Validation and optimization of the Japanese version of the adult executive functioning inventory

Toshikazu Kawagoe, Ph.D. 1*; Yori Kanekama, Ph.D. 2; and Michael J. Rupp, Ph.D. 1

1 School of Humanities and Science, Kumamoto Campus, Tokai University, Toroku 9-1-1, Kumamoto City, Kumamoto 862-8652, Japan.
2 Instruction Department of Speech-Language-Hearing Therapy, Shuto Iko, Nishi-shinjuku 1-7-3, Shinjuku-ku, Tokyo, 160-0023, Japan.

* Corresponding and submitting author:
Toshikazu Kawagoe, School of Humanities and Science, Kumamoto Campus, Tokai University, Toroku 9-1-1, Kumamoto City, Kumamoto 862-8652, Japan.
Email: toshikazukawagoe@gmail.com; ORCID: 0000-0002-9342-8983.
Abstract

Executive function (EF) is an umbrella term for various higher-order cognitive processes. Among the test batteries for the EF, the Adult Executive Functioning Inventory (ADEXI) is prominent due to several advantages which are being brief by focusing on the core concept of EF and does not include hard-to-understand general expressions and/or things that are connected but not directly linked to EFs. The Japanese version of ADEXI (J-ADEXI) was created through the regular translation procedure and tested via confirmatory factor analysis (CFA). Although the original model fit well, we conducted a Mokken scaling analysis (MSA), aiming to reduce the number of items of J-ADEXI, and created new model in which two of the items were removed. The J-ADEXI could briefly assess the EF with good psychometric properties and this study may also provide a clue towards optimization of the original and/or other language versions of ADEXI.

Keywords: Executive function; Japanese questionnaire; Mokken scaling analysis; Item response theory
Introduction

Executive function (EF) refers to top-down, complex, and diverse cognitive functions (Diamond, 2013; Goldstein et al., 2014). Several neuropsychological test batteries targeting EF have been developed, including the Behavioral Assessment of Dysexecutive Syndrome, the Cambridge Neuropsychological Test Automated Battery, and the Delis–Kaplan Executive Function System. This developmental effort was prompted by links between EF deficits and psychiatric disorders, including attention deficit hyperactivity disorder, depression, and schizophrenia (Diamond, 2013; Snyder et al., 2015). However, there is need for brief assessment of EF because one cannot take a long time to evaluate clients due to the lack of specialists, for example, in Japan, the position of professional neuropsychologist has yet to be established solidly in clinical settings (Hatta et al., 2018). Similar demand also exists in basic psychology fields. Recently, we can collect participants’ data online, which enables us to get a large sample size in spite of physical distancing, such as from COVID-19, while ensuring quality and reliable of data (Hirao et al., 2021). Thus, researchers may occasionally need to assess EFs as an additional variable. Here the abovementioned batteries are inadequate because taking a lot of time would lead to the dropout.

Holst and Thorell (2018) developed the adult executive functioning inventory (ADEXI). The ADEXI has the advantage of being brief, focusing only on working memory (WM) and inhibition components. This endeavor can be reasonable, especially regarding the following limitations of the existing questionnaires. First, because attention deficit hyperactivity disorder (ADHD) has the strongest link with executive function (Barkley, 1997), existing questionnaires frequently include measures that assess ADHD symptoms. Second, because of the aim to assess a wide variety of EFs, they include hard-to-understand general expressions (e.g., inability to process information quickly or properly) and/or things that are connected but not directly linked to EFs (e.g., easily becoming angry or upset). Third, some of them have too many items (for example, Barkley’s Deficits in Executive Function Scale has 89 items, and the Behavior Rating Inventory of Executive Function has 86 items). These constraints are addressed by ADEXI. See the original publication of ADEXI (Holst & Thorell, 2018) and its predecessor: the Childhood Executive Functioning Inventory (CHEXI), for additional information on its development (Thorell & Nyberg, 2008). Due to its advantages, ADEXI has been translated into several languages (see https://chexi.se/) and some of which were validated (López et al., 2022). Following this research trend, the current study creates and validates the Japanese version of ADEXI (J-ADEXI) and was tested by confirmatory factor analysis (CFA) following standard translation protocols. Additionally, this study aimed to optimize J-ADEXI by reducing the number of items, using techniques based on item response theory (IRT).

Methods

Preregistration and the circumstances of this study

At first, this study, as we preregistered, was included in a project that aimed to uncover the survey–test association (https://osf.io/fktrp). However, through the translation and validation procedure, it turned out that a single item in the J-ADEXI was not appropriate, so the J-ADEXI
required further scrutiny, as reported in the current manuscript. Thus, we have determined to report this questionnaire translation study separately.

Participants
Two independent samples (Samples 1 and 2) were recruited in this study. Participants were recruited via different data collection companies (iBRIDGE Corporation: https://freeasy24.research-plus.net/ for Sample 1, and CrowdWorks: https://crowdworks.co.jp/en/ for Sample 2). For Sample 1, the sample size had been set to be equal to the original ADEXI study (Holst & Thorell, 2018) as preregistered. However, the results indicated that item 14 was not appropriate. Because we had speculated that this was due to the low sample size, we discarded the initial dataset (not reported in this paper) and recruited a greater number of participants for Sample 1 in addition to making minor revisions to the sentence of item 14. Therefore, the number of participants for Sample 1 was changed from the preregistered plan. Consequently, our speculation was found to be untrue because the results were not changed by the resampling, as reported below. For Sample 2, the sample size was determined according to the need of rule of thumb for regression studies, which is reported elsewhere (see https://osf.io/fktrp for more information about the initial study plan).

Participants with a previous diagnosis of any of mental disorder (e.g., eating disorders, personality disorders, posttraumatic stress disorder, bipolar disorder, mood disorders, anxiety disorders, and schizophrenia) and neurological problems (e.g., seizures, strokes, sleep disorders, and neuropathy) were excluded through their self-certifications. Additionally, in both samples, the participants were excluded if they did not respond correctly to the “lure” questions (e.g., “Please check the right-most choices in this item.”) to detect satisficing behavior (Krosnick, 1991). The resulting Sample 1 was thus composed of 371 participants (155 women; 52.6 years old on average, ranging from 24 to 75 years) and Sample 2 was 327 participants (223 women; 38.9 years old on average, ranging from 18 to 75 years), both of which were above the minimum requirement for the main analyses here (Straat et al., 2014).

Measurements
The Japanese version of adult executive functioning inventory (J-ADEXI): The ADEXI has undergone the typical translational procedure into J-ADEXI, including translation, back-translation, and evaluation (e.g., Tsang et al., 2017). First, ADEXI was translated by Japanese authors (TK and YK) and back-translated by an English native collaborator (MJR) who has a Ph.D. in language education and is naïve to the ADEXI. The back-translated items were checked by one of the original ADEXI creators, Dr. Lisa Thorell. Based on her evaluations, the items were corrected. This procedure was iteratively completed until agreement was reached among all authors and Dr. Thorell. The J-ADEXI is a 14-item questionnaire with a five-point Likert scale. The items in English are shown in Table S1, and the Japanese scoring sheet is attached as an appendix.

Effortful control scale (ECS): To test the construct validity of J-ADEXI, the Japanese version of ECS (Yamagata et al., 2005) was conducted. ECS was derived from the Adults Temperament
Questionnaire (Rothbart et al., 2000), which had been developed to assess the self-report model of temperament. The ability to use attentional resources and inhibit behavioral reactions to regulate emotions and related behaviors is referred to as effortful control. ECS includes inhibitory control (the ability to actively suppress activity), activation control (the ability to initiate behavior even when not motivated), and attentional control (the ability to voluntarily focus or shift attention) (Rothbart et al., 2000, 2003). Because recent empirical findings reported that effortful control and EF are very closely related to an almost unified construct (Tiego et al., 2020), this can be an external rating for concurrent validity.

Procedure and analysis

The participants answered the questionnaire(s) via a platform provided by each data collection agency. Participants in Sample 1 answered J-ADEXI and ECS and participants in Sample 2 answered J-ADEXI only. Data were obtained and analyzed in temporal order. First, data from Sample 1 were obtained, and the J-ADEXI data were analyzed by CFA in which the original ADEXI model was the target to be confirmed (Model 1). Next, to optimize the J-ADEXI by reducing the number of items, we used a technique from the nonparametric IRT: Mokken scaling analysis (MSA; Mokken, 1971). We aimed to reduce the number of items because, as noted in the Participants section, the result indicating that one of the items (i.e., item 14) appeared not to be appropriate was replicated in resampled population. After reducing the number of items via MSA in Model 2, CFA was conducted again to compare the model fit between Models 1 and 2. Then, another independent dataset of Sample 2 was obtained, and we conducted CFA for model comparison to confirm that Model 2 is better than Model 1.

The statistical analyses were computed in R. CFA using the R lavaan package was conducted to determine whether the original ADEXI’s factor structure, which is a simple two-factor model (Model 1), can be replicated in J-ADEXI. For the details of MSA, see Supporting Information.

Results

The items of J-ADEXI were listed in Table S1 with their corresponding back-translated items and the original ADEXI items. The value for Cronbach’s alpha and its 95% confidence interval for the survey in Sample 1 was $\alpha = 0.91$ (0.90–0.92). Initially, the original two-factor structure (Model 1; see Table S1) was tested with the data of Sample 1. The goodness of fit and factor loadings are shown in Table 1 and 2, respectively. Model 1 seemed to be a good fit for Sample 1, almost satisfying the suggested values (Hu & Bentler, 1999), however, as indicated by the factor loading and communality (Table 2), the variance of item 14 was poorly explained by the latent factors.

<table>
<thead>
<tr>
<th>Sample/model</th>
<th>CFI</th>
<th>TLI</th>
<th>SRMR</th>
<th>RMSEA</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>0.906</td>
<td>0.888</td>
<td>0.056</td>
<td>0.076</td>
<td>12492.1</td>
</tr>
<tr>
<td>1/2</td>
<td>0.924</td>
<td>0.906</td>
<td>0.046</td>
<td>0.091</td>
<td>10544.9</td>
</tr>
<tr>
<td>2/1</td>
<td>0.840</td>
<td>0.808</td>
<td>0.068</td>
<td>0.087</td>
<td>12605.9</td>
</tr>
</tbody>
</table>
Table 2.
Factor loadings and communality for all combinations of models and samples.

<table>
<thead>
<tr>
<th>Sample /model</th>
<th>Latent factor</th>
<th>Item</th>
<th>Loadings</th>
<th>Communality</th>
<th>Loadings</th>
<th>Communality</th>
<th>Loadings</th>
<th>Communality</th>
<th>Loadings</th>
<th>Communality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.605</td>
<td>0.359</td>
<td>N/A</td>
<td>N/A</td>
<td>0.599</td>
<td>0.356</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.739</td>
<td>0.398</td>
<td>0.737</td>
<td>0.544</td>
<td>0.631</td>
<td>0.389</td>
<td>0.604</td>
<td>0.365</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.764</td>
<td>0.506</td>
<td>0.746</td>
<td>0.557</td>
<td>0.712</td>
<td>0.493</td>
<td>0.689</td>
<td>0.475</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.727</td>
<td>0.219</td>
<td>0.725</td>
<td>0.525</td>
<td>0.468</td>
<td>0.214</td>
<td>0.475</td>
<td>0.225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.663</td>
<td>0.221</td>
<td>0.662</td>
<td>0.439</td>
<td>0.47</td>
<td>0.231</td>
<td>0.481</td>
<td>0.232</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.711</td>
<td>0.282</td>
<td>0.731</td>
<td>0.535</td>
<td>0.531</td>
<td>0.289</td>
<td>0.555</td>
<td>0.307</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>0.739</td>
<td>0.431</td>
<td>0.734</td>
<td>0.539</td>
<td>0.656</td>
<td>0.426</td>
<td>0.659</td>
<td>0.434</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.742</td>
<td>0.447</td>
<td>0.738</td>
<td>0.545</td>
<td>0.669</td>
<td>0.441</td>
<td>0.667</td>
<td>0.446</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>0.784</td>
<td>0.441</td>
<td>0.796</td>
<td>0.634</td>
<td>0.664</td>
<td>0.459</td>
<td>0.664</td>
<td>0.441</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.655</td>
<td>0.266</td>
<td>0.64</td>
<td>0.409</td>
<td>0.516</td>
<td>0.295</td>
<td>0.513</td>
<td>0.263</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.686</td>
<td>0.363</td>
<td>0.675</td>
<td>0.455</td>
<td>0.602</td>
<td>0.356</td>
<td>0.600</td>
<td>0.360</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.645</td>
<td>0.163</td>
<td>0.646</td>
<td>0.417</td>
<td>0.404</td>
<td>0.179</td>
<td>0.403</td>
<td>0.162</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.607</td>
<td>0.279</td>
<td>0.598</td>
<td>0.358</td>
<td>0.528</td>
<td>0.288</td>
<td>0.539</td>
<td>0.290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>0.286</td>
<td>0.001</td>
<td>N/A</td>
<td>N/A</td>
<td>−0.023</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

We used Mokken scaling analysis for item reduction of J-ADEXI especially the important assumptions (i.e., unidimensionality, monotonicity, and local independence; see Supporting Information for details) were investigated. For the unidimensionality, we can see that all the items in each component measure the single latent variable psychologically (i.e., WM or inhibition here; Table S1). Mathematically, along with the confirmation that the two-factor model fitted well, we computed Loevinger’s scalability coefficients (Loevinger, 1947). As a rule, scales with H < 0.3 are not considered unidimensional or unscalable, scales with 0.3 < H < 0.4 are weak scales, scales with 0.4 < H < 0.5 are moderately strong scales, and scales with H > 0.5 are strong scales (Mokken, 1971; Sijtsma & van der Ark, 2017). All items apart from item 14 were deemed to be satisfactory as reasonable scales in Sample 1, as shown in Table S2.

The monotonicity was confirmed in all items except item 14 by the scalability coefficients. For additional inspection, the ISRFs and IRFs were described in Figure S1. Although
IRF indicates no violation of monotonicity in all items, the step 2 ISRF for item 14 shows decrease. For the local independence, the W indices were computed (Tables S3 and S4). This analysis found that item 1 was suspected to be locally dependent. After excluding item 1, no items were flagged.

After discussions (see Discussion section), we have decided to exclude items 1 and 14 from the J-ADEXI. This reduced model (Model 2) was tested by CFA. All the model fit indices were improved by the item reduction (Table 1), and there was no item showing factor loading below 0.5 in Model 2 (Table 2).

Then, we moved to an examination for convergent validity. In Sample 1, an independent questionnaire for EF (i.e., ECS) was included in data acquisition, which has three components. Theoretically, the subcomponent of inhibition in J-ADEXI would link to inhibitory control in ECS and the WM component in J-ADEXI does to attentional control in ECS. The correlation analyses indicated that all simple correlation coefficients were significant. This is because both questionnaires assess the same construct. Therefore, we calculated partial correlation coefficients to uncover the specific relationships among subcomponents of both questionnaires and found that the theoretical hypothesis was supported in both Models 1 and 2 (Table 3).

After conducting the above series of analyses for Sample 1, data from Sample 2 was obtained and CFA was applied for both models, which indicated that the result was almost replicated by Sample 2 (Tables 1 and 2).

Table 3.
Simple and partial correlation coefficients among both models of J-ADEXI’s two components and effortful control scale’s three components in Sample 1.

<table>
<thead>
<tr>
<th></th>
<th>J-ADEXI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WM</td>
<td>Inhibition</td>
</tr>
<tr>
<td>Inhibition</td>
<td>−0.59***</td>
<td>−0.50***</td>
</tr>
<tr>
<td>Attention</td>
<td>−0.68***</td>
<td>−0.45***</td>
</tr>
<tr>
<td>Activation</td>
<td>−0.54***</td>
<td>−0.36***</td>
</tr>
</tbody>
</table>

	WM	Inhibition
Inhibition	−0.60***	−0.56***
Attention	−0.67***	−0.51***
Activation	−0.55***	−0.43***

Inhibition	−0.08
Attention	−0.41***
Activation	−0.11*

Note: Partial correlation coefficients were calculated by other subcomponents as covariates (e.g., for the correlation between the ECS inhibition component and J-ADEXI WM component, the attention and activation components of ECS and J-ADEXI inhibition component were the covariates). J-ADEXI = Japanese version of Adult Executive Functioning Inventory, ECS = effortful control scale, WM = working memory. *p < 0.05. **p < 0.01. ***p < 0.001.

Discussion
This study aimed to translate ADEXI into Japanese because it has some advantages compared to the other existing questionnaires: ADEXI does not include an item measuring ADHD symptom, with too general expression to understand, and does not directly assess EF. In addition, most importantly, it can briefly measure the EF by focusing on WM and inhibition, which are the
core components of the EF (Barkley, 1997; Diamond, 2013; Lehto et al., 2003; Miyake et al., 2000).

Although the original model had shown a good fit, a single item (i.e., item 14) was not loaded well. Subsequent MSA supported the result of CFA and further indicated that item 1 was not locally independent. Based on the results the authors discussed whether we should exclude those two items or not. First, item 14 can be excluded because the assumption of unidimensionality was not satisfied besides the less factor loading shown by CFA. Loewinger’s H exhibits the extent to which items will be ordered hierarchically relative to one other, calculated by the marked value of the items. If an item has a lower value, it means that the item has lower linear relationships with the other test items. The value of item 14 did not exceed the lowest acceptable value of 0.3 (Mokken, 1971; Sijtsma & van der Ark, 2017). Additionally, a question arose for the sentence of item 14. The original item 14 is “People that I meet sometimes seem to think that I am livelier/wilder compared to other people my age.” In ADEXI, the higher the people rate it, the worse their EF is. Thus, according to this item, people who think of themselves as livelier/wilder than people of their age are deemed negative. This is quite weird at least in Japan(ese). Therefore, we determined to exclude item 14.

Another item (i.e., item 1) has also been excluded because it was flagged as locally dependent, which means that this item was strongly correlated with other items even if the latent trait θ was controlled. Although there are several possibilities for the reason for dependency (Ferrara et al., 1999), in the current case, there might be an unexpected external trait θ', which defines the item response. We could not find what it was after all, however through the contemplation of the meaning of the sentence (i.e., “I have difficulty remembering lengthy instructions.”), we claim that it is not the item to assess WM, but rather the short-term memory. The item5 (“When someone asks me to do several things, I sometimes remember only the first or last.”) and item9 (“I have difficulty planning for an activity.”), which shows local dependency with item 1 would somewhat include short-term memory components. Therefore, we have concluded that item 1, in addition to item 14, can be excluded from J-ADEXI.

The J-ADEXI was more sophisticated than the original ADEXI in terms of the number of items. Although we have found that the two of the original items can be excluded, we determined to keep them on the evaluation paper but exclude them only for the calculation step because the translated versions of questionnaires should be equivalent to the original or other language versions (e.g., for cross-cultural studies) (Harkness et al., 2004). The exclusion seemed to work well, according to the result of CFA and the replication by Sample 2. The model fit was better in Model 2 in both samples. The correlation analyses did not show a drastic improvement by the item exclusion but the subcomponents of J-ADEXI maintained a specific relationship with the components with ECS as theoretically hypothesized: inhibition component in J-ADEXI significantly correlated with inhibitory control in ECS and WM component did to attentional control in ECS when the other variables were covaried out. Then, although we decided to exclude two items from J-ADEXI, translated versions of questionnaires should be equivalent to the original or other language versions, especially in the case of cross-cultural studies (Harkness et al., 2004). In this vein, the J-ADEXI evaluation paper has all items, and the two items will be excluded at the stage of the calculation. When the users need full items such as for cross-cultural studies, they can calculate the total points including items 1 and 14, whose availability was shown here by CFA and correlation analysis.

We ought to note that all participants were (would-be) normal volunteers although the original study recruited not only normal but also clinical samples, and thus, they could calculate the discriminant validity of ADEXI (Holst & Thorell, 2018). It is one of the most important
characteristics to have the capacity to discriminate whether the raters’ EF is “deteriorated” to the clinical level or not. The current study did not focus on such a capacity. The other EF tests were also developed only with normal volunteers (Robbins et al., 1994; Thorell & Nyberg, 2008); nevertheless, future studies must check the clinical discriminability of J-ADEXI. It can be suggested to use J-ADEXI as an additional and supplementary variable currently and more studies are needed to give it clinical significance. However, the J-ADEXI could be a valid and reliable tool for assessing the EF especially WM and inhibition with only 12 items and be comparable with other versions of ADEXI by keeping two items excluded for the calculation. This study may also provide a clue to optimize the original and/or other language versions of ADEXI.
Acknowledgments
The authors would like to express a great appreciation to Dr. Lisa Thorell for her valuable evaluation and suggestions during the translation procedures.

Data availability statement
The data and analysis codes that support the findings of this study are available from the corresponding author, TK, upon reasonable request.

Funding statement
This study was supported by grants from the Japan Society for the Promotion of Science (KAKENHI) (grant numbers: 19K14481 and 19H00631).

Conflict of interest disclosure
The authors declare no conflict of interest

Ethics approval statement
All procedures performed in the studies involving human participants were conducted in accordance with the ethical standards of the Institutional Review Boards (at Tokai University; 22020) with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all participants.
References

