Title: EFFECTS OF POSTNATAL GLUCOCORTICOIDS ON BRAIN STRUCTURE IN PRETERM INFANTS, A SCOPING REVIEW

Authors: Isabella Roblesa; Margarita Alethea Eidsnessb; Katherine E. Travisb, PhD; Heidi M Feldmanb, MD, PhD; Sarah E. Dubnerb,*, MD

aUniversity of California Davis, School of Medicine; bDivision of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine

* Corresponding Author:
Sarah E. Dubner, MD
Developmental-Behavioral Pediatrics
Stanford University School of Medicine
3145 Porter Drive
MC 5395
Palo Alto, CA 94304
sdubner@stanford.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
HIGHLIGHTS

- Few studies examine postnatal glucocorticoid effects on preterm human brain structure
- Dexamethasone use in preterm infants is associated reduced overall brain volumes
- Dexamethasone use in preterm infants is associated with reduced cerebellar volumes
- Hydrocortisone use in preterm infants is not consistently correlated with adverse brain effects
- Studies of glucocorticoid use in preterm infants should assess brain structures
ABSTRACT

Glucocorticoids (GC) are used in neonatal intensive care units to prevent or reduce the severity of chronic lung disease in preterm infants and have been implicated in impaired neurodevelopment. Our objective was to identify what is known about the effects of postnatal GC treatment in human preterm infants on structural brain development and to identify gaps in the literature. Following Arksey and O’Malley’s scoping review methodological framework, we searched scientific literature databases for original research on human preterm infants, postnatal GCs, and brain structure. 11 studies assessed the effects of GCs on structural brain outcomes. 56 studies reported brain injury, but not structure. Dexamethasone was consistently associated with decreased total and regional brain volumes, including cerebellar volumes. Hydrocortisone was often, but not always associated with absence of brain volume differences. No studies examined the impact of inhaled GC on brain structure. Additional research on the effects of neonatal GCs after preterm birth on a variety of structural brain measures is required for understanding contributions to neurodevelopment and informing practice guidelines.

KEYWORDS: glucocorticoids, prematurity, brain, imaging, human
1.0 INTRODUCTION

Glucocorticoids (GC) are a class of steroid hormones that may be produced endogenously by the adrenal gland or provided exogenously as an anti-inflammatory or immunosuppressant medication. Exogenous GC are highly effective as anti-inflammatory medications, but are associated with multiple complications, especially after prolonged use. Exogenous GC are graded in terms of potency; dexamethasone is a potent GC whereas hydrocortisone is a less potent GC. Infants born preterm (PT), particularly those born more than 2 months before their due date, labelled very and extremely preterm, often require support for basic bodily functions, such as mechanical ventilation for respiratory illness. These PT children are at high risk for multiple inflammatory complications during their neonatal hospitalization, including a severe inflammatory chronic lung disease, called bronchopulmonary dysplasia (BPD). They are also at risk for long-term neurodevelopmental disorders, particularly among those children with inflammatory conditions, such as BPD (Gallini et al., 2021; Patra et al., 2017). The use of exogenous GC for infants born preterm (PT) in the neonatal intensive care unit has been a controversial topic, much debated in recent decades. GCs are commonly administered to PT infants to reduce the incidence and severity of BPD, which, in turn, is a major risk factor for mortality and neurodevelopmental disability in children born PT. The overall aim of this scoping review is to review the existing literature in human infants to determine what is known about the impact of exogenous GC, administered in the neonatal intensive care unit to prevent or reduce the severity of BPD, in relation to early brain structural development.
Despite widespread use, multiple investigations have questioned whether administration of GC is appropriate for preterm infants for several important reasons: (1) studies have failed to show a clear and consistent benefit of the medication in decreasing rates or severity of BPD (Cummings et al., 2022), (2) some studies have shown poor neurodevelopmental outcomes in GC-treated preterm infants, especially after administration of dexamethasone (Cummings et al., 2022), and (3) animal studies have found adverse effect of GCs on brain structures (Huang et al., 1999). It is generally assumed that brain structural metrics are associated both with neonatal clinical experience (Volpe, 2009) and with neurodevelopmental outcomes (Ment et al., 2009). Thus, we embarked on this review. We anticipated variation in the types of GCs used and in the methods of neuroimaging used to evaluate brain structure, both limiting our ability to conduct a systematic review and meta-analysis. We therefore conceptualized this review as a scoping review to synthesize what is currently known in the field, identify gaps in the literature, and direct future research questions.

1.1 Glucocorticoid use in preterm infants

Systematic use of postnatal exogenous GC in PT infants for prevention of BPD followed a 1994 publication of recommendations for prenatal GC administration to reduce the likelihood of PT birth in women in PT labor (Noguchi, 2014). Subsequently, in 2002, mounting evidence of neuromotor and cognitive impairment and impaired cerebellar growth led the American Academy of Pediatrics (AAP) to recommend against the use of postnatal GC (Committee on Fetus and Newborn, 2002). However, since 2010 and the publication of several studies of lower dose and lower potency GCs, postnatal GC use has again increased. The most recent recommendations, published
in 2022, recommended against high dose dexamethasone (Cummings et al., 2022). No recommendation was made regarding routine use of low potency steroids. Shared decision making between clinicians and parents was recommended when deciding whether to use steroids. In this state of clinical equipoise, additional information about steroid effects on brain structure may help clinicians and families choose a treatment path.

1.2 Outcomes after post-natal glucocorticoid administration in preterm infants

Studies of long-term neurodevelopmental outcomes after GC administration in the neonatal period have been inconclusive regarding benefits and risks. Early studies were generally limited by small sample sizes, underpowered to describe effects of GCs on neurodevelopment and particularly to consider differences across different GCs, such as dexamethasone and hydrocortisone (Doyle, 2021). A recent large multicenter trial of over 800 infants failed to show benefit in decreasing BPD or improving survival without moderate to severe disability (Watterberg et al., 2022). The accompanying commentary suggested that research should adjust the dependent variables of interest and consider the role of GC in the amelioration of severe respiratory disease rather than in survival without BPD, as the primary measure of the utility of GC use (Greenough, 2022).

To overcome the limitations of individual studies, multiple systematic reviews have considered the effects of GC administration and have made recommendations for GC administration in preterm infants (Chang, 2014; Doyle et al., 2021a, 2021a; Noguchi, 2014; Onland et al., 2017; Shah et al., 2017). These reviews focused on several issues: clinical outcomes, including prevalence of BPD and later
neurodevelopmental outcomes, including neurodevelopmental disability; the optimal
administration plan for steroids; and the appropriate dose to maximize effectiveness
without incurring accompanying adverse effects. All these reviews concluded that
further research on long-term effects needs to be done. They recommended minimal
use of postnatal glucocorticoids, restricting treatment only to ventilator-dependent
infants, and limiting dose and duration. A review specifically of early GC administration
before 7 days of life concluded that the benefits of GCs (e.g. shorter ventilation time,
decreases in diagnosed BPD), may not outweigh the known risks (e.g. gastrointestinal
bleeding, cerebral palsy, hyperglycemia) (Doyle et al., 2021b). As a result, the review
recommended discontinuing the practice of early dexamethasone administration. A
separate review specifically of steroids started after day of life 7 found that the risk of
death and BPD was reduced without increased rates of cerebral palsy; however, the
long term effects had not been well studied (Doyle et al., 2021a). This review
demonstrated the importance of timing of GC administration.

Concerning results were found in a review of specific steroid protocols (Onland et
al., 2017). This review noted increased risk of BPD and adverse neurodevelopmental
outcomes in children getting higher versus lower doses of GCs and no difference in
outcomes for early versus late administration. The studies however had important
methodological weaknesses and the review could not conclude with an optimal dose
regimen recommendation.

The reviews to date have not fully considered the effects of postnatal GCs on
developing brain structures, even though alternations in brain structure may be a major
contribution to adverse neurodevelopmental outcomes (Volpe, 2009). It remains
critically important to understand any impacts because changes may relate to later neurodevelopmental outcomes. Indeed, structural brain findings may provide a proximal indicator, available to clinicians while children born preterm are still hospitalized, of the neurobiological effects of GCs, to inform clinical research and practice.

1.3 Glucocorticoid effects on brain development

Several lines of evidence support consideration of the effects of GC on brain development in PT infants. GC enter the brain via simple diffusion across the blood brain barrier. Within the brain, GC affect brain development via intracellular glucocorticoid and mineralocorticoid receptors. Glucocorticoid receptor binding causes both inhibition and enhancement of gene transcription (De Kloet et al., 1998; Nishi and Kawata, 2007). Glucocorticoid receptor activation may suppress synaptic plasticity and inhibit neuronal development. Glucocorticoid receptors are widely expressed in the glia and neurons of the cerebrum and cerebellum (Bohn et al., 1994). Mineralocorticoid receptor activation meanwhile may aid in synapse plasticity and neuronal survival (Joëls, 2007; Johnston et al., 2009; McEwen, 1994; McEwen et al., 1992).

Mineralocorticoid receptors are primarily found in the hippocampus and limbic structures (Joëls, 2001).

Age and sex affect distribution; prefrontal glucocorticoid receptor density increases in childhood and expression in the hippocampus is higher in women than men. Importantly, dexamethasone primarily binds glucocorticoid receptors, while hydrocortisone additionally binds mineralocorticoid receptor (Reul et al., 2000), suggesting that the impact on brain structure may vary as a function of which GC was administered. The distinctive pharmacokinetic and pharmacodynamic profiles of
exogenous GC during childhood may result in increased exposure of central nervous system tissue to exogenous glucocorticoids in children as compared to adults (Damsted et al., 2011). Preterm infants may see even higher GC exposure in the brain than older infants and children because of their permeable blood-brain barrier, reduced hepatic metabolism and renal excretion, and lower protein binding capacity.

Animal studies provide additional evidence of potential effects of GC on infant brains. Studies in neonatal rats have shown decreased neurogenesis, impaired long term potentiation with dexamethasone, but not hydrocortisone. (Chang, 2014; Cotterrell et al., 1972; Howard and Granoff, 1968; Huang et al., 1999). These neural changes occurred along with behavioral abnormalities including delayed acquisition of motor skills and impaired emotional control. Early treatment in rats (postnatal days 2-8) have shown decreased hippocampal glucocorticoid receptor number at pubertal age (postnatal day 40), suggesting lasting impacts on the regulation of cellular development (Zoli et al., 1990). Adverse effects on CNS myelination have also been reported (Gumbinas et al., 1973). The cerebellum appears to be especially sensitive to GC exposure. Postnatal GC impair rat cerebellar development by decreasing cellular proliferation (Noguchi, 2014). Cerebellar development is coordinated in a time sensitive manner through proliferation of the extragranular layer, followed by a programmed, endogenous GC-induced apoptosis of external granular layer cells. This process, when induced too early by exogenous GC-administration, leads to impaired cerebellar development. Similarly, studies of human infants demonstrated decreased cerebellar volume after dexamethasone administration (Parikh NA et al., 2007; Tam et al., 2011).
Evidence of hydrocortisone effects on cerebellum were mixed, compared with
dexamethasone (Noguchi, 2014).

1.4 Rationale for review of post-natal glucocorticoids on brain structures

Given the diversity of the studies and multifactorial contributors to
neurodevelopmental outcomes, we sought to review the literature on a more proximal
and objective measure, structural brain metrics, to inform our understanding of the
effects of glucocorticoid administration on preterm brain development. We know that PT
infants show a particular pattern of brain injury and dysmaturity due to complex interplay
of developmental stage and medical intervention (Volpe, 2009). These brain changes
are now detectable using advanced imaging techniques and the differences are seen in
neurodevelopmental outcomes (Feldman et al., 2010). Several reviews have looked at
imaging studies and GC as part of an overall review of steroid effects on the neonatal
brain, the most recent of which are nearly 10 years old (Baud, 2004; Chang, 2014;
Favrais et al., 2014; Noguchi, 2014; Rademaker and de Vries, 2009). Given the
increase in imaging studies over the past decade, our aim was to review the current
literature. Because of the diversity of GC types, doses, timing, duration, and the
diversity of brain outcomes reported, a scoping review of the literature was most
appropriate. The primary objective of this scoping review is to identify what is known
about the effects of GC treatment on brain structural development in preterm human
infants with the goal of identifying gaps in the literature and potential intermediate
biomarker candidates for neurodevelopmental outcomes. With this review, we hope to
assess the scope of current research on the topic and identify future directions for
investigations of steroid administration and structural brain changes.
2.0 METHODS

We followed the Arksey and O’Malley methodological framework for scoping reviews to ensure an orderly approach to mapping the existing evidence on what is known broadly about this topic and to identify gaps in the literature (Arksey and O’Malley, 2005). The stages include: (1) identifying the research question; (2) identifying relevant studies; (3) selecting the studies; (4) charting the data; and (5) collating, summarizing, and reporting the results.

A search query was designed to yield articles that included 3 key topics: postnatal steroids, prematurity, and brain structure. We used a combination of MeSH terms and text word search of titles and abstracts. Our full search terms are shown in the Supplement. Using this strategy, we collected articles from ClinicalTrials.gov and PubMed published between January 1, 1990 and September 16, 2021. We also included references from recent Cochrane systematic reviews on postnatal glucocorticoid administration for preterm infants (Doyle et al., 2021a, 2021b; Onland et al., 2017).

The inclusion and exclusion criteria are shown in Table 1. We defined a structural brain outcome as description or measurement of one or more anatomical features, assessed using one or more neuroimaging modalities. For example, MRI was commonly used to report on overall and regional brain volumes or image slice area. Studies that reported on structural brain outcomes after postnatal GC administration to preterm children were our primary interest in this review. We differentiated the anatomical descriptions and measurements from general descriptions, such as intraventricular, brain parenchymal, and/or cerebellar hemorrhages or injuries, which
may or may not lead to variation in brain anatomy. These findings are frequently used to characterize preterm study populations and are not necessarily treated as an outcome of interest. We defined these outcomes as “brain injury”, reviewed them as a set, and, to provide a comprehensive view of the literature, included these references in the Supplement. Studies that included postnatal GC administration as a covariate or as a possible risk factor moderating relations between preterm birth and brain structure, but did not include information on GC type, dose, or administration were reviewed and also included in the Supplement. We excluded Near Infrared Spectroscopy (NIRS) and Doppler imaging modalities because they are considered functional modalities.

References were imported into Covidence (“Covidence systematic review software,” n.d.) and were screened by 3 independent reviewers (IR, AE, SD) at each step: title and abstract screening, full-text review, and data extraction. For title and abstract screening, references were excluded only if it obviously met exclusion criteria, such as being an animal study. For full-text review, articles were included if any structural brain outcome was reported, regardless of it being a primary or secondary outcome. The senior author (SD) reviewed and resolved conflicts when consensus through discussion was not reached.

We extracted the following data from relevant studies: study design, aim of study, trial name, cohort size, steroid administration (type, dose, route, duration), imaging modality, primary and secondary outcomes, and brain outcome. For studies in the supplement, the reported outcomes were not structural brain outcomes. For these studies, we extracted the relevant brain data that were reported as a characteristic of the study population following steroid exposure.
3.0 RESULTS

Using the criteria described in the methods, we identified 11 papers for inclusion in this review. A consort diagram is shown in the Figure. Table 2 includes the studies that specifically examined structural brain outcomes as a result of GC exposure. An additional 62 studies were either glucocorticoid intervention trials that reported brain injury outcome (e.g. intraventricular hemorrhage, IVH) as a characteristic of the study population (n= 50), or were observational studies of brain structural outcomes that examined postnatal GC as a potential contributing or risk factor (n=12) and provided little or no information on glucocorticoid type or administration. These studies are summarized in the Supplement.

3.1 DEXAMETHASONE

Three studies reported on the association between dexamethasone exposure and a range of brain structural outcomes across a range of ages at the time of imaging. An early 3-D quantitative volumetric MRI study that imaged the participants at 38-41 weeks post conceptual age compared infants treated with dexamethasone to infants who were not exposed to GC and to term infants (Murphy BP et al., 2001). The dexamethasone-treated group was born at an earlier gestational age, had a longer length of stay, had higher clinical risk index for babies (CRIB) score in the first 12 hours of life. Cerebral cortical gray matter volume was reduced in the dexamethasone-exposed group compared with the non-exposed group, after adjusting for gestational age at birth and CRIB score (mean difference 65.3, 95% confidence interval: 4.3 to 114.58). There were
no significant cerebral cortical gray matter volume differences between non-exposed preterm infants and control. Total cerebral tissue volume was reduced by 22% in the dexamethasone treated versus non-treated preterm groups. After adjustment for covariates, the volume remained lower, but was no longer statistically significant. No differences were observed in the subcortical gray matter volumes (basal ganglia and thalami). Myelinated white matter volume differed between preterm and full term groups, but was not different between dexamethasone exposed and non-exposed preterm infants. Unmyelinated white matter did not differ between groups.

Parikh and colleagues (Parikh NA et al., 2007) examined a later sample with lower overall dexamethasone doses, adjusting for multiple potential confounders (PMA at scan, dexamethasone treatment, birthweight, presence of BPD). They obtained coronal T2 weighted MRI at a mean post menstrual age of 39.4 weeks. The authors reported smaller total brain volumes (9.5%), cerebellar volumes (19.7%) and subcortical gray matter volumes (20.6%) in the dexamethasone group. Total gray matter volume was also lower in the dexamethasone group but did not meet statistical significance. There was no dose response relationship between dexamethasone dose and total brain volume and cortical tissue volume. To explain the smaller reductions seen compared with Murphy et al. 2001, they pointed out that they used lower cumulative doses, later in life, to higher risk ELBW infants, enrolled an unselected cohort, performed masked evaluations, had a larger sample size, and adjusted for more potential confounders.

A third study obtained T1 weighted MRI at age 18 years in a cohort of individuals born preterm who had received NICU administered dexamethasone. In this cohort, GC were given at the discretion of the treating clinicians after the first week of life. The
The dexamethasone group had a lower gestational age and birthweight and higher rates of BPD and cerebral palsy than those who did not receive postnatal dexamethasone. Overall they found a 3.6% (95% CI -7.0%, -0.3%) smaller total brain tissue volume at age 18, that was not significantly different between groups after adjustment for covariates. Volumes of total and most regional areas of cortical white matter, thalamus, and basal ganglia nuclei were smaller in the dexamethasone group compared with the no-dexamethasone group after adjustment for covariates. Unlike the studies reviewed here which looked at scans from younger ages, there was no statistically significant difference in cortical gray matter, hippocampus, amygdala, and cerebellar volumes. Within white matter, on the other hand, the reduction in brain parcel volumes in the dexamethasone group was found in most regions except the medial temporal region. The authors hypothesized that the absence of cerebellar volume differences may have been due to catch up cerebellar growth while the presence of white matter volume reductions found in their study, which had not been reported previously, may reflect a selective vulnerability of particular brain tissues and altered developmental trajectory that is not detected until adolescence.

3.2 HYDROCORTISONE

Eight studies directly assessed the association between hydrocortisone and brain structure. In 2005, Lodygensky et. al obtained 3D quantitative volumetric MRI in 8 year old children who had been born preterm or full term (Lodygensky et al., 2005). A portion of the PT children had received hydrocortisone due to respiratory illness severity. No differences in 5 measures of brain volumes were seen between PT children who did or did not receive neonatal hydrocortisone. This study reports that it is the first directly to
address the effect of postnatal corticosteroid treatment on hippocampal volumes in humans. The authors hypothesized that the combination of the decreased potency and shorter half-life of hydrocortisone compared with dexamethasone and hydrocortisone’s preferential binding of mineralocorticoid receptors versus dexamethasone’s binding of glucocorticoid receptors is protective.

A larger, overlapping study of the 8 year old children with the same 3D quantitative volumetric MRI as Lodygensky study (Lodygensky et al., 2005) classified MRI findings as normal, mildly abnormal, or severely abnormal and calculated corpus callosum area on a midsagittal T2 slice. There were no differences in presence of brain lesions on MRI between PT children who were treated with hydrocortisone and those who were not after adjusting for a propensity score representing the likelihood of requiring hydrocortisone. Mean midsagittal corpus callosum area was smaller in the hydrocortisone treated group compared with the non-treated group, but the difference was not significant after adjustment for the propensity score. No other brain differences were identified. This investigation represented the largest group from their sample. In addition to the potency and half-life of hydrocortisone vs dexamethasone, the authors pointed to the use of sodium bisulphite as a preservative in dexamethasone as a possible cause of decreased neuronal cell line viability based on in vitro and rodent studies. They discussed the timing of glucocorticoid administration later in neonatal life as potentially being beyond a particular window of developmental vulnerability.

Two studies reported on overlapping samples of PT infants with 3D volumetric MRI at term equivalent age (Benders et al., 2009; Kersbergen et al., 2013). Benders and colleagues performed a prospective study comparing infants who received a two-
week course of hydrocortisone at 1 week of life or later with age, gender, and
respiratory status matched controls from a second institution using the same MRI
scanner and the same imaging protocol. Adjusted analyses showed no differences
between groups for individual or summed volumes for the intracranial cavity, CSF,
cortical gray matter, subcortical gray matter, unmyelinated white matter, and myelinated
white matter. In the second investigation of an expanded cohort (Kersbergen et al.,
2013) there was no difference in total brain tissue volume between treated and
untreated controls after adjustment for covariates. Only post menstrual age at scan,
birthweight, and gestational age at birth were associated with total brain tissue volume.
This was the same whether hydrocortisone was treated as a continuous variable or high
vs low dose. They also looked at cerebellar volumes and found that while PMA at scan,
birth weight z score, and grade 3 IVH influenced cerebellar volumes, hydrocortisone did
not.

In a pilot randomized controlled trial, Parikh and colleagues obtained axial PD/T2
volumetric MRI scans at 38 weeks post menstrual age in infants randomized to
hydrocortisone or placebo with the specific objective of examining a structural brain
outcome (Parikh et al., 2013). Total brain tissue volume was the primary outcome.
Secondary brain outcomes included individual tissue volumes of cortical gray matter,
cerebral white matter, cerebrospinal fluid, subcortical gray matter and substructure
volumes of included nuclei, cerebellum, hippocampi, amygdalae, corpus callosum, and
brain stem. The study was powered to detect a 2-week growth difference in brain size.
In bivariate and adjusted analyses, total tissue volume was not different between the
groups. Secondary brain outcomes of regional volumes were not different between the
groups. The authors concluded that there were neither short term benefits or harms from low dose hydrocortisone after the first week of life.

Allison et al. (Alison M et al., 2020) conducted a large predefined secondary analysis of T1, T2, T2 GE MRI at term equivalent age of patients enrolled in the PREMILOC trial of early hydrocortisone. A standardized scoring system was used to evaluate cerebral WM, cortical and deep GM and cerebellar abnormalities. (Kidokoro et al., 2013) A number of quantitative biometric values (sizes and areas of various structures) were obtained. The primary endpoint was the occurrence of cerebral white matter abnormalities. There were no differences in the cumulative distribution of white matter scores between the treatment and control groups. Fewer infants born at 24-25 weeks in the hydrocortisone group developed dilated lateral ventricles compared with the placebo group. The 24-25 week hydrocortisone group also had smaller lateral ventricles than the placebo group. There were no differences in any of the cortical and basal ganglia gray matter, nor cerebellar injury between the groups. There was no difference in the distribution of the relevant scores between groups. There was a statistically significant association between overall brain injury score cumulative distribution between the groups, however hydrocortisone was no longer significantly associated with white matter damage or overall moderate to severe brain damage after adjustment for risk factors and gestational age.

Rousseau (Rousseau et al., 2021) obtained axial T2 MRI and aimed to explore postnatal brain growth in extremely preterm born infants requiring postnatal steroids. They examined brain tissue area at term equivalent age and head circumference growth by 12 months of age. This report included children receiving hydrocortisone for any
indication (e.g., refractory hypotension, prolonged respiratory insufficiency).

Semiautomatic tissue segmentation was performed and areas of each tissue were measured on an axial slice (not a 3D volumetric measurement). The study was powered to see an 8% reduction of brain volumes at term equivalent age. Despite matching, the hydrocortisone group was lower weight at birth and had more medical complications. Adjusting for postmenstrual age at MRI scan, there was a significant reduction in the intracranial cavity, the basal ganglia and thalamus area at term equivalent age. There was no correlation between basal ganglia and thalamus (BGT) area and hydrocortisone dose. Multiple regression showed that duration of mechanical ventilation was the only significant independent variable associated with BGT (not with hydrocortisone treatment).

3.3 HYDROCORTISONE AND DEXAMETHASONE

Tam and colleagues published a study focused on steroid effects on the cerebrum and cerebellum that examined both hydrocortisone and dexamethasone (Tam et al., 2011). They obtained T2-weighted and T1 3-D volumetric scans at two sites at two time points – as soon after birth as the infant was able and again at term post menstrual age. Adjusting for multiple covariates, there was a decrease in cerebellar growth associated with glucocorticoid exposure resulting in 1.88 cm3 smaller cerebellum at 40 weeks post menstrual age after hydrocortisone and 2.31 cm3 smaller cerebellum associated with dexamethasone (8% and 10% smaller cerebellar volumes, respectively). They were unable to determine whether there was a dose dependent effect of glucocorticoids on cerebellar growth. Cerebellar volume was not associated with the number of days since the last steroid administration, indicating that the volume
changes were not immediately reversible effects. Clinical factors were also associated with decreased cerebellar volume including intubation duration, hypotension, patent ductus arteriosus, but postnatal dexamethasone, postnatal hydrocortisone, and severe intraventricular hemorrhage were associated with the largest decreases in cerebellar volume. The same analyses were performed for cerebral volumes at term. Cerebral volume at term was not associated with antenatal betamethasone exposure or with postnatal hydrocortisone or dexamethasone exposure.

3.4 INHALED GLUCOCORTICOIDS

We identified no studies examining association between inhaled corticosteroids in preterm infants and structural brain outcomes.

4.0 DISCUSSION

In this scoping review we identified 11 papers related to associations or effects between postnatal GC and structural or anatomical brain metrics in humans born PT. Dexamethasone was consistently associated with unfavorable brain differences. Radiologist scoring rubrics and quantitative total and regional brain areas or volumes of varied structures were reported. The results showed that for dexamethasone, exposure to dexamethasone was associated with reduction in volumes across multiple brain regions, including the cerebellum, and metrics. However, for hydrocortisone, only one study has reported that exposure to medication was associated with volumetric differences and these localized to the cerebellum. Overall cohort sizes varied from small to large. The range of treatment dose, duration, and age at initiation varied widely.
4.1 STUDY TIMING

While most studies examined imaging obtained during the initial neonatal course, there were several reports on a cohort of 8-year-old children born preterm and one as late as 18 years of age. All of these time frames are important and relevant to understanding the potential long-term outcome of GC given during a sensitive developmental window. The case for using imaging during the neonatal hospital course is strong. Infant MRI metrics may serve as proximal biomarkers associated with later developmental outcomes. Having a predictive biomarker in the neonatal period can avoid the confounding of later post-NICU experience in understanding the effects of GC on brain. Future studies should assess advanced MRI metrics as mediators of GC effects on later neurodevelopmental outcomes. Evaluation at later ages is also important to understanding neurodevelopment. The preterm newborn brain undergoes rapid development. Glucocorticoids in the neonatal period act on a changing substrate. Effects may not be evident until the brain structure is more mature. Furthermore, the timing of glucocorticoid administration during the neonatal period could produce different effects on brain structure and development.

4.2 MEASUREMENT CHOICE

In the clinical setting, a measure should be objective, easily obtained, relevant to the exposure and the later outcome it relates to. Because of the differing GR and MR receptor distribution in the brain, examining subregions or certain types of brain matter (e.g. white vs gray matter; cerebral vs cerebellar), may better identify effects than a whole brain approach. Although not routinely implemented in the clinical setting, no
study has yet examined effects of GC using advanced microstructural metrics, for instance diffusion metrics (Feldman et al., 2010) or quantitative microstructural metrics (Mancini et al., 2020). These metrics may get closer to the underlying neurobiology and therefore may detect GC effects that cannot be seen on the more macroscopic volumetric scale that has been reported thus far. Using these quantitative metrics may shed light on contradictory results from the macroscopic volumetric measures.

4.3 CHALLENGES IN CONDUCTING AND COMPARING STUDIES

This review highlights the difficulty of conducting and comparing randomized trials of steroids in preterm infants. Some studies were found not to be feasible due to difficulty with patient recruitment. Studies were stopped, and dosing changed midway. Most of the studies reporting on brain structure were small or of modest size. Changes in clinical practice over time make comparison across studies challenging. The larger studies often had a range of GC doses and regimens. While multicenter RCTs should incorporate brain metrics into their study design, we should also consider how prospective or retrospective cohorts can account for heterogeneity in treatment and sample size limitations to leverage the power of modern electronic health records in asking clinical questions such as those relating to GC use. Rousseau (Rousseau C et al., 2021) for instance investigated correlations between dose and brain area, while Kersbergen (Kersbergen et al., 2013) looked at both continuous and high/low measures. Tam et. al. employed several strategies for analyzing cohort data (Tam et al., 2011). The multi-site study was able to collect a large sample. They were the only study to examine brain imaging longitudinally, strengthening the causal argument. They examined regional brain volumes, and they attempted to assess dose response. Their
results have not been reproduced, although it is difficult to directly compare studies because of the analytic complexities discussed here. Collaboration and continued research with more current datasets will be important to understanding the safety and effectiveness of GC treatments in preterm infants.

5.0 CONCLUSIONS

GC effects on brain are of interest to a wide audience of researchers across the lifespan and across many clinical conditions. Despite the availability of clinical and research advanced imaging modalities, relatively few human studies have directly assessed the effect of this intervention on brain structural development. This review highlights the need for additional research on neonatal GC and their potential effects on brain development. As GC use becomes more targeted and ongoing research aims to identify optimal populations and treatment regimens, incorporating information about both brain structure in the infant period and in later childhood can provide researchers and clinicians with a better understanding of the downstream effects of this important treatment on neurodevelopment.

ACKNOWLEDGEMENTS: This work was supported by the National Institutes of Health (2RO1- HD069150) and the Young Investigator Award to Dr. Dubner, from the Society of Developmental and Behavioral Pediatrics (2019).

REFERENCES
Prophylactic hydrocortisone in extremely preterm infants and brain MRI abnormality.

Covidence systematic review software, n.d.

Doyle, L.W., 2021. Postnatal Corticosteroids to Prevent or Treat Bronchopulmonary Dysplasia. NEO 118, 244–251. https://doi.org/10.1159/000515950

FIGURE. Consort diagram of studies screened and extracted.
Table 1. Inclusion and exclusion criteria for title and abstract review

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Papers from 1990 and later</td>
<td>1. Conference abstracts, case studies/reports if less than 10 subjects, dissertations; review papers; preprints; theoretical papers</td>
</tr>
<tr>
<td>2. English language</td>
<td>2. Endogenous GC exposure or measurement</td>
</tr>
<tr>
<td>3. Published and peer-reviewed</td>
<td>3. GCs administered antenatally only</td>
</tr>
<tr>
<td>4. Contains empirical data</td>
<td>4. No structural brain outcomes reported</td>
</tr>
<tr>
<td>5. Human subjects</td>
<td>5. Functional brain imaging studies only</td>
</tr>
<tr>
<td>6. Infants born before 37 weeks gestation</td>
<td>6. Animal study with no human participants</td>
</tr>
<tr>
<td>7. Postnatal exogenous GC exposure</td>
<td>7. Topical GC application only</td>
</tr>
<tr>
<td>8. GCs administered systemically - enteral, intravenous, intramuscular, inhaled,</td>
<td>8. GCs after birth hospitalization discharge</td>
</tr>
<tr>
<td>nebulized, intranasally administered, sublingual, or subcutaneous</td>
<td></td>
</tr>
<tr>
<td>9. GCs administered to infants during birth hospitalization</td>
<td></td>
</tr>
<tr>
<td>10. At least one structural brain outcome measured after GC administration</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Studies of glucocorticoids and brain structure in preterm born infants

<table>
<thead>
<tr>
<th>Steroid</th>
<th>Author</th>
<th>Year</th>
<th>Study Type</th>
<th>Number of Participants</th>
<th>Administration Details</th>
<th>Age at Imaging</th>
<th>Structural Brain Outcomes</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEXAMETHASONE</td>
<td>Cheong</td>
<td>2014</td>
<td>Cohort Study</td>
<td>GC: 55, No GC: 93</td>
<td>7.9 ± 4.0 mg/kg for median duration 27d 17-39 either parenterally or orally.</td>
<td>18 years</td>
<td>Total and regional volumes, hippocampal volume</td>
<td>Reduced brain volume</td>
</tr>
<tr>
<td></td>
<td>Murphy</td>
<td>2001</td>
<td>Cohort Study</td>
<td>GC: 7, No GC: 11 Term Infants: 14</td>
<td>Median dose of 0.25 (0.19-0.90) mg/kg/d. With a mean duration of 28d (6-57). Age at first dose: 5 of 7 started in the first 14d of life.</td>
<td>38-41 weeks post conceptional age</td>
<td>Cortical gray matter, cerebral tissue</td>
<td>Reduced brain volume</td>
</tr>
<tr>
<td></td>
<td>Parikh</td>
<td>2007</td>
<td>Cohort Study</td>
<td>GC: 11, No GC: 30</td>
<td>Mean cumulative dose of 2.8 (1.2-5.9) mg/kg. With a mean duration of 6.8d (2-14). Orally or injected. Age at first dose: 28d.</td>
<td>GC: mean: 41.7 weeks post menstrual age; SD: 3.8 weeks</td>
<td>Total brain, cerebellum</td>
<td>Reduced brain volume</td>
</tr>
<tr>
<td>HYDROCORTISONE</td>
<td>Alison</td>
<td>2020</td>
<td>RCT</td>
<td>GC: 148, No GC: 147</td>
<td>1mg/kg/d divided into 2 doses for 7d. 0.5 mg/kg/d for 3d, intravenously. "Term Equivalent Age"</td>
<td>Kidokoro scoring of cerebral white matter, cortical and deep gray matter, and cerebellar abnormalities; lateral ventricular diameter, biparietal width, interhemispheric distance, deep gray matter area, transcerebellar diameter, vermian height and diameter</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benders</td>
<td>2009</td>
<td>Cohort Study</td>
<td>GC: 19, No GC: 19</td>
<td>5 mg/kg/d divided into 4 doses for 1 week, followed by a tapering course of 3, 2, and 1 dose(s) every 5d. Total dose: 3.75, 2.5, and 1.25 mg/kg/d. Age at first dose: 14d (7-44)</td>
<td>GC: mean: 41.1 weeks post menstrual age; SD: 0.8 weeks</td>
<td>Total cerebral tissue and intracranial volume</td>
<td>No association</td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>GC (N)</td>
<td>No GC (N)</td>
<td>Protocol Details</td>
<td>Age at First Dose</td>
<td>Outcome</td>
<td>Association</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Kersbergen 2013<sup>6</sup></td>
<td>Cohort Study</td>
<td>GC: 73</td>
<td>No GC: 73</td>
<td>5 mg/kg/d divided into 4 doses for 1 week and a subsequent tapering course every 5d. Total cumulative dose: 72.5 mg/kg over 22 days.</td>
<td>>7d postnatal age</td>
<td>Total brain tissue and cerebellar volume</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>Lodygensky 2005<sup>7</sup></td>
<td>Cohort Study</td>
<td>GC: 23</td>
<td>No GC: 35</td>
<td>5 mg/kg/d, 4 doses for the first week, followed by a taper (not reported). Mean age at first dose: 18d (4-43).</td>
<td></td>
<td>Gray matter, white matter, hippocampal volumes</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>Parikh 2013<sup>8</sup></td>
<td>RCT</td>
<td>GC: 31</td>
<td>No GC: 33</td>
<td>3mg/kg/d q12hrs for 4d, 2mg/kg/d for 2 days, then 1mg/kg/d for 1 day. Total cumulative dose of 17 mg/kg, intravenously. Age at first dose: not reported. At least 7d.</td>
<td>38 weeks post menstrual age</td>
<td>Total brain tissue volume</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>Rademaker 2007<sup>9</sup></td>
<td>Cohort Study</td>
<td>GC: 62</td>
<td>No GC: 164</td>
<td>5 mg/kg/d, divided into 4 doses for 1 week. Followed by a tapering course of 3, 2, and 1 dose(s) each for 5D (total of 3.75, 2.5, and 1.25 mg/kg/d, respectively). Median duration: 27.5d (IQR, 12d).</td>
<td>>1 week of postnatal age</td>
<td>MRI lesions at school age classified as normal, mildly abnormal, severely abnormal; corpus callosum area on a midsagittal T2</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>Rousseau 2021</td>
<td>Cohort Study</td>
<td>GC 20</td>
<td>No GC: 40</td>
<td>for refractory arterial hypotension: 6-12 mg/kg/d. For life-threatening respiratory insufficiency/prolonged mechanical ventilation beyond 21st day of life: 5 mg/kg/d.</td>
<td></td>
<td>basal ganglia and thalamus area</td>
<td>No association</td>
<td></td>
</tr>
</tbody>
</table>
median duration of treatment was 8d. Median age of treatment was 12d old for hemodynamic indications (n = 7) and 27d old for respiratory indications (n = 16).

| Tam 2011 | Cohort Study | Site 1: 57 subjects (92 scans) | Site 2: 115 subjects (206 scans) | HC: 1-3 mg/kg/d followed by tapering daily doses. | DEX: 0.15mg/kg/d followed by tapering daily doses for BPD or 0.15mg/kg/dose for up to 3 doses prior to extubation for airway edema. | Site 1: first scan mean 31.7, SD 1.6 weeks post menstrual age. Second scan mean: 35.7, SD 2.2 weeks post menstrual age. | Site 2: first scan mean 32.3, SD 3.3 weeks post menstrual age. Second scan mean 40.5, SD 2.9 weeks post menstrual age |

| HC or DEX | Cerebellar volumes | Impaired cerebellar growth |

Abbreviations: HC Hydrocortisone, DEX dexamethasone, RCT randomized controlled trial, BPD bronchopulmonary dysplasia

https://doi.org/10.1203/PDR.0b013e3181b3aec5

https://doi.org/10.1126/scitranslmed.3002884
SUPPLEMENTAL MATERIAL

S1. Full Search Term for PubMed

("infant, newborn"[MeSH Terms] OR "infan**"[Text Word] OR "neonat**"[Text Word] OR
"newborn**"[Text Word] OR "premature"[Text Word] OR "low birth weight"[Text Word]

deliver**"[Text Word] OR "birth**"[Text Word] OR
"prematurely"[Text Word]) AND ("deliver**"[Text Word] OR "birth**"[Text Word] OR
OR "neonat**"[Text Word] OR "newborn**"[Text Word] OR "perinatal"[Text Word]
OR "parturition"[Text Word]) OR "preemi**"[Text Word] OR "premi"[Text Word] OR
weight"[Text Word] OR "low birthweight"[Text Word] OR "early gestation**"[Text Word]
OR "low gestation**"[Text Word]) AND ("Brain"[MeSH Terms] OR "Brain"[Text Word]
OR "nerve fibers, myelinated"[MeSH Terms] OR "white matter**"[Text Word] OR
"myelinated nerve fiber**"[Text Word] OR "Glia"[Text Word] OR "gray matter"[Text Word]
OR "cerebel**"[Text Word] OR "ventric**"[Text Word] OR "cerebrum"[Text Word] OR
"corpus callosum"[Text Word] OR "internal capsules"[Text Word] OR "external
capsules"[Text Word] OR "anterior commissure"[Text Word] OR "limbic system"[Text
Word]) AND ("hydrocortisone"[MeSH Terms] OR "dexamethasone"[MeSH Terms] OR
"betamethasone"[MeSH Terms] OR "steroids"[MeSH Terms] OR
"Glucocorticoids"[MeSH Terms] OR "Adrenal Cortex Hormones"[MeSH Terms] OR
"hydrocortisone*"[Text Word] OR "betamethason*"[Text Word] OR
"corticoid*"[Text Word] OR "glucocortic*"[Text Word] OR "adrenal cortex
hormone*"[Text Word]) AND "English"[Language]

S2. Studies of glucocorticoids that reported a brain injury as a clinical characteristic.

We identified 50 studies that reported a brain injury outcome, most commonly IVH, as a characteristic of the study population after treatment with corticosteroid, but did not directly assess the effect of the steroid on brain injury. These studies are listed in the Table. (Sinkin et al., 2000) is a representative example of this category. Sinkin and colleagues conducted a multi-center, double blind phase 2 randomized controlled trial of a two dose course of dexamethasone early in neonatal life to assess the clinical efficacy and safety of the medication. The study population included infants under 30 weeks gestation with respiratory distress syndrome who required mechanical ventilation at 12-18 hours of life after surfactant. The dosing regimen was 0.5 mg dexamethasone administered via IV at 12-18 hours of life and 12 hours later. Later dexamethasone use was permitted per clinician discretion. The relevant brain outcome was presence and severity of IVH. 384 infants were enrolled and 189 received dexamethasone. There was no difference between the groups in incidence or severity of intraventricular hemorrhage. Of note, LeFlore (LeFlore JL et al., 2002) reported on an investigation of infants who received either no treatment, antenatal dexamethasone, postnatal dexamethasone only, or both antenatal and postnatal steroids. However, the aim of the
study and the reported results were on the effect of the antenatal exposure on cranial ultrasound at discharge. They report that the likelihood of abnormal ultrasound at discharge was greater in the postnatal dexamethasone groups compared with the no-postnatal dexamethasone groups. They do not report on the relationship between postnatal dexamethasone and specific cranial ultrasound findings as they do for antenatal dexamethasone at discharge.

S3. Glucocorticoids as risk factors

12 studies examined perinatal clinical risk factors and their effect on brain development (Batton et al., 2012; Cuzzilla R et al., 2018; Heo et al., 2018; Kelly CE et al., 2014; Kidokoro H et al., 2014; Matthews LG et al., 2018; Neubauer et al., 2017; Parikh NA et al., 2021; Thompson DK et al., 2008; Thompson et al., 2012; Vesoulis ZA et al., 2018; Watterberg et al., 2004). For the most part, steroid type and administration details are not specified. Whether or not steroid administration functions as a proxy for some other factor, such as pulmonary health, was not able to be discerned.
Table. Studies reporting brain injury as an outcome

<table>
<thead>
<tr>
<th>Steroid</th>
<th>Imaging</th>
<th>Author Year</th>
<th>Study Type</th>
<th>Number of Participants</th>
<th>Administration Details</th>
<th>Brain outcome</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexamethasone</td>
<td>US</td>
<td>(Doyle et al., 2006) RCT 70</td>
<td>0.15 mg/kg/d for 3d 0.10 mg/kg/d for 3d 0.05 mg/kg/d for 2d 0.02 mg/kg/d for 2d</td>
<td>Total of 0.89 mg/kg over 10 days, intravenously</td>
<td>Intraparenchymal Hemorrhage</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US</td>
<td>(Gaissmaier and Pohlandt, 1999) RCT 17</td>
<td>0.25 mg/kg, intravenously</td>
<td></td>
<td>IVH (Grade III-IV)</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US</td>
<td>(LeFlore JL et al., 2002) Cohort Study 173</td>
<td>0.3 – 0.5 mg/kg tapered over 14- to 42 days</td>
<td>Age at first dose: 2d (1-20)</td>
<td>Abnormal cranial ultrasound at discharge</td>
<td>Higher likelihood in infants exposed to postnatal dexamethasone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US</td>
<td>(Lim G et al., 2015) Cohort Study 131</td>
<td>3.18 mg/kg, 14d course 1.10 mg/kg, 10d course 1.59 mg/kg, 7d course</td>
<td>Age at first dose: 21d or later</td>
<td>Severe-grade IVH/cystic PVL</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US</td>
<td>(Lin et al., 1999) RCT 40</td>
<td>1 dose q12hr, intravenously</td>
<td>0.25 mg/kg/dose, days 1-7 0.12 mg/kg/dose, days 8-14 0.05 mg/kg/dose, days 15-21 0.02 mg/kg/dose, days 22-28</td>
<td>IVH (>Grade II)</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US</td>
<td>(Malloy et al., 2005) RCT 16</td>
<td>Low dose: 0.08 mg/kg/d for 7d High dose: 0.5 mg/kg/d for 3d followed by 0.3mg/kg/d for 4d.</td>
<td>The daily dose for each group was divided into 2 doses q12hr, intravenously</td>
<td>-Mild, moderate, and severe ventricular hypertrophy</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>Steroid</td>
<td>Imaging</td>
<td>Author Year</td>
<td>Study Type</td>
<td>Number of Participants</td>
<td>Administration Details</td>
<td>Brain outcome</td>
<td>Result</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>US</td>
<td>(McEvoy et al., 2004)</td>
<td>RCT</td>
<td>62</td>
<td>High dose: 0.5 mg/kg/d for 3d, 0.25 mg/kg/d for 3d, 0.1 mg/kg/d on day 7. Total dose: 2.35 mg/kg Low dose: 0.2 mg/kg/d for 3d, 0.1 mg/kg/d for 4d. Total dose: 1mg/kg. All daily doses given q12hr, intravenously.</td>
<td>-PVL</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>(C. Romagnoli et al., 2002)</td>
<td>RCT</td>
<td>50</td>
<td>0.5 mg/kg/d for 3d 0.25 mg/kg/d for 3d 0.125 mg/kg/d on the 7th day Intravenously Age at first dose: 4d</td>
<td>-Major cranial US abnormalities at 12 months of corrected age. -Periventricular Leukomalacia.</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>(Sanders et al., 1994)</td>
<td>RCT</td>
<td>40</td>
<td>0.5 mg/kg, 2 doses q12hrs, intravenously Age at first dose: 12-18hrs.</td>
<td>-IVH (Grade I)</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>(Subhedar et al., 1997)</td>
<td>RCT</td>
<td>84</td>
<td>0.5 mg/kg/dose, 6 doses. 0.25 mg/kg/dose, 6 doses. 6d total, intravenously.</td>
<td>-IVH</td>
<td>Infants with an existing IVH were included in this study. Progression was detected only in control infants.</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>(Sinkin et al., 2000)</td>
<td>RCT</td>
<td>384</td>
<td>0.5 mg/kg with the first dose administered between 12and 18hrs of age and the second dose 12hrs later, intravenously.</td>
<td>-IVH</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>(Stark et al., 2001)</td>
<td>RCT</td>
<td>220</td>
<td>0.15 mg/kg/d for 3d 0.10 mg/kg for 3d 0.05 mg/kg for 2d 0.02 mg/kg for 2d Intravenously or orally Age at first dose: 14.2 ± 5.8hrs</td>
<td>-IVH (Any grade) -Periventricular Leukomalacia</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>(Suske et al., 1996)</td>
<td>RCT</td>
<td>26</td>
<td>0.5 mg/kg, divided into 2 doses for 5d, intravenously Surfactant: 100mg/kg Age at first dose: <2hrs</td>
<td>-ICH (Grade I-II)</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>Steroid</td>
<td>Imaging</td>
<td>Author Year</td>
<td>Study Type</td>
<td>Number of Participants</td>
<td>Administration Details</td>
<td>Brain outcome</td>
<td>Result</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>US</td>
<td>(Tsukahara et al., 1999)</td>
<td>RCT</td>
<td>26</td>
<td>0.125 mg/kg, 6 doses q12hrs, intravenously</td>
<td>-Intracranial hemorrhage, -Periventricular Leukomalacia</td>
<td>Age at first dose: evening of day 4.</td>
<td>No association</td>
</tr>
<tr>
<td>US</td>
<td>(Yaseen et al., 1999)</td>
<td>RCT</td>
<td>29</td>
<td>0.5mg/d for 2d, 0.3 mg/kg/d for 2d, 0.2 mg/kg/d on the 5th day of treatment, Intravenously</td>
<td>-IVH</td>
<td>Age at first dose 2.8 ± 1.01 hrs.</td>
<td>No association</td>
</tr>
<tr>
<td>US</td>
<td>(Yeh et al., 1990)</td>
<td>RCT</td>
<td>57</td>
<td>1 dose q12hrs, intravenously 0.5 mg/kg/dose, days 1-3 0.25 mg/kg/dose, days 4-6 0.12 mg/kg/dose, days 7-9 0.05 mg/kg/dose, days 10-12</td>
<td>-IVH</td>
<td>Age at first dose: 8.5 ± 3.1 hrs.</td>
<td>No association</td>
</tr>
<tr>
<td>US</td>
<td>(Yeh et al., 1997)</td>
<td>RCT</td>
<td>262</td>
<td>1 dose q12hrs, intravenously 0.25 mg/kg/dose, days 1-7 0.12 mg/kg/dose, days 8-14 0.05 mg/kg/dose, days 15-21 0.02 mg/kg/dose, days 22-28</td>
<td>-IVH (Grade <II)</td>
<td>Age at first dose: 7.4 ± 5.2 hrs.</td>
<td>No association</td>
</tr>
<tr>
<td>US</td>
<td>(Anttila E et al., 2005)</td>
<td>RCT</td>
<td>133</td>
<td>0.25 mg/kg/dose bid, days 1-7, 0.12 mg/kg/dose bid, days 8-14, 0.05 mg/kg/dose bid, days 15-21, 0.02 mg/kg/dose bid, days 22-28 Intravenously. Age at first dose: within 12hrs after birth</td>
<td>-IVH (Grade >II)</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>(Brozanski et al., 1995)</td>
<td>RCT</td>
<td>43</td>
<td>0.5mg/kg/d, 2 divided doses for the first 3d</td>
<td>-IVH (Grade <II)</td>
<td>Decreased incidence of worsening IVH</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>(Durand et al., 1995)</td>
<td>RCT</td>
<td>109</td>
<td>0.25 mg/kg, 4 doses, 2d q12hrs.</td>
<td>-ICH (Grade III-IV)</td>
<td>No association</td>
<td></td>
</tr>
</tbody>
</table>

CC-BY-NC-ND 4.0 International license

It is made available under a non-commercial license. It has been peer-reviewed and accepted for publication. You are free to share and copy the preprint in any way you choose.

The copyright holder for this version posted November 11, 2022.

https://doi.org/10.1101/2022.11.09.22282133

doi: medRxiv preprint
<table>
<thead>
<tr>
<th>Steroid Imaging</th>
<th>Author Year</th>
<th>Study Type</th>
<th>Number of Participants</th>
<th>Administration Details</th>
<th>Brain outcome</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>(Garland et al., 1999)</td>
<td>RCT</td>
<td>241</td>
<td>0.25 mg/kg/d for the next 3d 0.1 mg/kg/d on the 7th day of treatment, Intravenously 3-day tapering course q12hrs.</td>
<td>-ICH (Any grade) -PVL</td>
<td>No association</td>
</tr>
<tr>
<td>US</td>
<td>(Kopelman AE et al., 1999)</td>
<td>RCT</td>
<td>70</td>
<td>Total dose: 1.35 mg/kg over 3d (n=41) 1.175 mg/kg over 3d (n=77) 0.2mg/kg, 1 dose, intravenously 3-day tapering course q12hrs.</td>
<td>-IVH (Grade III-IV)</td>
<td>Study was terminated early because they were underpowered to detect differences in IVH. DEX group showed trends toward grade III-IV IVH and death.</td>
</tr>
<tr>
<td>US</td>
<td>(Mieskonen et al., 2003)</td>
<td>RCT</td>
<td>16</td>
<td>0.5 mg/kg/d, divided into 2 doses</td>
<td>-IVH</td>
<td>No association.</td>
</tr>
</tbody>
</table>

Age at first dose: 7-14d
Age at first dose: starting at 24 to 48hrs of life.
Age at first dose: within 2hrs of delivery.
Age at first dose: 28d.
<table>
<thead>
<tr>
<th>Steroid</th>
<th>Imaging</th>
<th>Author Year</th>
<th>Study Type</th>
<th>Number of Participants</th>
<th>Administration Details</th>
<th>Brain outcome Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>US</td>
<td>(Odd et al., 2004)</td>
<td>RCT</td>
<td>33</td>
<td>Individual course: 0.5mg/kg/d for 3d, 0.3mg/kg/d for 3d, 0.1mg/kg/d for 3d, then 0.1mg/kg every 72hr until the infant was extubated and required a FiO2 < 0.25 for three doses 9d. If there was clinical deterioration, the dose reverted to 0.3mg/kg/d for 3 days, then was weaned again using the same protocol. Total dose of 3.8 (2.0-5.7) mg/kg. 42d course: 0.5mg/kg/d for 3d, 0.3mg/kg/d for 3d, then a dose decreasing by 10% every 3d to 0.1mg/kg/d over a further 30d, then 0.1mg/kg on alternate days for one further week. Total dose of 6.5 (3.8-7.3) mg/kg.</td>
<td>-IVH (Grade III-IV)</td>
<td>No association</td>
</tr>
</tbody>
</table>
| US | US | (Rastogi et al., 1996) | RCT | 70 | 0.5mg/kg/d for 12d, intravenously
Age at first dose: 7.2 ± 3hrs postnatal age. | -IVH (Any grade) | No association |
| US | US | (Romagnoli C et al., 1999) | RCT | 50 | 0.5 mg/kg/d for 3d
0.25 mg/kg/d for 3d
0.125 mg/kg/d on the 7th day of treatment, Intravenously
Age at first dose: 4d. | -ICH (Grade >II) | No association |
| US | US | (C Romagnoli et al., 2002) | RCT | 30 | 0.5 mg/kg/d for 6d
0.25 mg/kg/d for 6d
0.125 mg/kg/d for 2d
Total cumulative dose of 4.75 mg/kg, intravenously
Age at first dose: 10d. | -Major cranial US abnormalities at 12 months of corrected age. -Cystic PVL | No association |
| US | US | (Shinwell et al., 1996) | RCT | 248 | 0.25 mg/kg, 6 doses q12hrs, intravenously
Age at first dose: 1d. | -IVH (Grade <II) -PVL | No association |
| US | US | (Shinwell et al., 1999) | RCT | 159 | 0.25 mg/kg, 6 doses q12hrs, intravenously
Age at first dose: 1d. | -IVH (Grade I-IV) | No association |
<table>
<thead>
<tr>
<th>Steroid</th>
<th>Imaging</th>
<th>Author Year</th>
<th>Study Type</th>
<th>Number of Participants</th>
<th>Administration Details</th>
<th>Brain outcome</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>US</td>
<td>(Smets and Schwagten, 2000)</td>
<td>Case Control Study</td>
<td>48</td>
<td>0.125 mg/kg for 3d.</td>
<td>-PVL</td>
<td>No association</td>
</tr>
<tr>
<td>US</td>
<td>US</td>
<td>(Soll, 1999)</td>
<td>RCT</td>
<td>542</td>
<td>0.5 mg/kg/d for 3d 0.25mg/kg/d for 3d 0.10 mg/kg/d for 3d 0.05 mg/kg/d for 3d Intravenously</td>
<td>-ICH (Any grade)</td>
<td>No association</td>
</tr>
<tr>
<td>US</td>
<td>US</td>
<td>(Tapia et al., 1998)</td>
<td>RCT</td>
<td>109</td>
<td>0.5mg/kg/d, days 1-3 0.25 mg/kg/d, days 4-6 0.12 mg/kg/d, days 7-9 0.06 mg/kg/d, days 10-12 Intravenously</td>
<td>-ICH</td>
<td>No association</td>
</tr>
<tr>
<td>US</td>
<td>US</td>
<td>(Yates et al., 2019)</td>
<td>RCT</td>
<td>22</td>
<td>50 µg/kg, once daily on days 1-10 after randomization (i.e., 10 doses), then given on alternate days (i.e., on days 12, 14 and 16), making a total of 13 doses. Intravenously, nasogastric tube or orally. Total cumulative dose of 0.65 mg/kg.</td>
<td>-ICH (Any grade) -Hydrocephalus -ICH -PVL -Other white-matter injury</td>
<td>Determined it to not be feasible to conduct this trial due to low levels or recruitment.</td>
</tr>
<tr>
<td>US</td>
<td>US</td>
<td>(Biswa et al., 2003)</td>
<td>RCT</td>
<td>253</td>
<td>1 mg/kg/d for days 1-4, then halved on day 5. Same dose days 5-7, intravenously Age at first dose: 5hrs.</td>
<td>-ICH (Grade II-IV)</td>
<td>No association</td>
</tr>
<tr>
<td>US</td>
<td>US</td>
<td>(Bonsante et al., 2007)</td>
<td>RCT</td>
<td>50</td>
<td>0.5 mg/kg, q12hr for 9d 0.5 mg/kg/d for 3d Intravenously Age at first dose: <48hrs of life.</td>
<td>-ICH (Grade III)</td>
<td>No association</td>
</tr>
<tr>
<td>US</td>
<td>US</td>
<td>(Bourchier and Weston, 1997)</td>
<td>RCT</td>
<td>40</td>
<td>2.5 mg/kg, 2 doses, 4hrs apart. Subsequent doses were q6hr for the remainder of the treatment period. The initial dose (2.5 mg/kg) was continued for 48hrs, followed by 1.25 mg/kg for 48hrs, then 0.625 mg/kg for a further 48hrs before stopping treatment, Intravenously Age at first dose: 11.4hrs.</td>
<td>-ICH (Grades II-IV)</td>
<td>No association</td>
</tr>
<tr>
<td>Steroid</td>
<td>Imaging</td>
<td>Author Year</td>
<td>Study Type</td>
<td>Number of Participants</td>
<td>Administration Details</td>
<td>Brain outcome</td>
<td>Result</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>US</td>
<td>(Efird et al., 2005)</td>
<td>RCT</td>
<td>34</td>
<td>1mg/kg BID for 2d 0.3 mg/kg BID for 3d Intravenously</td>
<td>-IVH (Grade >II)</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>(Ng et al., 2006)</td>
<td>RCT</td>
<td>48</td>
<td>1 mg/kg/dose, q8hr for 5d, intravenously</td>
<td>-IVH (Grade >III)</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>MRI/US</td>
<td>(Parikh et al., 2015)</td>
<td>RCT</td>
<td>57</td>
<td>q12h, 3mg/kg/d for 4 days, 2mg/kg/d for 2d, 1mg/kg/d for 1d. Total cumulative dose of 17 mg/kg, intravenously</td>
<td>-White matter injury near 36 weeks age (cystic periventricular leukomalacia, porencephalic cyst, parenchymal hemorrhage, and/or ventriculomegaly (with or without intraventricular hemorrhage)</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>(Verma RP et al., 2017)</td>
<td>Cohort Study</td>
<td>143</td>
<td>2-4 mg/kg/d, intravenously</td>
<td>-Ventriculomegaly (VM) -IVH</td>
<td>HC group had higher risk for IVH which declined in the multivariate analysis. A trend towards lower risk of VM was noted in HC group, which became significant after controlling for body weight.</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>(Watterberg et al., 2007)</td>
<td>RCT</td>
<td>252</td>
<td>1 mg/kg/d (8 –10mg/m2/d) divided twice a day for 12d. Then 0.5 mg/kg/d for 3d</td>
<td>-IVH (Grade II-IV)</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td>(Takayanagi et al., 2015)</td>
<td>Cohort Study</td>
<td>58</td>
<td>Intravenously: 9.0 ± 7.2 (1.0-28.2) mg/kg Orally: 68.1 ± 34.1 (0-161.5) mg/kg. Mean duration of 57.1 ± 27.8 (0-154) d.</td>
<td>MRI abnormality (focal high intensity of white matter or irregular ventricular wall with mild dilation)</td>
<td>No difference in hydrocortisone dose between patients with and without MRI abnormality</td>
<td></td>
</tr>
<tr>
<td>Steroid</td>
<td>Imaging</td>
<td>Author Year</td>
<td>Study Type</td>
<td>Number of Participants</td>
<td>Administration Details</td>
<td>Brain outcome</td>
<td>Result</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>--</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Steroid</td>
<td>Imaging</td>
<td>Author Year</td>
<td>Study Type</td>
<td>Number of Participants</td>
<td>Administration Details</td>
<td>Brain outcome</td>
<td>Result</td>
</tr>
<tr>
<td>Steroid</td>
<td>Imaging</td>
<td>Author Year</td>
<td>Study Type</td>
<td>Number of Participants</td>
<td>Administration Details</td>
<td>Brain outcome</td>
<td>Result</td>
</tr>
<tr>
<td>Steroid</td>
<td>Imaging</td>
<td>Author Year</td>
<td>Study Type</td>
<td>Number of Participants</td>
<td>Administration Details</td>
<td>Brain outcome</td>
<td>Result</td>
</tr>
<tr>
<td>Steroid</td>
<td>Imaging</td>
<td>Author Year</td>
<td>Study Type</td>
<td>Number of Participants</td>
<td>Administration Details</td>
<td>Brain outcome</td>
<td>Result</td>
</tr>
</tbody>
</table>

Budesonide

<table>
<thead>
<tr>
<th>Steroid</th>
<th>Imaging</th>
<th>Author Year</th>
<th>Study Type</th>
<th>Number of Participants</th>
<th>Administration Details</th>
<th>Brain outcome</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>(Baud et al., 2016)</td>
<td>RCT</td>
<td>521</td>
<td>1mg/kg/d, 2 doses for 7d 0.5mg/kg/d, 1 dose for 3d Intravenously</td>
<td>-IVH (Grade III-IV) No association</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US</td>
<td>(Onland et al., 2019)</td>
<td>RCT</td>
<td>372</td>
<td>5 mg/kg/d, 4 doses/d for 7d 3.75 mg/kg/d, 3 doses/d for 5d, subsequently lowering the frequency by 1 dose every 5 days. Cumulative dose of 72.5 mg/kg. Age at first dose: between 7-14d. 3.75 mg/kg/d, 3 doses/d for 5d, subsequently lowering the frequency by 1 dose every 5 days.</td>
<td>-IVH (Grade >II) -PVL</td>
<td>No association</td>
</tr>
<tr>
<td></td>
<td>US</td>
<td>(Peltoniemi et al., 2005)</td>
<td>RCT</td>
<td>51</td>
<td>2.0 mg/kg, divided into 3 doses q8hrs for 2d 1.5 mg/kg, divided into 3 doses q8hrs for 2d 0.75 mg/kg, divided into 2 doses q12hrs for 6d Intravenously Age at first dose: before the age of 36hrs.</td>
<td>-IVH (Any grade) -Cystic PVL</td>
<td>No association</td>
</tr>
</tbody>
</table>

Betamethasone

<table>
<thead>
<tr>
<th>Steroid</th>
<th>Imaging</th>
<th>Author Year</th>
<th>Study Type</th>
<th>Number of Participants</th>
<th>Administration Details</th>
<th>Brain outcome</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>(Smoikin et al., 2014)</td>
<td>Cohort Study</td>
<td>35</td>
<td>0.1 mg/kg/dose, twice daily for 3d 0.05 mg/kg/dose twice daily for 2d 0.05 mg/kg/dose once daily for 2d Orally (PO) Mean age at first dose: 31.0 ± 13.6 d.</td>
<td>-PVL</td>
<td>No association</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US</td>
<td>(Bassler et al., 2015)</td>
<td>RCT</td>
<td>856</td>
<td>Two inhaled puffs of 200 μg each q12hr in the first 14d of life and one puff q12hr from day 15 until the last dose of the study drug had been administered. Age at first dose: 12hrs after random assignment.</td>
<td>-Brain injury</td>
<td>No association</td>
</tr>
<tr>
<td>Steroid</td>
<td>Imaging</td>
<td>Author Year</td>
<td>Study Type</td>
<td>Number of Participants</td>
<td>Administration Details</td>
<td>Brain outcome</td>
<td>Result</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>------------------------------</td>
<td>------------</td>
<td>------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>US</td>
<td>(Kovács et al., 1998)</td>
<td>RCT</td>
<td>60</td>
<td>DEX (IV): 0.25 mg/kg, q12hr for 3d</td>
<td>-IVH (Any grade)</td>
<td>No association</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BUD (INH): 500mg, twice daily for 18d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age at first dose: 7d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budesonide</td>
<td>US</td>
<td>(Halliday et al., 2001)</td>
<td>RCT</td>
<td>570</td>
<td>DEX (IV): 0.50mg/kg/d, 2 divided doses for 3d</td>
<td>- major cerebral</td>
<td>No association</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.25mg/kg/d, 2 divided doses for 3d</td>
<td>abnormality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10mg/kg/d, 2 divided doses for 3d</td>
<td>-IVH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05mg/kg/d, 2 divided doses for 3d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BUD (INH): A 500- to 1000-g infant was given 400mg (2 puffs) twice daily and a 1000- to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1500-g infant 600mg (3 puffs) twice daily.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age at first dose:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Early cohort: <72 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delayed cohort: >15 days</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

https://doi.org/10.1001/jama.2018.21443
https://doi.org/10.1371/journal.pone.0137051

Shinwell, E., Karplus, M., Reich, D., 1999. Early dexamethasone therapy is associated with increased incidence of cerebral palsy 240-254.

