Clinical Evaluation of the GeneXpert® Xpert® Xpress SARS-CoV-2/Flu/RSV PLUS Combination Test

Grant Johnson1,2, Branden S.J. Gregorchuk3, Arek Zubrzycki1, Kurt Kolsun3,4, Adrienne F.A. Meyers3, Paul A. Sandstrom3,5, Michael G. Becker3,4,*

1 Laboratory Medicine and Infection Prevention and Control, Lakeridge Health, Oshawa, Ontario, Canada.
2 Ontario Tech University, Oshawa, Ontario, Canada.
3 National HIV and Retrovirology Laboratories, National Microbiology Laboratory Branch, JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
4 Department of Microbiology, University of Manitoba, Winnipeg, Canada
5 Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada

* Correspondence: michael.glen.becker@phac-aspc.gc.ca

Abstract

The Cepheid® GeneXpert® Xpert® Xpress SARS-CoV-2/Flu/RSV PLUS combination test (PLUS Assay) received Health Canada approval in January 2022. The PLUS Assay is similar to the SARS-CoV-2/Flu/RSV combination test, with the exception of an additional SARS-CoV-2 target that was included to improve assay robustness against emerging variants. The performance characteristics of the SARS-CoV-2/Flu/RSV PLUS combination test were assessed at the Lakeridge Health Oshawa Hospital Centre and the National Microbiology Laboratory of Canada. The PLUS Assay was directly compared to the Xpert Xpress SARS-CoV-2/Flu/RSV combination test using SARS-CoV-2 culture from five variants and remnant clinical specimens collected across multiple waves of the COVID-19 pandemic. This included 110 clinical specimens positive for SARS-CoV-2, Influenza A, Influenza B, RSVA, and/or RSVB and an additional 11 mixed samples to screen for target interactions. Additionally, 50 samples negative for all pathogens were included in this comparison. The PLUS Assay showed a high percent agreement with the widely used SARS-CoV-2/Flu/RSV combination test. Based on the findings from this study, the PLUS Assay and the Xpert SARS-CoV-2/Flu/RSV combination test results are largely consistent as there was no observed difference in sensitivity, specificity, reported Ct value, or time to result when challenged with various SARS-CoV-2 variants.
Introduction

The coronavirus disease 2019 (COVID-19) pandemic has lead to an enormous demand for diagnostic testing. To this end, numerous antigen and molecular SARS-CoV-2 rapid tests have been approved by the United States Food and Drug Administration and Health Canada, including the Cepheid GeneXpert® Xpert® Xpress SARS-CoV-2/Flu/RSV Combination Test. The GeneXpert and its associated COVID-19 cartridges perform a rapid, fully-automated, and self-contained multiplex RT-qPCR tests with run times of 45 minutes or less (Cepheid Package Insert, 2021). The Xpert SARS-CoV-2/Flu/RSV assay targets two SARS-CoV-2 genomic regions, the envelope (E) and the nucleocapsid (N2) returning a cycle threshold (Ct) value if the target is detected as well as its qualitative result interpretation within 45 amplification cycles. The results for the SARS-CoV-2/Flu/RSV combination test reports the fluorescence values for both the E and N2 targets of SARS-CoV-2 as a single result as they occupy the same fluorescence channel. Additionally, the Xpert SARS-CoV-2/Flu/RSV combination test is able to detect influenza A, influenza B as well as respiratory syncytial virus (RSV), and will report their respective Ct values.

As SARS-CoV-2 variants of concern continue to emerge worldwide, Cepheid developed a new formulation of their Xpert SARS-CoV-2/Flu/RSV combination test, the Xpert SARS-CoV-2/Flu/RSV PLUS combination test (referred to hereafter as the PLUS Combination Test). The PLUS Combination Test has an additional SARS-CoV-2 target, RNA-Dependent RNA Polymerase (RdRp), to help improve assay robustness against novel SARS-CoV-2 variants. RdRp (also known as nsp-12) is the catalytic subunit of multi-subunit polymerase complex which, along with nsp-7 and nsp-8, forms the minimal core components for SARS-CoV-2 RNA synthesis (Peng et al., 2020). To date, there has been no identified RdRp modifications, with this region being considered relatively stable target due to its conserved function (te Velthuis et al., 2009; Pachetti et al., 2020; Peng et al., 2020). RdRp is measured on the same fluorescence channel as targets E and N2, and thus a single Ct value is reported for SARS-CoV-2.

As a rapid near-point-of-care device, the GeneXpert system is currently used as a testing option to improve turnaround times in major health centres, and is used heavily in critical care
settings (Jokela et al., 2020; Gotham et al., 2021). Additionally, the GeneXpert has been a reliable tool for decentralized testing in remote and isolated Canadian communities (Respiratory Virus Infections Working Group, 2020) where access to large, well-equipped laboratories is not possible (Berry et al., 2020; Jokela et al., 2020; Gotham et al., 2021; Yau et al., 2021; Rong et al., 2022). It has also been used internationally by the World Health Organization in developing countries during their response to the COVID-19 pandemic (Rakotosamimanana et al., 2020; World Health Organization, 2020).

The individual Xpert Xpress SARS-CoV-2 and Xpert Xpress Flu/RSV assays have demonstrated high sensitivity in numerous analytical and clinical studies with company reported sensitivity of 100% (n=35) at 250 copies (cp)/mL for its SARS-CoV-2 assay; independent studies have reported a limit of detection (LOD) ranging from 8.3 – 60 cp/mL (3–4). Indeed, the assay has shown excellent agreement with the Roche Cobas 6800 system (Broder et al., 2020; Goldenberger et al., 2020; Lieberman et al., 2020; Moran et al., 2020; Smithgall et al., 2020; Tham et al., 2021), the Hologic Panther Fusion (Hogan et al., 2020), as well as laboratory-developed RT-qPCR tests (Lieberman et al., 2020; Wolters et al., 2020). A recent systematic review of the Xpert Xpress assay indicated an overall specificity and sensitivity of 97% based on a selection of 11 studies (Goldenberger et al., 2020). As the GeneXpert is present a plethora of settings (including clinics, hospitals, health centres, nursing stations), an independent evaluation of the recently approved PLUS Combination Test ahead of the approaching flu season is essential.

In our study, remnant clinical samples of SARS-CoV-2, influenza A (H3 and H1 2009), influenza B, RSVA, and RSVB were used to evaluate the PLUS Combination Test and compare it to the SARS-CoV-2/Flu/RSV Combination Test. This evaluation was performed in two independent laboratories, the National Microbiology Laboratory (NML; Winnipeg, Canada) and Lakeridge Health Oshawa Hospital (Oshawa, Canada). The SARS-CoV-2 samples used in this study were collected across multiple waves of the pandemic, and included SARS-CoV-2 Alpha, Delta, Omicron BA.1, and Omicron BA.2 variants. Additionally, inactivated SARS-CoV-2 culture from five variants was tested on both assays. No difference was observed between the assays concerning sensitivity, reported Ct value, run time, or specificity.
Materials and Methods

Clinical Specimens

Remnant universal transport media (UTM) from nasopharyngeal or nasal clinical swabs collected at the Cadham Provincial Laboratory (Winnipeg, Canada), Lakeridge Health Oshawa Hospital (Oshawa, Canada), and the Public Health Ontario Laboratory (Toronto, Canada) were used. Study samples included 50 clinical specimens negative for SARS-CoV-2, Influenza A, Influenza B, and RSV, with an additional 99 clinical positive specimens containing any one or more of the following pathogens: SARS-CoV-2, Influenza A, Influenza B, or RSV. Fifty-nine of the study samples (50 negatives, 7 COVID-19 positive, 2 Influenza positive) were obtained from prospective sampling of patients presenting with COVID-19 symptoms. The remainder of the study samples were previously characterized by laboratory-developed RT-qPCR tests (i.e. the ResPlex Assay or the Cepheid GeneXpert with the SARS-CoV-2/Flu/RSV Combination Test; Supplemental Data 1). Selected samples were stratified to cover a wide range of Ct values, from approximately 15-40. To simulate patient coinfection with multiple viruses, remnant transport media from an additional 26 clinical specimens was mixed in various combinations to create 11 contrived samples, each containing two or three different respiratory viral pathogens (Supplemental Data 1). All samples used in this study were research ethics board-exempt, anonymized, diagnostic samples used for assay validation. To determine overall test agreement, 300 µL of transport media from nasal or nasopharyngeal swabs was tested in parallel with the SARS-CoV-2/Flu/RSV combination test and the PLUS Combination Test. To mimic coinfection, clinical samples containing SARS-CoV-2, Influenza A, Influenza B, RSVA, or RSVB were combined in equal volumes to represent coinfection of two or three respiratory viruses, and tested using both Xpert assays.

Gamma-irradiated SARS-CoV-2 culture
High-titre inactivated SARS-CoV-2 culture of the Alpha (B.1.1.7), Delta (B.1.617.2), Omicron BA.1 (BA.1), Omicron BA.2 (BA.2), and wild type (WA-1) variants was provided by the Special Pathogens Program of the National Microbiology Laboratory Branch (NMLB; Winnipeg, MB). SARS-CoV-2 variants were propagated in Vero cells in Minimal Essential Medium and clarified by low speed centrifugation. The viral supernatant was inactivated via gamma-irradiation using a Gammacell 220 Cobalt-60 irradiator with a total exposure of three Mrad of radiation. The reported stock concentrations of the viral variant preparations were 2.1x10⁶ PFU/mL (Alpha), 2.3x10⁵ PFU/mL (Delta), 2.1x10⁶ PFU/mL (Omicron BA1), 1.9x10⁵ PFU/mL (Omicron BA.2), and 1.2x10⁶ PFU/mL (wild type). Inactivated culture fluid was serially diluted in UTM and Ct values were determined using the GeneXpert® Xpert® Xpress SARS-CoV-2 assay. Dilutions were performed to obtain Ct values of approximately 33 and 36, approaching the limit of detection of the GeneXpert assay. Ct values were converted into cp/mL using a standard curve (Becker et al., 2020). Characterization of dilutions are summarized in Table 1. 300 µL of the diluted culture fluid was tested in duplicate using both the SARS-CoV-2/Flu/RSV combination test and the PLUS Combination Test.

Results

Inactivated gamma-irradiated SARS-CoV-2 culture of five isolates (Wild-Type (WA-1), Alpha (B.1.1.7), Delta (B.1.617.2), Omicron (BA.1), and Omicron (BA.2)) were used to investigate the performance of the PLUS Combination Test against current or previous circulating variants. A panel of five cultured SARS-CoV-2 isolates was tested with the SARS-CoV-2/Flu/RSV combination test and the PLUS Combination Test (Table 1). All variants were detected with both assays at all dilutions and replicates. Additionally, SARS-CoV-2 positive and SARS-CoV-2 negative clinical samples were tested with both the PLUS Combination Test and SARS-CoV-2/Flu/RSV combination test (Table 2). The Ct values of SARS-CoV-2 positive samples ranged from 15.6 to 43.5 (Fig. 1; Supplemental Data 1). There was 100% agreement between both assays, with 57 positives and 103 negatives detected (Table 2). There was a high level of correlation between the SARS-CoV-2 Ct values reported with both of the assays (Figure 1; R² = 0.973), with
an average standard deviation of 0.49 Ct values between the reported results (Supplemental Data 1).

The above process was repeated for clinical samples containing Influenza A, Influenza B, and RSV. Similarly, results were highly consistent between the PLUS Combination Test and SARS-CoV-2/Influenza/RSV combination test, with overall percent agreements of 100%, 99.4%, and 100% for influenza A, influenza B, and RSV, respectively (Table 3). Likewise, high correlations were observed between the Ct values reported by both Xpert assays for influenza A (Figure 1; $R^2 = 0.978$), influenza B ($R^2 = 0.984$), and RSV ($R^2 = 0.975$). Variance between the Ct values reported by each assay was also low for all targets, with an average Ct value standard deviation of 0.22 for influenza A, 0.24 for influenza B, and 0.36 for RSV (Supplemental Data 1). The average run time from insertion of the cartridge to its ejection was timed for both the PLUS Combination Test and SARS-CoV-2/Flu/RSV Combination Test. There was no difference in run time between the two assays, with an average of 36.5 minutes to assay completion (Supplemental Data 1).

Discussion and Conclusion

In an effort to improve assay performance against emerging SARS-CoV-2 variants the PLUS Combination Test introduces an additional SARS-CoV-2 target (RdRp), as this region has is unmodified in all circulating variants of concern (te Velthuis et al., 2009; Pachetti et al., 2020; Peng et al., 2020). Here, we investigated the performance characteristics of the PLUS Combination Test comparing it to the SARS-CoV-2/Flu/RSV combination test authorized for use in Canada since January, 2021. This study used a total of 160 clinical samples (including mixtures) that were processed at two independent institutions, of which 110 samples were positive for SARS-CoV-2, influenza A, influenza B, RSV A, and/or RSV B. There was no observable difference in assay run time, sensitivity, specificity, or reported Ct value between the PLUS Combination Test and SARS-CoV-2/Flu/RSV combination test. Overall, the results between the two assays were nearly identical for all targets, with agreement approaching 100% and a standard deviation of <0.5 Ct values. This observation was consistent for all variants tested. These results demonstrate that the Ct value for RdRp detection of SARS CoV-2 likely
falls at or above the E and N2 targets producing little to no change to the reported Ct value. In conclusion, as the performance characteristics of the tests are nearly identical, the PLUS Combination Test can effectively replace the SARS-CoV-2/Flu/RSV combination test.

References

The authors have no competing interests to disclose.

All primary research data used to generate this manuscript are included in-text and within Supplementary file 1.
Table 1: Detection of five SARS-CoV-2 Variants. Materials tested were cultured SARS-CoV-2, inactivated by gamma-irradiation. SARS-CoV-2 concentrations were adjusted to target Ct values of 33 and 36, followed by testing with the Xpert SARS-CoV-2/Flu/RSV Combination Test or Xpert SARS-CoV-2/Flu/RSV PLUS Combination Test. Each dilution was tested in duplicate (indicated as Replicate 1 [Rep1] and Replicate 2 [Rep2] below).

<table>
<thead>
<tr>
<th>SARS-CoV-2 Variant (inactivated culture)</th>
<th>SARS-CoV-2 /Flu/RSV</th>
<th>SARS-CoV-2 /Flu/RSV PLUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rep1</td>
<td>Rep2</td>
</tr>
<tr>
<td>Wild Type WA-1</td>
<td>30.2</td>
<td>32.2</td>
</tr>
<tr>
<td>Alpha B.1.1.7</td>
<td>32.2</td>
<td>32.1</td>
</tr>
<tr>
<td>Delta B.1.617.2</td>
<td>33.7</td>
<td>33.8</td>
</tr>
<tr>
<td>Omicron BA.1.1</td>
<td>33.7</td>
<td>32.3</td>
</tr>
<tr>
<td>Omicron BA.2</td>
<td>33.7</td>
<td>33.4</td>
</tr>
</tbody>
</table>

Note: Ct: Cycle threshold

Table 2: Concordance of the Xpert SARS-CoV-2/Flu/RSV Combination Test with the Xpert SARS-CoV-2/Flu/RSV PLUS Combination Test for the detection of SARS-CoV-2.

<table>
<thead>
<tr>
<th>Result with Xpert SARS-CoV-2/Flu/RSV PLUS</th>
<th>Result with Xpert SARS-CoV-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Positive</td>
<td>57</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 3: Concordance of the Xpert SARS-CoV-2/Flu/RSV Combination Test with the SARS-CoV-2/Flu/RSV PLUS Combination Test for the detection of Influenza A, Influenza B and RSV.

<table>
<thead>
<tr>
<th>Result with Xpert SARS-CoV-2/Flu/RSV</th>
<th>Result with Xpert SARS-CoV-2/Flu/RSV PLUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza A</td>
<td>Influenza B</td>
</tr>
<tr>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
<td>21</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 1: Ct value comparisons between the Xpert SARS-CoV-2/Flu/RSV Combination Test and SARS-CoV-2/Flu/RSV PLUS Combination Test. Results shown for: A) SARS-CoV-2; B) Respiratory Syncytial Virus; C) Influenza A; and D) Influenza B. Correlation (R^2) is calculated for each target.