Title: Improving the effectiveness of water, sanitation, and handwashing interventions: a simulation approach to generalizing the outcomes of intervention trials

Authors: Andrew F. Brouwer PhD1, Mondal H. Zahid PhD1, Marisa C. Eisenberg PhD1, Benjamin F. Arnold PhD2,3, Sania Ashraf PhD4, Jade Benjamin-Chung PhD5,6, John M. Colford, Jr MD7, Ayse Ercumen PhD8, Stephen P. Luby MD9, Amy J. Pickering PhD10, Mahbubur Rahman MBBS4, Joseph N.S. Eisenberg PhD1,†, Matthew C. Freeman PhD11,†

†: these authors contributed equally

Affiliations

1. Department of Epidemiology, University of Michigan, Michigan, USA
2. Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA, USA
3. Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
4. Environmental Interventions Unit, Infectious Disease Division, The International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
5. Department of Epidemiology and Population Health, Stanford University, CA, USA
6. Chan Zuckerberg Biohub, San Francisco, CA, USA
7. School of Public Health, University of California Berkeley, Berkeley, CA, USA
8. Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
9. Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA
10. Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, USA
11. Rollins School of Public Health, Emory University, Atlanta, GA, USA

Corresponding author: Andrew F Brouwer; Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109; brouweaf@umich.edu; 734-764-7373

Declaration of conflicts of interest: The authors declare they have nothing to disclose.
Abstract

Background: Recent large-scale trials have revealed that interventions improving water, sanitation, and hygiene (WASH) in low-income settings may not confer the expected health gains for young children; evidence-based guidance is needed to inform programs and future studies.

Objectives: We aimed to generalize the results of the WASH Benefits Bangladesh randomized controlled trial to other contexts or scenarios using a mechanistic disease transmission model and counterfactual simulations.

Methods: A disease transmission model was developed to account for transmission across multiple environmental pathways, multiple interventions (water (W), sanitation (S), hygiene (H), nutrition (N)) applied individually and in combination, adherence to interventions, and the impact of individuals not enrolled in the study. Leveraging a set of mechanistic parameter combinations fit to the WASH Benefits Bangladesh trial (n=17,187) using a Bayesian sampling approach, we simulated trial outcomes under counterfactual scenarios to estimate how changes in intervention completeness, coverage, fidelity and adherence, and efficacy, as well as baseline WASH conditions and disease burden, impacted intervention effectiveness.

Results: Increasing community coverage was associated with the greatest impact on intervention effectiveness (e.g., 26.9% and 52.7% median increases in effectiveness in the WSH and WSHN intervention arms when increasing coverage to 20%). The effect of community coverage on effectiveness depended on intervention completeness, i.e., the fraction of transmission that was along pathways modified by the interventions. Intervention effectiveness was reduced in counterfactual simulations with lower levels of preexisting WASH conditions or increased baseline disease burden. Individual interventions had complementary but not synergistic effects when combined.

Discussion: Next-generation WASH programs must address coverage and completeness and account for the fact that effect of individual-level WASH improvements will be blunted the further the community is from achieving herd protection.
Introduction

Enteric diseases, primarily spread through contact with faecally contaminated environments (water, surfaces, food, etc.), are one of the leading causes of morbidity and mortality in young children. An estimated 500,000 children under age five died from diarrheal disease globally in 2015\(^1\), and it is hypothesized that repeated sub-clinical infections may lead to growth shortfalls.\(^2\) Much of this burden is in low- and middle-income countries (LMICs)\(^3\). Studying and preventing diarrheal disease is complicated because a diverse array of pathogens can cause similar symptoms,\(^4,5\) there are myriad pathways by which pathogens may be transmitted\(^6\), and asymptomatic infections can contribute to the community pathogen burden.\(^7\) Diarrheal disease is greatly reduced in communities with robust water, sanitation, and hygiene (WASH) infrastructure, with mutually reinforcing levels of community and individual protection. Household-level WASH improvements can result in considerable reductions in diarrheal disease burden in LMICs, and many WASH interventions—such as improved latrines and handwashing with soap—have demonstrable efficacy to reduce fecal exposure\(^8\). However, recent modest-to-null results from several large-scale WASH randomized controlled trials (RCTs)\(^9–15\) highlight the need to understand the mechanisms underlying environmental disease transmission.\(^16\) The sub-optimal performance of these interventions is likely due to a combination of multiple factors, including incomplete blocking of all transmission pathways, inadequate community coverage of the intervention, or a lack of intervention fidelity, adherence, or efficacy.\(^16,17\) A community’s baseline WASH conditions and disease burden can also impact the real-world intervention effectiveness.\(^16,17\) Assessing which factors are the largest barriers to diarrheal disease reduction will aid policy-makers, practitioners, and researchers in deciding how best to invest in WASH programs and design the next generation of programs and trials.\(^16–20\)

RCTs are considered the gold-standard for estimating causal relationships, and they are rigorous assessments of a particular intervention within a particular context at a particular point in time. But, their findings do not necessarily generalize to other contexts or conditions—e.g., different populations, disease burdens, pathogens, transmission pathways, intervention fidelity and adherence—when there are effect modifiers that vary across field settings and intervention implementations.\(^17,19\) Mechanistic infectious disease transmission models (IDTMs) have the potential to explore counterfactual questions through simulation of alternate scenarios. This approach is used extensively in other contexts to assess public health interventions or counterfactual conditions.\(^21–23\) A mechanistic, counterfactual approach could lead to better-targeted public health WASH interventions, policy recommendations, and field trials.\(^24,25\)

Here, we use an IDTM calibrated to the rich data collected in an RCT to generalize its results. Specifically, we evaluate hypotheses about what led to the sub-optimal reductions in diarrhea among intervention households within the WASH Benefits (WASH-B) Bangladesh trial. We previously
developed this model framework accounting for multiple environmental transmission pathways, shared environments, pre-existing WASH conditions, and adherence to multiple interventions and applied it to the empirical trial data. Our approach generates thousands of combinations of coverage, intervention efficacy, and transmission pathway strengths that could reasonably underlie the trial results. In this analysis, we leveraged those parameter combinations to simulate how intervention effectiveness would have been different under alternate scenarios. These counterfactual simulations provide evidence for policy recommendations, programmatic targets, and an evaluation framework for next-generation WASH interventions.

Methods

Summary of approach. In prior work, we developed an IDTM framework to explain the outcomes of a RCT and applied it to the WASH-B Bangladesh trial. That work found mechanistic parameter sets that were consistent with individual-level diarrheal outcomes. Here we simulate diarrhea outcomes for those parameter sets under six different counterfactual scenarios (table 1) to consider hypotheses of why the interventions in the WASH-B Bangladesh trial were not more effective in reducing diarrhea: 1) there was substantial transmission along pathways not targeted by the interventions (completeness), 2) the coverage thresholds were not sufficient to induce herd protection (coverage), 3) the interventions assigned to individuals were not provided (fidelity) or used (adherence), 4) the interventions did not have substantially reduced transmission or susceptibility (efficacy), 5) the interventions were not a substantial improvement over existing WASH infrastructure (WASH conditions), or the 6) baseline disease burden was either too small or too large to see a substantial improvement (disease conditions). By simulating what the intervention effectiveness would have been in the trial under alternative circumstances, we evaluated the extent to which each factor may have contributed to the observed outcomes.

Data. The WASH-B Bangladesh trial was a cluster-randomized trial of the efficacy of water, sanitation, hygiene, and nutrition interventions, alone and in combination, on diarrhea prevalence and linear growth. The investigators measured (child-guardian-reported, past-seven-day, all-cause) diarrheal prevalence in children at three time points approximately one year apart. Households in the study area are typically organized into compounds in which a patrilineal family shares a common space and resources, such as a water source and latrine. A total of 5551 compounds were enrolled, contingent on having a pregnant woman in her second trimester during the enrollment period. The study followed one or more target children born after baseline, as well as any other children in the compound who were under age 3 at baseline. These compounds were grouped into 720 clusters. Each cluster was assigned to one of seven arms testing combinations of four interventions: water chlorination (W), a double-pit, pour flush improved latrine (S), handwashing with soap and water (H), and supplementary nutrition sachets (N).
control arm (C) consisted of 180 compounds, while 90 were assigned to each of the water (W), sanitation (S), handwashing (H), nutrition (N), combined water, sanitation, and handwashing (WSH), and all interventions (WSH-N) arms. Specific details on trial design, interventions, and results are published elsewhere. We assessed whether any individual was using an intervention or a substantively equivalent preexisting WASH condition through four indicators defined and assessed by the investigators: detection of free chlorine in water (W), latrine with a functional water seal (S), handwashing station with soap and water (H), at least 50% of nutrition sachets consumed (N). The W and H interventions were intended for the households of the target children, but we were not able to determine whether other children in the compound were in that household or not. For this analysis, we assumed that non-target children were covered by the interventions; any misspecification will attenuate the estimated efficacy of the W and H interventions. We removed individuals with negative reported ages (n=2), missing reported diarrhea (n=2,745), or missing in any of the four use indicators (n=2,660), which left 17,187 individual observations (76% of the original sample) over the three surveys.

**Ethics.** This secondary analysis of deidentified data was not regulated as human-subjects research.

**Model.** Our IDTM accounted for key mechanistic aspects underlying WASH RCT outcomes, namely transmission across three environmental pathways (water, fomites & hands, and all others combined), four interventions applied individually (W, S, H, N) and in combination (WSH, WSHN), adherence to interventions or preexisting conditions, and the impact of individuals not enrolled in the study. In brief, we modelled each cluster with susceptible and infectious compartments for each of $2^{4}=16$ combinations of interventions/conditions depending on household adherence, as well as shared environmental compartments for each transmission pathway (a simplified model diagram is given in figure 1). The 35 original equations (16 each for susceptible and infectious individuals and 3 environmental pathogen concentrations) were simplified using a quasi-steady state assumption on the environmental compartments. Additional modelling details may be found in the supplementary appendix and in Brouwer et al.

The 18 model parameters were i) the overall basic reproduction number $R_0$, which defines the underlying disease pressure measured in the control arm at baseline, ii) two parameters partitioning $R_0$ into the strengths of the drinking water, fomite & hands, and all other transmission pathways, iii) eight relative reproduction numbers accounting for systematic differences in disease pressure over survey (baseline, midline, and endline) and across arms independently, iv) efficacy parameters defining the effect of each intervention (four) or preexisting condition (two) on the transmission pathways (W reduces transmission via the water pathway, S reduces shedding into the shared water environment, H reduces transmission via the fomite pathway, and N reduces susceptibility to all transmission), v) the community coverage.
We employed a hybrid sampling-importance resampling and estimation framework to obtain parameter combinations that represented a good fit to the diarrheal outcomes of each participant. We resampled, with replacement, from our initial 50,000 parameter combinations, based on their goodness of fit; 3,692 unique parameter combinations were included in the final sample, with varying degrees of frequency.

Analysis. For each of the 50,000 parameter sets identified by fitting the model to WASH-B Bangladesh, we defined a corresponding factual scenario. The factual scenarios were simulated by keeping the observed adherence and baseline WASH and disease conditions, overall and pathway-specific basic reproduction numbers, and efficacy parameters but removing the observed variation in disease pressure across survey time point and arms (i.e., we set all time- and arm-specific relative reproduction numbers to 1). This approach allowed us to estimate more generalizable effects since such variations would not be consistent across contexts. We considered six types of counterfactual scenarios, detailed in table 1, addressing baseline WASH conditions, baseline disease burden, fidelity & adherence, completeness, efficacy, and coverage. Any parameter sets that eliminated disease in the control arm in a counterfactual simulation were censored from the results as they did not provide information on intervention effectiveness.

The main outcome of a counterfactual simulation was the counterfactual effectiveness ratio (CER), defined as the intervention effectiveness (i.e., the relative risk for each intervention arm compared to the control arm) in the counterfactual scenario divided by the relative risk for that intervention arm compared to the control arm in the corresponding factual scenario. When the CER is 1, there is no change in the intervention effectiveness in the counterfactual scenario. When the CER approaches 0, the disease is eliminated under the counterfactual scenario, but when the counterfactual effectiveness ratio is greater than 1, the intervention is less effective in the counterfactual scenario than the factual scenario. To assess whether the strength of the transmission pathways and the intervention efficacy parameters modified the intervention effectiveness in the counterfactual scenarios, we associated simulations with the values of the other parameters and, for a subset of counterfactuals, assessed how the effect of the counterfactual depended on quantiles of the other parameter values.

Results

The median baseline disease prevalence in the factual scenario was 7·1%; the distribution of parameters underlying the factual scenario are given in the supporting appendix and in Brouwer et al. We compared the relative risk in each intervention arm compared to the control in the given counterfactual scenario.
versus the corresponding factual scenario (1-CER) for 1,000 parameter sets sampled at random from the resampled parameters (table 2).

**Eliminate preexisting WASH Conditions.** We found that implementing the interventions in a community with no handwashing stations with soap and water or latrines with water seals would have likely resulted in less effective interventions compared to the actual community’s higher baseline WASH conditions (e.g., 13·1% less in WSH arm; figure 2a, table 2).

**Double baseline disease prevalence.** A higher diarrheal disease prevalence (14% vs 7%) would also have resulted in less-effective interventions compared to the true baseline diarrheal disease prevalence (e.g., 16·6% less in WSH arm; figure 2b).

**Full fidelity and adherence.** The impact of increasing intervention adherence was negligible-to-modest (e.g., 1·7% increase in WSH arm; figure 2c)—likely because intervention adherence and fidelity, as defined by the investigators, was already high\textsuperscript{12,26,28}.

**Eliminate half of the other transmission pathway.** We found that intervention effectiveness could have been greater if the interventions were more complete, that is, if more of the disease transmission had occurred through the water and fomite pathways rather than through pathways that were not intervened on (e.g., 23·8% increase in WSH arm; figure 2d). Although there was potential for a substantial increase in intervention effectiveness, indicated by the distribution of the individual simulation outcomes, the median impact was modest in the single-intervention arms (table 2). The uncertainty in the potential impact was a result of uncertainty in how much of the disease transmission was through other pathways in the original scenario\textsuperscript{26}.

**Double intervention efficacy.** We assessed the impact of increasing efficacy—defined as increased reduction of transmission along the relevant pathway(s)—of the four interventions. We found that in each of these increased efficacy scenarios, substantial increases in intervention efficacy could have improved intervention effectiveness in the corresponding arms (figure 2e–h).

**Increase community coverage.** The median estimated community coverage in the trial was 7·2\%\textsuperscript{26}. For our main coverage counterfactual, we increased the community coverage in each simulation to 20·0\%, chosen as a substantial but not unreasonable increase in coverage.\textsuperscript{29} This counterfactual scenario was associated with the greatest median increase in intervention effectiveness (among all households now covered by the intervention) of any of the considered counterfactual scenarios (e.g., 26·9\% and 52·7\% increases in WSH and WSHN arms; figure 3a, table 2).
In figure 3b–h, we colored and dodged the points in figure 2a based on other model parameters to better understand which parameters were the strongest effect modifiers of the effect of increasing community coverage. Points with darker values are associated with larger values of the potential effect modifier for each plot and are plotted on the right side of the column; we see effect modification when the counterfactual effectiveness ratio is associated with the color of the points (i.e., the value of the effect modifier). We found that the increase intervention effectiveness with increased community coverage in the W and S intervention arms (and to a lesser extent, WSH and WSHN) depended partly on the strength of transmission via the water pathway (figure 3b). The increase in intervention effectiveness in the W and S arms could only reach its full potential if the strength of the water pathway were high (no light-colored points associated with low CERs for the W and S arms). A similar effect was seen for the H arm and the strength of the fomite pathway (figure 3c). The greatest overall effect modifier of the impact of increased coverage on intervention effectiveness is the strength of the other pathways (figure 3d; no dark-colored points associated with low CERs in all arms). When the strength of other pathways was high, increasing coverage had less of an impact. Intervention efficacy also modified the impact of increased coverage but only in the intervention arms with those interventions (figure 3e–h).

To further understand the joint impact of community coverage and completeness (i.e., the strength of the other transmission pathway), we plot the median counterfactual effectiveness ratio as a function of increased coverage for the highest and lowest quartiles of intervention completeness (figure 4).

Regardless of completeness, the WSH and WSHN arms were predicted to eliminate disease in the median scenario with less than 100% community coverage, but the coverage levels at which the disease was eliminated depended on completeness, particularly for the W and S interventions (figure 4a). Disease was eliminated in the median scenario for W arm at 50% community coverage in the high-completeness scenarios but at 100% coverage in the low-completeness scenario. Disease was eliminated in the median scenario for the S arm at 90% community coverage in the high-completeness scenarios but only achieved a 50% increase in intervention effectiveness at 100% coverage in the low-completeness scenario (figure 4b). The impact of community coverage on intervention effectiveness in the median scenario for the H and N arms was less dependent on completeness (figure 4c).

Discussion

Our model-based analysis used counterfactual simulations to generalize the results of a WASH intervention trial and develop guidance for policymakers and researchers. Our first finding was that increasing community coverage led to the most substantial reduction in disease among people receiving interventions. Second, we found that intervention completeness (i.e., the fraction of disease transmission along pathways that were intervened on) was an important effect modifier of the impact of community
coverage on intervention effectiveness, with the impact of increased community coverage enhanced when interventions covered a larger fraction of transmission. Third, our work suggests that interventions are likely to be more effective when disease burden is low, a finding that runs counter to a previous hypothesis about the trial.12 Finally, we found that multifaceted WASH interventions (WSH) added value over single component interventions (W, S, or H). Each of these findings suggest a path forward for policy and program recommendations for WASH investments and demonstrates how transmission models can be used to design the next generation of WASH interventions and set programmatic targets.

The importance of ensuring high community coverage to address health outcomes has been highlighted in multiple context, including latrines,25,30 bed nets,31 and chemotherapy for helminths,32 among others. Further work is needed to improve our measures of indirect and direct intervention effects25,33 to better determine sanitation targets. Our findings support the call for systems-level WASH provision and improved universal access, underscoring the fundamental push to achieve the 2030 sustainable development targets.34 Additionally, our result suggesting that intervention completeness modifies the impact of community coverage emphasizes the need to better understand the sources not impacted by traditional WASH interventions, such as food or animals.35 Capturing and reducing transmission through additional targeted interventions would increase completeness and thereby make increasing coverage even more effective.

Low diarrheal prevalence makes it more difficult to observe a statistically significant reduction in diarrhea.12 However, from a mechanistic perspective, we found that intervention effectiveness would have been lower had the background disease pressure in the community been higher because individual-level interventions can be overwhelmed by higher disease pressure from the community. This is not to say that individual improvements would have no effect but that the effects are blunted if disease pressure in the rest of the community were not also addressed. These results are supported by the outcomes of WASH-B Kenya trial, which had higher disease prevalence (27% in the control arm) and no significant intervention effects13. Our results highlight limitations of standard statistical methods used to estimate trial sample sizes and point to a potential role for IDTMs in study design.33

Similarly, it is often suggested that when WASH conditions (e.g., improved latrines) are relatively high, interventions (e.g., latrine water seal) do not provide a substantial improvement.16,36–38 Counter to these hypothesis, we found that intervention effectiveness would have been lower if the baseline WASH conditions were lower: if the baseline WASH conditions were poorer, the community disease burden would be higher, so, as above, it would be more difficult to protect study participants from infection.
Because enteric pathogens can exploit multiple transmission pathways, many studies have tried to determine whether combined WASH interventions (WSH) are more effective than single interventions (W, S, or H). Whether or not there is an additional effect of combined interventions depends on whether the interventions are complementary, that is, whether they each block some of the transmission that the other interventions would not have blocked. This complementarity is an assumption in our IDTM framework (as each intervention affects different parts of the disease system), and we found that complementarity is consistent with the observed trial results. Other modelling and empirical studies, support that WASH interventions can complement each other, or even potentially be synergistic. In this work, we found that the combined interventions could have a greater effect than the individual interventions, but that the effects were generally additive, meaning that the effectiveness of the combined WSH intervention was approximately the sum of its parts (table 1). Combined interventions offer a substantially better chance of disease elimination, especially at higher coverage levels (figure 3).

The strength of our approach is underscored by the rich and high-quality data collected by the WASH-B Bangladesh trial (and other RCTs) and in our IDTM framework capturing relative disease prevalence. RCTs provide the gold standard of evidence about intervention effectiveness in a specific context, and our approach allows us to generalize RCT results to other contexts, providing a tool for powerful policy and programmatic guidance. One limitation of our study is the high uncertainty in many of the model parameters, including intervention completeness, which propagates into the counterfactual scenarios. These uncertainties stem from potential trade-offs in the model, e.g., low intervention completeness and low intervention efficacy may have similar effects. Fortunately, our framework has the potential to incorporate additional information about parameters like completeness and efficacy through our Bayesian sampling-importance resampling approach, allowing us to tailor projections of intervention effectiveness to specific parameter regions based on additional information (e.g., chlorination efficacy above 75%).

One limitation of the data was the inability to distinguish whether non-target children were members of the same household as the target child or not, which introduced misspecification into our classification of W and H exposures, likely attenuating the efficacy estimates for those interventions. Also, we accounted for changes in disease pressure between but not within survey periods; future work may more directly address seasonal changes in disease pressure and even pathway strength, as a function of precipitation, seasonal flooding, etc. Another limitation of this study is that our results do not directly address some aspects of the Sustainable Development Goal (SDG) Target 6.2. For example, the sanitation arm did not move households from no or basic sanitation to improved sanitation (as defined by the Joint Monitoring Programme). So, the “sanitation” intervention outcomes we estimated may not directly correspond to the policy-relevant changes required to meet SDG target. Likewise, the “water” intervention focused on water quality improvements (chlorination) but not water quantity. None of these issues are limitations of our
modeling framework; rather, they are limitations of our specific application. Applying our methods across other trial datasets could address these limitations by allowing for modelling of other—and perhaps more policy-relevant—WASH exposure parameters.

Our work contributes to the robust discussion\textsuperscript{16,19,43} about the future directions of WASH research and programming, and our modelling approach is well-suited to reevaluating current evidence during the “pause for reflection” recommended by a consensus of WASH researchers.\textsuperscript{16} This consensus group said that “the lesson perhaps lies in not seeking to attribute benefits to individual WASH factors but in that the public health dividends are paid when comprehensive services are in place.” Our work underscores this conclusion, not only by emphasizing the importance of coverage and completeness of interventions, but also in its rejection of the hypotheses that greater effectiveness might be found in areas with greater disease prevalence or lower preexisting WASH infrastructure. Indeed, our findings suggest that the effect of individual-level WASH improvements will be blunted the further the community is from achieving herd protection. Accordingly, this analysis provides further evidence supporting community-level interventions seeking to achieve herd protection (figure 4) through high community coverage.
Contributors

JNSE, MCE, MCF, and AFB conceived of the study. JNSE and MCF secured funding for the study. AFB, MCE, and JNSE developed the model. AFB wrote and implemented the software code, completed formal analysis and visualization, and curated the data and code. MHZ validated the software code. AFB wrote the original draft with input from JNSE and MCF. BFA, SA, JBC, JMC, AE, SPL, AJP, and MR contributed equally by aiding in interpretation of the results and providing their expertise in the WASH Benefits trials. All authors reviewed and edited the manuscript. All authors had full access to all study data.

Acknowledgements

This work was funded by the Bill & Melinda Gates Foundation (grant INV-005081) and the National Science Foundation (grant DMS-1853032). The original WASH-B Bangladesh trial was also funded by the Bill & Melinda Gates Foundation (grant OPPGD759). The study sponsors had no role in the study design, the analysis or interpretation of the results, the writing of the report, or in the decision to submit the paper for publication.

Data sharing

The WASH Benefits Bangladesh data is publicly available at https://osf.io/tprw2/. The data and code underlying the results of this paper are available on a GitHub repository at https://github.com/afbrouwer/WASH_RCT_transmission_modeling.
References


10. Patil SR, Arnold BF, Salvatore AL, et al. The effect of India’s total sanitation campaign on defecation behaviors and child health in rural Madhya Pradesh: A cluster randomized controlled


doi:10.1021/acs.est.7b00178


### Tables

#### Table 1: Counterfactual scenarios and implementations. WASH = water, sanitation, & hygiene.

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
<th>What would have happened if…</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WASH conditions</td>
<td>Quality of WASH infrastructure at baseline</td>
<td>… no households had preexisting WASH conditions substantially equivalent to the intervention.</td>
<td>Pre-existing conditions are removed from individuals not in the corresponding intervention arms.</td>
</tr>
<tr>
<td>Disease conditions</td>
<td>Disease prevalence at baseline in the absence of preexisting WASH conditions</td>
<td>… the disease pressure was greater</td>
<td>The basic reproduction number is increased such that the baseline prevalence in the absence of preexisting WASH conditions is doubled.</td>
</tr>
<tr>
<td>Fidelity &amp; adherence</td>
<td>The extent to which individuals assigned to an intervention received it (fidelity) and used it (adherence)</td>
<td>… all households assigned an intervention received and used it.</td>
<td>All individuals in each intervention arm use the intervention.</td>
</tr>
<tr>
<td>Completeness</td>
<td>Whether there were transmission pathways that were not intervened on</td>
<td>… more of transmission was along pathway that could be intervened on.</td>
<td>The strength of the other pathway is reduced by 50% and replaced proportionally by the water and fomite pathways.</td>
</tr>
<tr>
<td>Efficacy</td>
<td>The extent to which using the intervention reduced transmission along relevant pathways</td>
<td>… the interventions provided a greater reduction in transmission.</td>
<td>The strength of the reduction in transmission from each intervention (and corresponding preexisting condition) is doubled.</td>
</tr>
<tr>
<td>Coverage</td>
<td>The fraction of the at-risk population in a cluster that was provided the intervention</td>
<td>… a different fraction of the population was provided the intervention.</td>
<td>Study coverage is 0%, 10%, …, 90%, 100%.</td>
</tr>
</tbody>
</table>

#### Table 2. Median percent increase in intervention effectiveness in each intervention arm for each counterfactual scenario. Increase in intervention effectiveness is 1 minus the counterfactual effectiveness ratio expressed as a percent. A negative number reflects a decrease in effectiveness.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>W</th>
<th>S</th>
<th>H</th>
<th>WSH</th>
<th>N</th>
<th>WSHN</th>
</tr>
</thead>
<tbody>
<tr>
<td>No WASH baseline conditions</td>
<td>-0.5</td>
<td>-5.8</td>
<td>-2.2</td>
<td>-13.1</td>
<td>-1.8</td>
<td>-18.3</td>
</tr>
<tr>
<td>Double baseline disease prevalence</td>
<td>-5.1</td>
<td>-5.4</td>
<td>-5.6</td>
<td>-16.6</td>
<td>-3.6</td>
<td>-27.4</td>
</tr>
<tr>
<td>Full adherence</td>
<td>5.6</td>
<td>0.1</td>
<td>1.6</td>
<td>1.7</td>
<td>0.9</td>
<td>5.6</td>
</tr>
<tr>
<td>Eliminate half of other pathway</td>
<td>9.3</td>
<td>6.3</td>
<td>8.0</td>
<td>23.8</td>
<td>0.9</td>
<td>30.7</td>
</tr>
<tr>
<td>Double efficacy of chlorination</td>
<td>12.2</td>
<td>0.0</td>
<td>0.0</td>
<td>4.6</td>
<td>0.0</td>
<td>11.2</td>
</tr>
<tr>
<td>Double efficacy of latrine water seal</td>
<td>0.0</td>
<td>21.8</td>
<td>0.0</td>
<td>25.8</td>
<td>0.0</td>
<td>28.0</td>
</tr>
<tr>
<td>Double efficacy of handwashing</td>
<td>0.0</td>
<td>0.0</td>
<td>17.6</td>
<td>17.9</td>
<td>0.0</td>
<td>21.2</td>
</tr>
<tr>
<td>Double efficacy of nutrition</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.7</td>
<td>13.2</td>
</tr>
<tr>
<td>Increase coverage to 20%</td>
<td>15.4</td>
<td>5.2</td>
<td>6.6</td>
<td>26.9</td>
<td>9.5</td>
<td>52.7</td>
</tr>
</tbody>
</table>
Figure captions

Figure 1: Simplified model diagram with an attenuated exposure population and a regular exposure population interacting through shared environments. In the full model, each combination of interventions and preexisting conditions defines a separate attenuated exposure population. For the WASH-B Bangladesh trial, households in each cluster could potentially have and adhere to each of four interventions or preexisting conditions, so $2^4=16$ distinct exposure populations were modelled in each cluster.

Figure 2: Counterfactual effectiveness ratios for each intervention arm in each counterfactual scenario. The counterfactual effectiveness ratio is the relative risk in each intervention arm compared to the control arm in the counterfactual vs factual scenarios. A value of 1 indicates no change in intervention effectiveness in the counterfactual scenario. Values above 1 indicate reduced effectiveness, values below 1 indicate increased effectiveness, and 0 indicates disease elimination in the counterfactual scenario.

Figure 3: Counterfactual effectiveness ratios for each intervention arm in the 15% coverage counterfactual scenario overall (a) and considering other parameters as effect modifiers (b-h). The counterfactual effectiveness ratio is the relative risk in each intervention arm compared to the control arm in the counterfactual vs factual scenarios. A value of 1 indicates no change in intervention effectiveness in the counterfactual scenario. Values above 1 indicate reduced effectiveness, values below 1 indicate increased effectiveness, and 0 indicates disease elimination in the counterfactual scenario. Points in plots b-h are colored and dodged by the indicated variable.

Figure 4: Median counterfactual effectiveness ratios as a function of the coverage fraction in the lowest and highest quartiles of intervention completeness for the a) WSH and WSHN arms, the b) W and S arms, and the c) H and N arms.
Attenuated exposure population

Regular exposure population

\[ S_+ \]  \( \xrightarrow{\text{Transmission}} \)  \( I_+ \)

Recovery

Pathogen pick-up

Pathogen shedding

Pathogen decay

Water

Hands & fomites

Environmental pathways

Other

\[ S_- \]  \( \xrightarrow{\text{Recovery}} \)  \( I_- \)

Regular exposure population
No preexisting WASH conditions

Double baseline disease prevalence

Full adherence

Eliminate half of other pathway transmission

Double efficacy of water chlorination

Double efficacy of a latrine water seal

Double efficacy of the handwashing

Double efficacy of the nutrition intervention