The interaction of polygenic risk for depression and age on white blood cell count

Earvin Tio BASc¹,², Daniel Felsky PhD¹,²,³,⁴,*

1. Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON
2. Institute of Medical Science, University of Toronto, Toronto, ON
3. Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON
4. Department of Psychiatry, University of Toronto, Toronto, ON

*Corresponding Author: Daniel Felsky PhD
Krembil Centre for Neuroinformatics,
Centre for Addiction and Mental Health, 12th Floor, 250 College Street
Toronto, ON, M5T 1R8
Email: Daniel.felsky@camh.ca
Alternate email: dfelsky@gmail.com
Phone: 416-939-0423

Keywords: depression, white blood cell count, polygenic risk score, age interaction, late-life

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Recent epidemiological studies suggest that polygenic risk for depression is associated with elevated white blood cell count, indicating shared genetic mechanisms between depression as a psychiatric disorder and the pro-inflammatory states often observed in clinical depression. However, the effects of aging on depressive symptoms and inflammation are not often fully appreciated in these studies, despite known variation across the human lifespan. To investigate the interaction of polygenic risk for depression and age on white blood cell count, we calculated depression polygenic risk scores (PRS) in 324,098 individuals from the UK Biobank (UKB) and 22,758 individuals from the Canadian Longitudinal Study on Aging (CLSA). Linear regression models of white blood cell count were fit to each sample, including interaction effects between age and the depression PRS. Significant age by PRS interaction effects were found in both samples (UKB interaction term: t=-2.9, p=3.7x10^{-3}; CLSA interaction term: t=-2.6, p=9.0x10^{-3}). While the previously reported main positive association between PRS and increasing white blood cell count was observed, we show in this study that the strength of the association diminishes with increasing age. Considering this potential age-dependency, these findings should encourage efforts to uncover genome-wide markers of late-life depression, which are needed to fully understand these age-related interaction effects.
Introduction

An association between polygenic risk for depression and white blood cell count was recently established by the PsycheMERGE network, providing evidence for a pro-inflammatory state in depression and promoting white blood cell count as a potential biomarker and therapeutic target. However, lifespan analyses in community populations show that the relationship between inflammatory biomarkers and depressive symptoms vary by age, and the prevalence and multifactorial etiology of depression are different in late-life than mid-life. Therefore, we hypothesized that the relationship between polygenic risk for depression and white blood cell count may also be moderated by age, specifically into the later stages of life.

Methods

We analyzed data from 324,098 individuals from the UK Biobank (UKB; age range: 39-72, mean=57) and 22,758 individuals from the Canadian Longitudinal Study on Aging (CLSA; age range: 45-86, mean=63), all of European ancestry and with complete genotype, white blood cell count, and additional clinical and lifestyle co-variate data. White blood cell counts were square-root transformed, and highly influential observations (Cook’s distance > 4/n) were removed for each analysis. Details of genotyping and imputation for UKB and CLSA participants have been published. We followed the same continuous shrinkage procedure used by Sealock et al. to calculate polygenic risk scores for depression (PRS_{dep}) in both datasets, using the 1000 Genomes Phase 3 reference for estimates of linkage disequilibrium. In CLSA, calculations were based on summary statistics from a meta-analysis of both clinical and broadly-defined depression. Since this meta-analysis included results from UKB, we used only the PGC29 summary statistics of major depressive disorder, which exclude UKB samples, for PRS_{dep} calculations in UKB. For sensitivity, we also tested the PGC29-only PRS_{dep} in CLSA. Linear regression models were fit to each dataset, including main effects for age, PRS_{dep}, biological sex, and the top 10 genomic principal components (to account for fine population structure), as well as the interaction between age and PRS_{dep}. Covariates for assessment center and fasting times were also included in UKB models. To control for the presence of comorbid inflammatory conditions and lifestyle factors, we performed secondary analyses including body mass index, smoker status, depression diagnosis, anxiety disorder diagnosis, stroke or cerebrovascular accident, cancer diagnosis, Alzheimer’s disease, and medication burden as additional covariates. Table 1 summarizes all outcome and covariate data for both datasets.
Results

In both samples, significant $\text{PRS}_\text{dep} \times \text{age}$ interaction effects were found on white blood cell count (UKB interaction term: $t=-2.9$, $p=3.7\times10^{-3}$; CLSA interaction term: $t=-2.6$, $p=9.0\times10^{-3}$). Importantly, both datasets showed the same pattern of effect, whereby the positive association between PRS_dep and increasing white blood cell count diminished with increasing age (Figure 1). Correspondingly, the positive main effect of age observed on white blood cell count was driven by those with the lowest values of polygenic risk for depression, with no significant effect in those at highest risk. Interactions in both datasets remained significant after including clinical and lifestyle covariates (UKB: $t=-2.5$, $p=0.012$; CLSA: $t=-3.4$, $p=6.3\times10^{-4}$). Sensitivity analyses with PGC29-only PRS_dep in CLSA found concordant results ($t=-2.5$, $p=0.014$), even after the addition of covariates ($t=-2.7$, $p=8.0\times10^{-3}$).

Discussion

The effect of polygenic risk for depression on white blood cell count highlights important biological mechanisms of depression. We have demonstrated that this association may not hold in late life, regardless of the presence of depression or other age-related comorbidities, including inflammatory conditions, smoking, Alzheimer’s disease, and prescription medication burden. These findings highlight important considerations in the applicability of depression PRS across life stages and suggest that the pro-inflammatory manifestation of heritable risk for depression in mid-life is blunted in elderly. Future work will require robust genome-wide markers of late-life depression, which are lacking,7 to better understand this age-dependency.
Conflict of Interest
None applicable

Funding/Support
ET is supported by an Ontario Graduate Scholarship. DF is supported by the Krembil Foundation, the Koerner Family Foundation New Scientist Award, the Canadian Institutes of Health Research (CIHR), and the CAMH Discovery Fund.

Role of the Funder/Sponsor
The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Information
This study was performed under the auspices of UK Biobank application 61530, “Multimodal Subtyping of Mental Illness Across the Adult Lifespan Through Integration of Multiscale Whole-Person Phenotypes”, and CLSA application 2006026, “Deep learning for simulation of cognitive and quality of life trajectories in aging”.

References
Figure 1. Interaction of polygenic risk score for depression (PRS$_{dep}$) and age on white blood cell count (WBC). Lines represent model fits (with margins for standard error) for the relationship between PRS$_{dep}$ and WBC for different quantiles of age (10^{th} percentile, median, and 90^{th} percentile of age distribution, represented by red, blue, and green lines, respectively) in A) the UK Biobank ($p=3.7 \times 10^{-3}$; $n=311,007$), and B) the Canadian Longitudinal Study on Aging (CLSA; $p=9.0 \times 10^{-3}$; $n=21,954$). Linear regression was used for modelling and all p-values are two-sided. PCs=top 10 genomic principal components.
Table

Table 1. Demographic summary of datasets and variables used in study

<table>
<thead>
<tr>
<th>Measure</th>
<th>UK Biobank (n=311,007)</th>
<th>CLSA (n=21,954)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>range/values</td>
<td>Mean (SD)/counts(%)</td>
</tr>
<tr>
<td>PRS<sub>dep</sub></td>
<td>-4.86-4.56</td>
<td>-0.00330 (0.995)</td>
</tr>
<tr>
<td>WBC (10<sup>9</sup> cells/L)</td>
<td>2.70-12.8</td>
<td>6.77 (1.51)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>39-72</td>
<td>56.9 (7.96)</td>
</tr>
<tr>
<td>Sex (F/M)</td>
<td>166,642/144,365</td>
<td>53.6/46.4</td>
</tr>
<tr>
<td>BMI</td>
<td>12.1-67.3</td>
<td>27.4 (4.69)</td>
</tr>
<tr>
<td>Smoker status</td>
<td>28,880/110,477/171,650</td>
<td>9.3/35.5/55.2</td>
</tr>
<tr>
<td>Depression (yes/no)*</td>
<td>35,809/275,198</td>
<td>11.5/88.5</td>
</tr>
<tr>
<td>Anxiety (yes/no)*</td>
<td>19,001/292,006</td>
<td>6.1/93.9</td>
</tr>
<tr>
<td>Stroke (yes/no)</td>
<td>7,866/303,141</td>
<td>2.5/97.5</td>
</tr>
<tr>
<td>Cancer (yes/no)</td>
<td>24,187/286,820</td>
<td>7.8/92.2</td>
</tr>
<tr>
<td>Alzheimer's disease (yes/no)*</td>
<td>1,445/309,562</td>
<td>0.5/99.5</td>
</tr>
<tr>
<td>Fasting time (hours)**</td>
<td>0-48</td>
<td>3.71 (2.26)</td>
</tr>
<tr>
<td>Medication (count)***</td>
<td>0-36</td>
<td>2 (median)</td>
</tr>
</tbody>
</table>

*Diagnoses in UK Biobank correspond to F32 (depression), F41 (anxiety), and G30 (Alzheimer’s disease).

**Fasting time data in CLSA were not collected, as all samples were collected in a non-fasting state.

***Medication count in CLSA is a total count of medications prescribed for anticoagulation, arthritis, depression, under-active thyroid gland, osteoporosis, Parkinson’s disease, stroke, diabetes, hypertension, heart disease, over-active thyroid gland, ministroke, and respiratory problems.