated to the 5 km x 5 km resolution [17,18].

Modeling scenarios

We explored the potential impact and efficiency of targeted cholera vaccine use in scenarios that varied by three primary variables: bacteriological confirmation capacity (three settings), incidence rate thresholds (three levels, above which administrative units would be targeted for vaccination), and administrative scale of the vaccination campaign targeting (two scales) (Figure 1). In total, we simulated 18 vaccination scenarios to represent all combinations (3 x 3 x 2) and one ‘no vaccination’ scenario.

Bacteriological confirmation capacity

Bacteriological confirmation capacity represents a country’s capacity for systematic confirmatory testing. It determines the link between clinical cholera incidence rates and the incidence rates “observed” by the surveillance system, which are used to determine where vaccines are allocated.

We considered three bacteriological confirmation capacity scenarios. The lowest capacity scenario ("Clinical Case Definition") assumes no systematic confirmatory testing is performed; the observed and clinical incidence rates are equivalent. In the next capacity level ("National Laboratory"), clinical samples are systematically tested in a single national reference laboratory to derive a clinical case-weighted country-wide estimate of *V. cholerae* positivity. The observed incidence rate in National Laboratory scenarios was the product of the clinical incidence rate and country-wide *V. cholerae* positivity. In the highest capacity ("District Laboratories") setting, clinical cholera samples are systematically tested in the districts where they are collected in order to produce district-level estimates of *V. cholerae* positivity. The observed incidence rate in these scenarios is equal to the true incidence rate.

Incidence rate thresholds

After accounting for bacteriological confirmation capacity, administrative units were vaccinated if their observed incidence rate exceeded the threshold of 10 cases per 10,000 population, 2 cases per 10,000 population, or 1 case per 10,000 population, according to the scenario.
Administrative scale of the vaccination campaign

Vaccination campaign targets were identified at the province or district-level of the country. In scenarios with province-level targeting, the province *V. cholerae* positivity was calculated as the clinical-case-weighted mean of the associated district-level *V. cholerae* positivities.

Figure 1. Conceptual depiction of relationship between model inputs and modeling scenarios. Maps of clinical cholera incidence rate are used to calculate unobserved true incidence rate for districts and both clinical
and true incidence rate are used as model inputs. The clinical incidence rate maps and bacteriological confirmation setting (district labs, national lab, or clinical case definition) are used to calculate an “observed” incidence rate map, and the observed incidence rates are used to determine which provinces or districts are targeted for vaccination. To identify targets, the province or district observed incidence rates are compared to fixed thresholds, 10 per 10,000, 2 per 10,000, or 1 per 10,000 population. After scenarios are modeled, true cholera cases averted is calculated by subtracting the true cholera cases between no-vaccination and vaccination scenarios; true cases averted is an input for the calculation of a vaccination scenario’s “efficiency” (true cases averted per 1,000 fully vaccinated persons).

Model simulation

We performed simulations independently by country from 2022 through 2035, allowing for three possible rounds of vaccination campaigns and five additional years for waning vaccine effects. The timeline was also chosen to mirror the 2030 cholera control targets set by the 71st World Health Assembly [19]. We modeled all countries in Africa where clinical cholera incidence estimates were available, which included all cholera-affected African countries identified in the Global Task Force for Cholera Control’s (GTFCC) Global Roadmap to End Cholera [19]. Thirty-five countries were modeled: Angola, Burundi, Benin, Burkina Faso, Central African Republic, Côte d’Ivoire, Cameroon, the Democratic Republic of the Congo, Republic of the Congo, Ethiopia, Ghana, Guinea, Guinea-Bissau, Kenya, Liberia, Madagascar, Mali, Mozambique, Mauritania, Malawi, Namibia, Niger, Nigeria, Rwanda, Senegal, Sierra Leone, Somalia, South Sudan, Chad, Togo, Tanzania, Uganda, South Africa, Zambia, and Zimbabwe.

For scenarios with vaccination, each simulation year proceeds with vaccine targeting and epidemiologic modeling steps during the 2022-2030 campaign period, and with only epidemiologic steps from 2031-2035 (Table 1). In the targeting step, all administrative units with an observed incidence rate that exceeded the incidence rate threshold in a given year were vaccinated; however, administrative units could not be targeted more than once every three years even if the observed incidence rate exceeded the threshold, following current GTFCC guidance on OCV use [20]. In the epidemiologic step, gridded true cholera incidence rates were calculated from direct and indirect vaccine effects, vaccine waning from previous campaigns, population turnover, and population growth. Simulations of the no-vaccination scenario included only the epidemiologic step.

Table 1. Description of model simulation steps in vaccination scenarios. The two model components, vaccine targeting and epidemiologic modeling, are implemented in sequential order for each year of vaccination campaigns from 2022-2030. Only the epidemiologic modeling component is implemented in simulation years 2031-2035 to simulate the impact of waning vaccination after the end of campaigns. A summary of steps within each component is provided.

<table>
<thead>
<tr>
<th>Component</th>
<th>Modeling Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Vaccine targeting</td>
<td>Identify administrative units with an observed cholera incidence rate that exceeds the incidence rate threshold as potential vaccination targets.</td>
</tr>
<tr>
<td></td>
<td>Exclude administrative units that have been vaccinated within the past three years.</td>
</tr>
<tr>
<td></td>
<td>Exclude administrative units that do not encompass at least one full 5 km by 5 km grid cell (Table S2).</td>
</tr>
</tbody>
</table>
2) Epidemiologic modeling

<table>
<thead>
<tr>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convert the final list of targeted administrative units into a gridded raster file with the proportion of each cell’s population that is vaccinated.</td>
</tr>
<tr>
<td>Generate raster with the population proportion susceptible to cholera infection based on vaccinated population proportion rasters from the last five years, population turnover, and waning OCV efficacy.</td>
</tr>
<tr>
<td>Model expected true cases for a given year based on population, susceptible proportion, and true cholera incidence rate rasters, and consideration of the indirect vaccine protection.</td>
</tr>
<tr>
<td>Calculate observed cholera incidence rate in each administrative unit based on true case raster in preparation of targeting in the following year.</td>
</tr>
</tbody>
</table>

Estimating potential public health impact

True cholera cases averted were calculated as the difference between true cholera cases in a vaccination and no-vaccination scenario. Efficiency was calculated as the ratio of true cholera cases averted per 1,000 fully vaccinated persons (FVPs). Relative efficiency was the ratio of efficiencies in two vaccination scenarios.

Prediction intervals around these metrics represent stochasticity that was introduced through selection of 200 random posterior draws of mean annual clinical cholera incidence rate maps and random draws from the V. cholerae positivity distribution (by district and clinical cholera incidence draw) [11]. The random seed was fixed to enable direct comparison of simulations across modeling scenarios.

Data and code access

The model code, inputs, and explanatory README setup file can be accessed in the Github repository at https://github.com/HopkinsIDD/gavi_vimc_cholera.

Results

Across modeling scenarios, higher OCV campaign efficiencies were associated with scenarios with greater bacteriological confirmation capacity, smaller geographic targeting scale, and higher incidence rate thresholds, which all led to more restrictive vaccine targeting (Table 2). The highest efficiency of 9.41 (95% PI: 7.76-11.88) averted cases per 1,000 FVPs was achieved by the scenario with district-level confirmation capacity, an incidence threshold of 10 per 10,000 population per year, and district-level vaccination targeting. This scenario vaccinated the third lowest number of individuals across scenarios at 35.27 (95% PI: 25.12-42.99) million in 56 (95% PI: 45-74) unique districts in 17 (95% PI 14-20) countries (Table S1).

Scenarios that relied on the clinical case definition averted the most cases when other settings remained constant. For example, with district-level targeting and the 10 per 10,000 population threshold, 0.42 (95% CI: 0.35-0.5) million cases were averted under the clinical case definition scenario, compared to 0.33 (95% CI: 0.24-0.41) million averted cases in the district-level confirmation capacity scenario (Table S1). However, this 27% improvement in
public health impact came at the cost of using 130% more vaccine doses, thus reducing efficiency. The lowest efficiency of 0.91 (95% PI: 0.80-1.05) averted cases per 1000 FVPs was achieved by the scenario using only clinical case definitions with an incidence rate threshold of 1 per 10,000 population per year and province-level vaccination targeting (Table 2). This scenario vaccinated the highest number of individuals at 716.05 (95% PI: 645.93-762.61) million in 161 (95% PI: 155-168) unique provinces and 28 (95% PI: 27-29) countries (Table S1).

Table 2. Fully vaccinated population and OCV campaign efficiency across modeling scenarios, 2022-2035. For all combinations of modeling scenarios, which vary by incidence rate threshold, campaign targeting scale, and bacteriological confirmation capacity. We report the median estimates and 95% prediction intervals in parentheses for the fully vaccinated persons (FVP) size in millions and the true averted cases per 1,000 FVPs (efficiency).

<table>
<thead>
<tr>
<th>Incidence rate threshold per year</th>
<th>Targeting scale</th>
<th>Fully vaccinated person (million)</th>
<th>OCV campaign Efficiency (averted cases per 1,000 FVP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clinical case definition</td>
<td>National lab</td>
<td>District labs</td>
</tr>
<tr>
<td>1 per 10,000</td>
<td>Province</td>
<td>716.05 (645.93-762.61)</td>
<td>430.18</td>
</tr>
<tr>
<td></td>
<td>District</td>
<td>446.93 (430.5-468.98)</td>
<td>314.68</td>
</tr>
<tr>
<td>2 per 10,000</td>
<td>Province</td>
<td>438.05 (404.52-486.11)</td>
<td>232.35</td>
</tr>
<tr>
<td></td>
<td>District</td>
<td>321.42 (310.75-336.97)</td>
<td>195.67</td>
</tr>
<tr>
<td>10 per 10,000</td>
<td>Province</td>
<td>80.6 (64.45-94.62)</td>
<td>18.51</td>
</tr>
<tr>
<td></td>
<td>District</td>
<td>81.25 (74.64-89.51)</td>
<td>17.15</td>
</tr>
</tbody>
</table>

Given that real vaccination campaigns are usually targeted in districts or even smaller areas (as opposed to province-wide campaigns), we examined these results more closely (Figures 2 and 3). The availability of national-level confirmation capacity resulted in a large improvement in OCV efficiency relative to clinical case definitions. For example, for the 10 per 10,000 incidence rate threshold, vaccination campaigns based on national-level confirmation were 58% (median relative efficiency 1.58, 95% PI: 1.40-1.85) more efficient than those conducted using only clinical case definitions. However, efficiency only improved an additional 15% (median relative efficiency 1.15; 95% PI: 1.00-1.33) with a further upgrade to district-level confirmation capacity using the same incidence rate threshold (Figure 2B). Scenarios at the 10 per 10,000 incidence rate threshold yielded large overall improvements in efficiency independent of other scenario parameters (e.g., median relative efficiency was 1.80 (95% PI: 1.56-2.26) versus 1.46 (95% PI: 1.38-1.60) at the 1 per 10,000 incidence rate threshold in comparing the clinical case definition to district-level confirmation capacity) (Figure 2B).

Differences in campaign targets across simulations, which were driven by variability in the projected incidence rate, were the primary drivers of variability in OCV efficiency (Figure 2). Variability was larger in the 10 per 10,000 threshold scenarios because there were fewer targets, and the addition or removal of even one vaccination target had a greater impact on
the results (Figure 2A), and fewer countries had any OCV targeting in these scenarios (Figure 2B).

![Figure 2. OCV campaign efficiency by cholera confirmation capacity and vaccination threshold for district-level targeting scenarios.](image)

(A) Relative OCV campaign efficiency under different bacteriological confirmation capacity improvements for district-level targeting scenarios. The point represents the median relative efficiency across simulations, and the vertical lines show 95% prediction intervals. The horizontal dashed line represents “No improvement of OCV efficiency” (i.e., relative efficiency = 1). (B) This figure shows the distribution of median OCV campaign efficiency by country. Each point represents the median estimate across simulations for one country, and the boxplot shows the distribution of the country medians.

There was substantial heterogeneity across countries in OCV efficiency for a single scenario and in the relative efficiency between scenarios, although the more informed bacteriological confirmation scenarios were always more efficient (Figure 3). In the example of Nigeria and the 1 per 10,000 threshold, the clinical case definition scenario had an efficiency of 1.39 (95% PI: 0.92-2.10) averted true cases per 1,000 FVPs while requiring 107.4 (95% PI: 81.4-129.8) million doses; an improvement to district-level confirmation capacity averted 2.20 (95% PI: 1.38-3.34) cases per 1,000 FVPs while requiring only 64.2 (95% PI: 47.6-80.6) million doses.

Countries with greater average incidence rates tended to have greater efficiency, particularly for the 1 per 10,000 threshold scenarios, but this was not universally true for all projections (Figure S4). For all vaccination scenarios, 70-100% of vaccines were allocated to only a few countries: the Democratic Republic of the Congo, Nigeria, Somalia, Ghana, Cameroon, Tanzania, Sierra Leone, Ethiopia and Chad (Figure 3B).
Figure 3. Country-level OCV campaign efficiency and total doses administered for district-level targeting scenarios. (A) Efficiency is shown by country for the clinical case definition scenario (goldenrod point) and the district laboratory capacity scenario (blue point) for the 1 per 10,000 incidence rate threshold (left) and 10 per 10,000 incidence rate threshold (right). The size of the points corresponds to the median total doses administered from 2022-2030, and the horizontal line shows the magnitude of efficiency improvement when bacteriological confirmation capacity is increased. Countries are listed in decreasing order of the magnitude of efficiency improvement. (B) Spatial distribution of median administered doses during 2022-2030 with district laboratory capacity for the 1 per 10,000 incidence rate threshold (left) and 10 per 10,000 incidence rate threshold (right). Countries in black were not modeled and countries in light gray had no vaccination targets.

Discussion

Our study shows that directing vaccines to populations with higher burden of bacteriologically-confirmed cholera cases may substantially increase the efficiency of OCV campaigns. With improved detection of true cholera burden through systematic testing, it is possible to achieve a greater vaccine impact with fewer doses and targeted districts. For
example, when the OCV campaigns targeted districts above the 10 per 10,000 incidence rate threshold, adding systematic testing at the national-level increased the campaign efficiency by roughly 50%, while using 46 million fewer vaccine doses in a 9-year period. While previous modeling work suggested that fine-scale geographic targeting to high burden areas could improve vaccine impact [6], our study builds upon this work by proposing how specific surveillance improvements, such as systematic confirmatory testing, could extend vaccine availability and global vaccine impact given the limited global supply of oral cholera vaccine [21].

Smaller geographic targets and improved bacteriological confirmation capacity yielded heterogeneous improvements in OCV campaign efficiency across countries. Countries with higher cholera incidence rates may experience greater improvements in vaccine impact from systematic confirmatory testing, but further exploration on the association between efficiency and epidemiologic characteristics such as heterogeneity in cholera burden across districts, endemicity, and the presence of other vulnerability factors is required to understand why some locations experience larger efficiency gains from systematic testing.

Our results illustrated only modest gains in efficiency when moving from national-level confirmation to district-level confirmation. However, our model assumed that national laboratory surveillance was perfect, whereby all districts would systematically send random samples to the national lab for testing and true cases would be perfectly detected in the lab. In reality, a single reference laboratory for an entire country is neither practical nor logistically feasible. Such a system could be vulnerable to degradation of samples and delays in both sample transportation to the lab and dissemination of test results back to sampling locations, thus hampering the timely and accurate assessment of true cholera burden. Our modeling scenarios were simplified in an attempt to glean high-level insights on the relative value of cholera surveillance improvements on vaccine targeting and impact, and perhaps an “in-between” scenario such as province-level confirmatory testing could strike a balance between surveillance data quality and feasibility.

We also simplified other aspects in the complex reality of cholera epidemiology and decision-making. First, we relied on estimates of mean annual clinical cholera incidence from 2010 to 2016 [2], which depended on care-seeking for cholera symptoms and may not accurately reflect today’s epidemiology. As our study examines the relative global gains in vaccination efficiency through surveillance system improvements and not country-specific outcomes, interpreting scenario comparisons is more appropriate. Second, our model projects average burden trends over time, without consideration of high annual variability in cholera transmission (e.g., due to outbreaks, humanitarian emergencies, etc). Third, our scenarios with national and district-level bacteriological confirmation capacity assume that confirmed cases are perfectly observed to inform targeting prioritization. There are many causes of measurement error in reality, such as variable testing practices, recording errors, and reporting delays. Finally, we applied a highly simplified approach to vaccine targeting, based only on incidence rates and without vaccine supply constraints. Current guidance from the GTFCC on prioritizing geographic areas for intervention (including vaccination) [22], is based heavily on mean annual incidence rates and persistence (i.e., percent of weeks with reported cholera) but also suggests the consideration of vulnerability factors like water and sanitation conditions.
Robust disease surveillance has long been cited as essential for efficient vaccine targeting and monitoring progress towards disease control targets [23]. While the cholera community is moving towards standardizing case definitions and surveillance protocols and systematic testing, practical challenges like limited access to laboratory materials and training and epidemiologic challenges like interference of antibiotics in \textit{V. cholerae} detection remain in many cholera-affected countries [24–26]. Both financial and political investments are needed by ministries of health and the broader global health community to translate diagnostic development into effective surveillance and vaccine distribution for cholera control.

Funding

HX, ASA, and ECL received funding support from Gavi. This work was carried out as part of the Vaccine Impact Modelling Consortium (www.vaccineimpact.org), but the views expressed are those of the authors and not necessarily those of the Consortium or its funders. The funders were given the opportunity to review this paper prior to publication, but the final decision on the content of the publication was taken by the authors.

This work was supported, in whole or in part, by the Bill & Melinda Gates Foundation, via the Vaccine Impact Modelling Consortium [Grant Number INV-009125]. Under the grant conditions of the Foundation, a Creative Commons Attribution 4.0 Generic License has already been assigned to the Author Accepted Manuscript version that might arise from this submission.

Supplementary Material

The supplementary material includes Figures S1 to S4 and Tables S1 to S2.
Reference

16. World Population Prospects Indicators. doi:10.18356/27095525

