Title: Estimating the seroincidence of scrub typhus using antibody dynamics following infection

Authors: Kristen Aiemjoy¹,², Nishan Kutawal³, Krista Vaidya¹, Sony Shrestha³, Melina Thapa³, Peter Teunis⁴, Isaac I. Bogoch⁵, Paul Trowbridge⁶, Pacharee Kantipong⁷, Stuart D. Blacksell⁸, George M Varghese¹⁰, Richard Maude⁸,⁹,¹¹,¹², Dipesh Tamrakar³, Jason R. Andrews¹³

Affiliations:
1. Department of Public Health Sciences, University of California Davis School of Medicine, Davis, CA, USA
2. Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
3. Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
4. Center for Global Safe Water, Sanitation and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
5. Department of Medicine, University of Toronto, Toronto, ON, Canada
6. Michigan State University School of Human Medicine, Grand Rapids, MI, USA
7. Department of Internal Medicine, Chiangrai Prachanukroh Hospital, Chiang Rai, Thailand
8. Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
9. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
10. Department of Infectious Diseases, Christian Medical College, Vellore, India
11. The Open University, Milton Keynes, UK
12. School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
13. School of Public Health, Stanford University School of Medicine, Stanford, CA, USA
14. Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA

Corresponding Author:
Kristen Aiemjoy
Assistant Professor
Division of Epidemiology
Department of Public Health Sciences,
University of California Davis School of Medicine, Davis, CA, USA
kaiemjoy@ucdavis.edu

Word Count: 2620
Abstract

Introduction: Scrub typhus is an acute febrile illness caused by the bacterium *Orientia tsutsugamushi*. Characterizing the population-level burden of scrub typhus is challenging due to the lack of accessible and accurate diagnostics. We describe a new approach using information about seroresponse after infection to generate population-level scrub typhus seroincidence estimates.

Methods: We use data from two clinical studies of scrub typhus patients enrolled in Chiang Rai, Thailand, and Vellore, India, and representative population data from two serosurveys in and around the Kathmandu valley, Nepal, and Vellore, India. The samples were tested for IgM and IgG responses to *Orientia tsutsugamushi*-derived recombinant 56-kDa antigen using commercial ELISA kits. We used Bayesian hierarchical models to fit two-phase models to the antibody responses from scrub typhus cases and used the joint distributions of the peak antibody titers and decay rates to estimate population-level incidence rates in the cross-sectional serosurveys. We compared this new method to a traditional cut-off-based approach for estimating seroincidence.

Results: Among 18 to 29-year-olds, the seroincidence of scrub typhus was 886 (95% CI 432-1817) per 100,000 person-years in India and 945 (95% CI: 616-1449) per 100,000 in Nepal. Seroincidence rose with age, reaching a rate of 3231 (95% CI: 2630-3969) per 100,000 among 50 to 89-year-olds in Vellore, India. The seroincidence rates estimated using a cutoff were half the rates we estimated using antibody dynamics.

Conclusion: The approach described here can be deployed prospectively, coupled with existing serosurveys, or leverage banked samples to rapidly characterize scrub typhus burden and generate scrub typhus seroincidence estimates that are comparable across populations, regions, and time.

Keywords: *Orientia tsutsugamushi*, Scrub Typhus, Antibody kinetics, Seroepidemiology, incidence
Introduction

Scrub typhus, an acute febrile illness caused by the bacterium Orientia tsutsugamushi (OT), is an important, under-recognized etiology of fever (1). Once thought to be restricted to the “tsutsugamushi triangle”, a region spanning from Russia to Pakistan, Australia, and Japan, recent studies have identified scrub typhus transmission in South America, Africa, and the Middle East (2–4). Infections occur when trombiculid mite chiggers (larvae) enter a host’s skin through hair follicles and feed on lysed skin tissue. The mites, both vectors and reservoirs of OT, feed on various mammals, including humans and rodents (5). In humans, symptoms are non-specific and include fever, myalgia, headache, gastrointestinal symptoms, and rash. An eschar is found at the inoculation site in a variable proportion of cases and is frequently missed on clinical examination. Case fatality rates are estimated to be 1-2% among treated patients and 6% among untreated patients (6).

Determining where scrub typhus transmission occurs is critical to inform public health interventions and research priorities. Clinical incidence underestimates the true underlying burden of disease due to non-specific symptoms and the lack of accessible and accurate diagnostics (7). Periodic serosurveillance studies across endemic countries have demonstrated significant heterogeneity in seroprevalence within and between countries(8). However, directly comparing seroprevalence is not straightforward because of differences in the age distributions of each sampled population and uncertainty in antibody-waning patterns.

Here, we apply a novel analytic approach to estimate scrub typhus seroincidence using antibody decay information from confirmed cases. The decay of antibody concentrations defines a timescale for inferring when an infection occurred. This approach does not depend on classification using cutoffs, which have been difficult to derive for scrub typhus across locations with varying forces of
We first model longitudinal IgG and IgM antibody responses to OT-derived antigens among confirmed scrub typhus cases in Thailand and India and then use these parameters to estimate scrub typhus seroincidence from cross-sectional population serosurveys in Nepal and India.

Methods

Study populations and enrollment

Longitudinal scrub typhus cases: We used antibody responses measured from confirmed scrub typhus patients in Thailand and India. In Thailand, hospitalized patients >15 years old with acute fever duration <2 weeks were recruited from a fever surveillance study in Prachanukhao Hospital in Chiang Rai, Thailand (10,11). Enrollment occurred from August 2007 to August 2008. Patients confirmed to be infected with scrub typhus were defined by meeting at least one of the following criteria: (1) *In vitro* isolation of *O. tsutsugamushi*, (2) a ≥4-fold rise in IgM titer in paired serum samples when tested by the indirect immunofluorescence assay, (3) a positive result in at least two out of the three PCR assays described in Paris et al., 2011(11). Serum samples were collected at admission and stored at −80°C until testing. In India, serum samples were collected from individuals infected with scrub typhus who were > 18 years old and sought care at Christian Medical College Teaching hospital in Vellore, India, between December 2011 and March 2015. Confirmed patients with scrub typhus were defined by a positive IgM ELISA (optical density (OD) >0.8) and a positive PCR for *O. tsutsugamushi*. The serum samples were collected cross-sectionally from retrospective cases with diagnoses between 2 months and 3.5 years prior. Serum samples were collected in the patient’s household, stored at −80°C, and processed within two weeks of collection.
Population samples: In Nepal, we enrolled a geographically random, population-based cross-sectional sample of individuals aged 0 to 25 years from the catchment areas of Kathmandu University Teaching Hospital in Kathmandu (urban), and Dhulikhel Hospital in Kavrepalanchok, Nepal (periurban and rural) (12). Within catchment areas, we randomly selected geographically defined grid clusters and enumerated all households in each cluster. From this census, we randomly selected individuals and sought consent. We collected capillary blood samples from consenting participants onto TropBioTM filter papers (Cellabs Pty Ltd., Brookvale, New South Wales, Australia). The samples were air-dried for at least two hours at room temperature, then stored with desiccant in individual plastic bags at -20°C until processing. Study participants were enrolled between February 2019 and Jan 2021. In India, we utilized a previously-conducted cross-sectional serosurvey for scrub typhus conducted from September 2014 to December 2014(13).

The study enrolled adults ≥18 years of age in the Vellore District of Tamil Nadu in South India. A two-stage clustered sample design was used to randomly select communities and individuals(13). Venous blood was collected from consenting participants, transported on ice, and stored at -70°C until tested.

Laboratory methods
All samples were tested using IgM and IgG responses to O. tsutsugamushi-derived recombinant 56-kDa antigen using the Scrub Typhus Detect ELISA kit (InBios International, Inc., Seattle, WA, USA)(10) performed as per the manufacturer’s instructions. All serum samples were tested at a 1:100 dilution, and the results were read at 450 nm using a microplate reader (Thermo Scientific Multiskan FC) to generate a final optical density result (optical density (OD) at 450 nm). To prepare the dried capillary blood samples used in Nepal, we cut two filter paper protrusions and submerged
them in 133 µL of 1XPBS 0.05% Tween buffer overnight at 4°C, then centrifuged to recover the eluates. The eluate was assumed to be equivalent to a 1:10 dilution of plasma.

Statistical methods

We estimated seroincidence in two ways: 1) by deriving it from the age-dependent seroprevalence and 2) as a function of the longitudinal antibody dynamics after infection. For method 1, we used finite mixture models to determine the IgG seropositivity cutoffs using the mean plus three standard deviations of the first mixture component (14). We calculated IgG seroprevalence as the proportion of individuals classified as IgG seropositive. We then used an exponential survival model to derive seroincidence (equations 1 & 2), where $\pi(a)$ equals the seroprevalence at age a and λ equals the seroincidence rate.

$$eq\ 1. \quad \pi(a) = 1 - e^{-\lambda a}$$
$$eq\ 2. \quad \lambda = \frac{-\log_{10}(1 - \pi(a))}{a}$$

We fit a generalized linear model to the binomial seropositivity outcome conditional on age with a complementary log-log link and estimated seroincidence from the model’s intercept term (15,16). This approach assumes there is no antibody waning over time and that seroincidence is constant over age. To evaluate how seropositivity changes over age, we fit generalized additive models (17) with a cubic spline for age and simultaneous confidence intervals using a parametric bootstrap of the variance-covariance matrix of the fitted model parameters (18).

For method 2, we used information about antibody decay from confirmed cases to estimate seroincidence. First, we modeled longitudinal antibody dynamics after scrub typhus infection using two-phase models with an infection episode characterized by an exponential rise in antibody...
response and a non-exponential power function decay (19–21). We model antibody kinetics from onset of fever \((t = 0) \) with initial antibody levels of \(y_0 \) reaching a peak antibody response of \(y_1 \). We used a Bayesian hierarchical framework to estimate the above models for IgG and IgM (19,20) and generate joint distributions using Markov chain Monte Carlo (MCMC) sampling, allowing for individual variation. We implemented the models in R version 4.1.3 using JAGS (22).

We used the distributions of peak antibody response and the decay rate and shape to estimate seroincidence in the cross-sectional population samples (23). We created a likelihood function for the observed cross-sectional population data based on the longitudinal kinetics following scrub typhus infection with the assumption that incident infections occur as a Poisson process with rate \(\lambda \) (24). We generated maximum likelihood profiles for \(\lambda \) using each isotype separately and jointly by combining their likelihood functions. We accounted for two sources of noise in the observed serologic responses: measurement noise of the assay and biologic noise as detailed in Teunis et. al. (23).

Ethics statement

Institutional Review Boards in India (Christian Medical College, Vellore), Thailand (Chiang Rai Hospital, the Faculty of Tropical Medicine, Mahidol University, and the Thai Ministry of Public Health), The United States (Stanford University Institutional Review Board), and Nepal (Nepal Health Research Council Ethical Review Board) approved the study forms and protocols.

Results

For the longitudinal cases, ELISA antibody responses were measured from 253 patients with scrub typhus; 84 in Thailand and 211 in India (25). Only one serum sample was available per participant, between 1 day and 1250 days after the date of symptom onset (median 440 days, inter-quartile
range (IQR): 140-840). The samples from Thailand were collected between 1 and 11 days after symptom onset (median 5.5) and the samples in India were collected between 65 and 1250 days after symptom onset (median 599). Both cohorts measured IgM responses, but IgG responses were only available from the India cohort (Figure 1). The median ages of participants were 46 years (IQR 35-56); 47 in India (IQR 35-57), and 43 in Thailand (IQR 35-51) (Table 1).

Table 1: Summary of longitudinal scrub typhus patient data

<table>
<thead>
<tr>
<th></th>
<th>India (N=211)</th>
<th>Thailand (N=42)</th>
<th>Overall (N=253)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>47 (35 - 57)</td>
<td>43 (35 - 51)</td>
<td>46 (35 - 56)</td>
</tr>
<tr>
<td>Missing</td>
<td>0 (0%)</td>
<td>1 (2.4%)</td>
<td>1 (0.4%)</td>
</tr>
<tr>
<td>Days since symptom onset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>520 (340 - 880)</td>
<td>5.5 (4.0 - 7.0)</td>
<td>440 (140 - 840)</td>
</tr>
</tbody>
</table>

Median IgM responses were elevated above the kit cut-off for 6.65 months after symptom onset and above the mixture model cut-off for 9.4 months after symptom onset. Median IgG responses were elevated above the kit cut-off for 31.5 months after symptom onset and above the mixture model cut-off for 29.7 months after symptom onset (Figure 2A). As expected, IgM responses had a faster decay rate than IgG responses. Peak IgM responses were higher than IgG responses. The time-to-peak response was similar between IgG and IgM. The model-predicted baseline IgG responses were higher than baseline IgM (Figure 2B).

For the population data, ELISA antibody responses were measured from 721 participants in Vellore, India, and 1105 participants in Kathmandu and Kavre districts, Nepal. The median age of
participants was 49 in India (IQR 40-62) and 11 in Nepal (IQR 5.5-17). In India, 63.2% (456/721) of participants were female, compared to 48.7% (538/1105) in Nepal (Table 2).

Table 2: Population data summary

<table>
<thead>
<tr>
<th></th>
<th>India (N=721)</th>
<th>Nepal (N=1105)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, in years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>49 (40-62)</td>
<td>11 (5.5-17)</td>
</tr>
<tr>
<td>Age, in years, Categorical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-17</td>
<td>0 (0%)</td>
<td>876 (79.3%)</td>
</tr>
<tr>
<td>18-29</td>
<td>59 (8.2%)</td>
<td>229 (20.7%)</td>
</tr>
<tr>
<td>30-49</td>
<td>302 (41.9%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>50-89</td>
<td>360 (49.9%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>456 (63.2%)</td>
<td>538 (48.7%)</td>
</tr>
<tr>
<td>Male</td>
<td>265 (36.8%)</td>
<td>567 (51.3%)</td>
</tr>
<tr>
<td>Residence zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>177 (24.5%)</td>
<td>316 (28.6%)</td>
</tr>
<tr>
<td>Periurban</td>
<td>284 (39.4%)</td>
<td>319 (28.9%)</td>
</tr>
<tr>
<td>Urban</td>
<td>190 (26.4%)</td>
<td>470 (42.5%)</td>
</tr>
<tr>
<td>Missing</td>
<td>70 (9.7%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>85 (11.8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Labor & Manufacturing</td>
<td>181 (25.1%)</td>
<td>14 (1.3%)</td>
</tr>
<tr>
<td>Minor, <=18 years</td>
<td>1 (0.1%)</td>
<td>880 (79.6%)</td>
</tr>
<tr>
<td>None</td>
<td>343 (47.6%)</td>
<td>152 (13.8%)</td>
</tr>
<tr>
<td>Other</td>
<td>21 (2.9%)</td>
<td>21 (1.9%)</td>
</tr>
<tr>
<td>Professional</td>
<td>44 (6.1%)</td>
<td>26 (2.4%)</td>
</tr>
<tr>
<td>Service</td>
<td>46 (6.4%)</td>
<td>12 (1.1%)</td>
</tr>
<tr>
<td>Household size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>4.0 (3.0-5.0)</td>
<td>4.0 (4.0-6.0)</td>
</tr>
<tr>
<td>Missing</td>
<td>3 (0.4%)</td>
<td>1 (0.1%)</td>
</tr>
</tbody>
</table>
In both India and Nepal, the seroprevalence of scrub typhus infection increased with age (Figure 3). In Vellore, India the overall seroprevalence was 29.7% (95% CI 26.3-33.3): growing from 10.2% (95% CI 2.4-17.9) among 18-29-year-olds to 37.8% (95% CI 32.8-42.8) among 50 to 89-year-olds.

In Kathmandu and Kavre, Nepal, the overall seroprevalence was 1.1% (95% CI 0.5-1.7), rising from 0.1% (95% CI 0.3) among 0 to 17-year-olds to 4.8% (95% CI 2.0-7.6%) among 18-29-year-olds (Table 3).

Table 3: Age-specific seroprevalence and seroincidence in Nepal and India

<table>
<thead>
<tr>
<th>Age</th>
<th>N</th>
<th>N IgG seropositive</th>
<th>IgG seroprevalence (95% CI)</th>
<th>IgG antibody kinetics</th>
<th>Derivative of age-dependent IgG seroprevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-17</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>18-29</td>
<td>59</td>
<td>6</td>
<td>10.2% (2.4-17.9)</td>
<td>886 (432-1817)</td>
<td>431 (194-958)</td>
</tr>
<tr>
<td>30-49</td>
<td>302</td>
<td>72</td>
<td>23.8% (19.0-28.7)</td>
<td>1602 (1254-2046)</td>
<td>675 (535-851)</td>
</tr>
<tr>
<td>50-89</td>
<td>360</td>
<td>136</td>
<td>37.8% (32.8-42.8)</td>
<td>3231 (2630-3969)</td>
<td>757 (639-897)</td>
</tr>
<tr>
<td>Overall</td>
<td>721</td>
<td>214</td>
<td>29.7% (26.3-33.0)</td>
<td>2199 (1893-2555)</td>
<td>712 (622-815)</td>
</tr>
<tr>
<td>Nepal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-17</td>
<td>876</td>
<td>1</td>
<td>0.1% (-0.3)</td>
<td>212 (120-374)</td>
<td>13 (2-90)</td>
</tr>
<tr>
<td>18-29</td>
<td>229</td>
<td>11</td>
<td>4.8% (2.0-7.6)</td>
<td>945 (616-1449)</td>
<td>232 (128-419)</td>
</tr>
<tr>
<td>30-49</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>50-89</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Overall</td>
<td>1105</td>
<td>12</td>
<td>1.1% (0.5-1.7)</td>
<td>425 (303-596)</td>
<td>95 (54-168)</td>
</tr>
</tbody>
</table>
In Vellore, India, the overall scrub typhus seroincidence rate was 2199 per 100,000 person-years (95% CI: 1893-2555) using IgG antibody dynamics. Seroincidence rose with age; growing from 886 (95% CI 432-1817) to 3231 (95% CI 2630-3969) among 50-89-year-olds. In the Kathmandu valley of Nepal, the overall seroincidence was 425 per 100,000 person-years, also rising with age from 212 (95% CI 120-374) per 100,000 person-years among 0 to 17-year-olds to 945 (95% CI 616-1449) among 18 to 29-year-olds. In both Nepal and India, the overall seroincidence using antibody dynamics was more than double the seroincidence derived from the age-dependent IgG-seroprevalence (Table 3). In both sites, scrub typhus seroincidence varied by resident zones. In Vellore, India, seroincidence was highest in periurban settings, followed by rural and then urban, whereas in Nepal, seroincidence was higher in urban settings (Figure 4). In India, females had elevated seroincidence rates compared to males across all age groups (Figure 4).

Discussion

We describe a new approach for generating population-level scrub typhus seroincidence estimates from cross-sectional serosurveys. Seroincidence, the number of new infections in a population per year, characterizes transmission intensity and is highly informative for determining where and among whom infection burden is highest. While classic approaches for estimating seroincidence require cutoff points and ignore antibody waning overtime, in this approach we use the antibody decay trajectories from confirmed cases to estimate seroincidence. We show here that ignoring antibody waning and using a cutoff to calculate scrub typhus seroincidence underestimates the rate by at least half.

Understanding the post-infection antibody kinetics of scrub typhus is also important for guiding the clinical interpretation of ELISA antibody response data. Using data from patients infected with
scrub typhus in Thailand and India, we found that median IgM responses remained elevated above the ELISA kit threshold for six and a half months after symptom onset. IgG responses remained elevated above the ELISA kit threshold for over 24 months after symptom onset. These findings are relevant to clinicians who should therefore interpret elevated IgM and IgG responses from a single sample with caution given the many local causes of fever unrelated to scrub typhus.

Most scrub typhus seroepidemiologic studies dichotomize IgG responses using a cutoff threshold and then calculate the proportion of the population whose values fall above that threshold (seroprevalence). Cutoff thresholds are notoriously challenging to calculate and can vary across regions and studies (9), making it challenging to compare seroprevalence results across regions and time. The approach we describe in this paper has the advantage of not requiring a set cutoff point. Additional strengths of the approach are that it incorporates information about measurement noise, biologic noise, and age to generate more accurate uncertainty intervals around seroincidence estimates.

We show here that seroprevalence is highly age-dependent; therefore, the age of the patients will influence the overall seroprevalence estimate. In our study populations, the overall seroprevalence was much higher in India than in Nepal; however, in India, the median age of patients was 49 years compared to the median age of 11 years in Nepal. Despite differences in overall seroprevalence rates, the seroincidence rate among 18 to 29-year-olds in India and Thailand were similar, although there may be micro-geographic differences in infection risk based on elevation, vegetation, climate, and other factors.

The results of this study should be interpreted within the context of several limitations. First, only one sample was available from each patient with scrub typhus, limiting our precision in estimating
individual-level heterogeneity in decay rates. Moreover, with just one sample per individual, we
were unable to identify and remove potential reinfections. We hypothesize that individuals who are
re-exposed to scrub typhus will have elevated IgG responses; when these observations remain in
the data, our antibody decay rates will be biased towards slower decay. An additional limitation of
the available case data is that we had no early data on IgG responses and no responses from
children less than 15 years old. It is possible that antibody dynamics among young children are
different from those among older individuals, and these dynamics would influence the accuracy of
seroincidence estimates among younger ages. Future studies that enroll patients infected with
scrub typhus across ages and follow the same individuals over time are needed to refine the
longitudinal antibody decay rates, accurately define peak IgG responses, explore the influence of
reinfections of antibody kinetics and investigate the potential influence of age on antibody kinetics.

Scrub typhus remains an important but underrecognized etiology of acute fever with endemicity
expanding globally. There is a critical need for low-cost, accurate tools to quantify the burden of
scrub typhus infections to inform public health decision-making. We describe a sero-surveillance
approach that can efficiently generate population-level scrub typhus seroincidence estimates. This
approach can be deployed prospectively, coupled with existing serosurveys, or leverage banked
samples to rapidly characterize scrub typhus burden and generate estimates that are comparable
across populations, regions, and time.

Acknowledgments

We gratefully acknowledge the study participants for their valuable time and interest in participating
in these studies.
Funding

This work was supported by the Fogarty International Center at National Institutes of Health [K01 TW012177-01A1]

Figures

Figure 1: Quantitative antibody responses among (A) Scrub Typhus Cases and (B,C) population serosurveys in Nepal and India. Anti-OT IgA and IgG responses are measured using kinetic enzyme-linked immunosorbent assays (ELISAs) and depicted on the y-axis of all plots. The horizontal dashed line denotes the kit cutoff (light grey) and the mixture model cutoff (dark grey). In panel A, responses are compared over time from fever onset among confirmed cases from Thailand and India. Each dot is an individual case, the overlaying boxplots indicate the median and the inter-quartile range. Panel B shows the distribution of responses among the population-based samples in India and Nepal. Panel C shows the antibody among the population-based samples in India and Nepal as a function of age.
Figure 2: (A) Kinetics of IgM responses among Scrub Typhus cases and (B) Distributions of model-predicted peak antibody response, decay rate and shape, time to peak antibody response, and baseline antibody response. Longitudinal antibody dynamics were modeled from ELISA-measured antibody responses using Bayesian hierarchical models. In panel A, the points are the observed individual antibody concentrations; each point indicates one patient. The dark solid line indicates the median, and dotted lines indicate 95% credible intervals for the model-fitted antibody decay concentrations. The horizontal dashed line denotes the kit cutoff (light grey) and the mixture model cutoff (dark grey). Panel B shows distributions and boxplots for the model-predicted decay rate, decay shape, time to peak, baseline response, and peak antibody responses for both IgM and IgG.
Figure 3: Age-dependent seroprevalence

Seroprevalence is depicted as a function of age. Seroprevalence was determined using the mixture-model derived cutoff for IgG responses. The age-dependent seroprevalence was modeled using a generalized additive model with a cubic spline for age and simultaneous confidence intervals using a parametric bootstrap of the variance-covariance matrix of the fitted model parameters.
Figure 4: Seroincidence by age plus (A) resident zones and (B) gender

Seroincidence rates across are shown across age strata, residence zone (A), and gender (B) comparing the India and Nepal population samples. Seroincidence is estimated using IgG antibody kinetics. The point represents the incidence estimate per 100,000 person-years, and the bar indicates the 95% confidence interval.
References

