Combining Transcranial Magnetic Stimulation with Antidepressants: A Systematic Review and Meta-Analysis.

Gopalkumar Rakesh MD (Co-first author)a
\textit{a} - Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY

Patrick Cordero BS (Co-first author)b
\textit{b} - University of Kentucky College of Medicine, Lexington, KY

Rebika Khanal BSb
\textit{b} - University of Kentucky College of Medicine, Lexington, KY

Seth S. Himelhoch MD, MPHa
\textit{a} - Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY

Craig R. Rush PhDd
\textit{d} - Department of Behavioral Sciences, College of Medicine, University of Kentucky, Lexington, KY

Corresponding Author
Gopalkumar Rakesh MD
Assistant Professor
Department of Psychiatry
245 Fountain Court
Lexington, KY, 40509
Email – gopalkumar.rakesh@uky.edu
Phone – (859)562-2348

Conflict of interest: none
Acknowledgment: This work was supported by the National Institutes of Health grant numbers AA026255 (CRR), TR001997 (CRR), CA225419 (SSH) and University of Kentucky College of Medicine (GR). We would like to thank Jackson L. Weber for help with figures.
Abstract

Major depressive disorder (MDD) imposes significant disability on patients. In addition to antidepressants, brain stimulation modalities such as electroconvulsive therapy (ECT) and transcranial magnetic stimulation (TMS) have been helpful in treatment of MDD. Novel TMS paradigms like theta burst stimulation (TBS) have rapidly become popular due to their effectiveness.

Given that both antidepressants and TMS are commonly used together and affect neuroplasticity, we reviewed studies that administered both these as treatments for MDD. Unlike ECT wherein previous trials have shown that continuing pharmacotherapy is useful while giving ECT, there are no consensus guidelines on what to do with antidepressants when starting TMS. So, we reviewed two groups of studies – 1) those that administered TMS and antidepressant pharmacotherapy concurrently and 2) those wherein TMS augmented antidepressants or were an adjunctive intervention to antidepressants. We performed a meta-analysis for randomized clinical trials (RCTs) that administered TMS and antidepressants concurrently.

We found ten RCTs fulfilling criteria 1 and compared uniformly titrated antidepressant regimens combined with active versus sham TMS. We also found twenty studies fulfilling criterion 2, that used TMS as an augmenting or adjunctive intervention. Both groups of studies showed TMS combined with antidepressants had greater efficacy for treatment of MDD. We advocate for laboratory studies examining the interaction between TMS and antidepressants in a parametric fashion; in addition to randomized controlled trials that examine this combination to expedite remission in MDD.
Keywords: transcranial magnetic stimulation (TMS); major depressive disorder (MDD); antidepressants
Introduction

Major depressive disorder (MDD) imposes significant disability and economic burden on patients. Antidepressants have been shown to be more effective compared to placebo in treatment of MDD, with effect sizes ranging from 1.15-1.55. Interestingly, combinations of antidepressants provide more benefit in MDD than monotherapy.

Regardless, there is an unmet need for treatment of major depressive disorder, given chances of relapse and treatment resistance. A treatment option for treatment resistant MDD is neuromodulation which encompasses interventions such as electroconvulsive therapy (ECT) and transcranial magnetic stimulation (TMS). ECT has shown a pooled response rate of 60-80% and a pooled remission rate of 50-60% for MDD. However, ECT imposes barriers encompassing lack of equitable access as well as illness characteristics needed to receive it. In addition to these, ECT also carries risk of transient cognitive adverse effects.

Although less effective than ECT, TMS does not have cognitive adverse effects and consequently greater patient preference. TMS is generally safe and well-tolerated. Previous studies with ECT and continuation pharmacotherapy have shown benefits of continuing psychotropics while receiving ECT in MDD. There are no consensus guidelines on dosing strategies with antidepressants that patients take when considering TMS for MDD. Hence it becomes critical to think about strategies to combine TMS and antidepressants, such that benefits of both treatments are leveraged for patients.

The mechanisms of both pharmacotherapy and TMS in the treatment of psychiatric disorders are at least partially based on changes in neuroplasticity. Although
antidepressants are known to be modulators of neurotransmitters such as serotonin, dopamine, and noradrenaline, modulation of neurotransmitters is not sufficient to completely explain their mechanism of action. For example, administration of antidepressants results in a rapidly increased concentration of serotonin whereas the peak clinical efficacy of antidepressants happens weeks to months after initial administration. Other proposed explanations about the mechanism of action are changes in network connectivity and neuroplasticity. For example, antidepressants have been shown to have synaptogenic, neurogenic, and neuroprotective effects in their treatment of psychiatric disorders. When used as an investigative tool, various single pulse TMS paradigms have demonstrated that antidepressants alter cortical excitability and neuronal long-term potentiation (LTP) and long-term depression (LTD).

TMS affects neuronal plasticity by modulating long and short-term potentiation of neurons. Because both TMS and antidepressants affect neuroplasticity, perhaps their interactions in treating MDD may plausibly have an additive or synergistic effect. An example of this interaction between brain stimulation and pharmacotherapy has been already showcased by combining clozapine and ECT, which led to remission of symptoms in patients with treatment resistant schizophrenia, that was only partially responsive to clozapine.

Two previous systematic reviews examined whether active TMS differentiated from sham TMS as an augmentation agent with antidepressant medications in decreasing HAMS scores in MDD. These systematic reviews encompassed seven and nine RCTs respectively. A review encompassing seven RCTs performed a meta-analysis and showed a standardized mean difference (SMD) of 0.86 when comparing decrease...
in HAMD scores between active TMS combined with antidepressants compared with sham TMS combined with antidepressants. Active TMS was superior to sham TMS in decreasing HAMD scores, when both were combined with antidepressant medications. The other systematic review encompassing nine RCTs also found a superior benefit for active TMS compared to sham TMS, when combined with antidepressant medications.

Although both reviews showed active TMS combined with antidepressant medications to be superior to sham TMS combined with antidepressant medications, RCTs included in both reviews were heterogenous in their TMS parameters and session numbers. In addition, these reviews included studies wherein patients in both arms had been on antidepressant medications before TMS was added on as augmentation. Therefore, to examine the effect of the combination on depressive symptoms in a systematic fashion, it becomes pertinent to examine RCTs wherein both treatment options were administered simultaneously and dosed uniformly to patients. A review of this literature can help optimize our understanding of an interaction, if present, and advocate for clinical translation of the combination. The primary objective of this review is to summarize evidence from studies that combined TMS and antidepressants in a rigorous manner, in treatment of MDD. As a secondary objective, we also examined studies that used TMS as an augmenting agent to antidepressant medications but were not included in previous systematic reviews that examined the same.

Methods
PubMed/Medline and PsycINFO were searched using the terms “transcranial magnetic stimulation” or “theta burst stimulation” along with terms denoting psychiatric drug classes (e.g., “SSRI,” “antipsychotic,” etc.) as well as individual psychiatric drug names (e.g., “fluoxetine,” “clozapine,” etc.). Drug classes that have utility in treatment of MDD (antidepressants, antipsychotics, mood stabilizers and benzodiazepines) were included in our search terms. Search terms used are listed in the supplementary material. PRISMA guidelines were followed to guide inclusion criteria for the review. All studies were published between January 1980 and September 1st, 2022. All studies were published in English and screened by title, abstract, and full text by two authors (PC and GR) before a decision was made to include or exclude the study.

For the systematic review, we included studies that met the following inclusion criteria: 1) Investigating TMS as an adjunctive or augmentation agent with antidepressant medications; or administered concurrently with antidepressant medication titration with a comparator placebo arm; 2) Participants in the study met criteria for major depressive disorder (MDD) as defined by any edition of the Diagnostic Statistical Manual of Disorders (DSM) or International Classification of Diseases (ICD); 3) The study used quantitative measures that assess symptom improvement in MDD (e.g., Hamilton Depression Rating Scale); 4) the study involved adult participants ≥ 18 years of age; and 5) the study needed to be an RCT, open label trial or a retrospective chart review. For the review, we excluded case reports and case series. We also excluded studies which administered either TMS or antidepressants as maintenance treatment for MDD in a non-concurrent fashion. For the meta-analysis, we excluded studies which did not administer TMS and antidepressants concurrently.
In the meta-analysis, the primary outcome measure studied was reduction of symptom severity as measured by the Hamilton Depression Rating Scale (HDRS) for MDD. A random effects model was used because high heterogeneity between studies was expected. Effect size was calculated for the RCTs as described by Morris25, who argued that the pooled pretest standard deviation be used for weighting the differences of pre-post-means. Meta-analyses and calculations of heterogeneity (I^2) were performed using RevMan 5.426. Publication bias was assessed using Egger’s test for funnel plot asymmetry27 (using ‘metabias’ from meta package in Rstudio), since we had 10 studies in the meta-analysis to provide sufficient power.

Results

From 731 unique articles that were screened, 30 studies were included in the qualitative synthesis. Figure 1 shows the PRISMA diagram of how selected studies were included in the review and meta-analyses. Studies we excluded comprised:

1) experimental human TMS studies measuring cortical excitability in response to psychotropic medications (n=87), 2) clinical trials combining TMS and antidepressants in conditions other than MDD [such as obsessive compulsive disorder (OCD), tinnitus, migraine] (n=7)], 3) previous systematic reviews on utility of TMS for various disorders (n=50), 4) TMS combined with psychotropics other than antidepressants, including antipsychotics and benzodiazepines (n=19) and 5) animal studies utilizing electroconvulsive stimulation (ECS) (n=100). We assessed full texts of 31 articles for inclusion and excluded two studies. One article was excluded from this, and was a TMS study that used mirtazapine for maintenance treatment after course of TMS28. The final
list included 30 studies. Table 1 summarizes key characteristics of each of these studies. Egger’s test for publication bias was not significant indicating a lack of publication bias for studies included in the meta-analysis [$t(8)=1.92$, $p = 0.09$] (See Figure 2).

Egger’s test for publication bias was not significant indicating a lack of publication bias for studies included in the meta-analysis [$t(8)=1.92$, $p = 0.09$] (See Figure 2).

Table 1 summaries key characteristics of each of these studies.

[TMS and Antidepressants]

Ten randomized controlled trials (RCTs) were included in the meta-analysis. They investigated the combined use of TMS with antidepressants$^{29-38}$. Specifically, six of them combined selective serotonin reuptake inhibitors (SSRIs) (encompassing citalopram, paroxetine, and escitalopram) with TMS29,31,33,35,36,38, two combined a serotonin-norepinephrine reuptake inhibitors (SNRI) (venlafaxine) with TMS30,32, one compared TMS with escitalopram to TMS with venlafaxine and TMS with sertraline39 and one combined amitriptyline with TMS37. Three RCTs used fixed doses of antidepressants with no adjustments during the study29,35,36. Scales used to measure outcomes included Hamilton Depression Rating Scale (HDRS), Montgomery-Asberg Depression Rating Scale (MADRS), and Beck Depression Inventory (BDI). Six out of ten RCTs reporting the antidepressant efficacy of the two groups found the combined use of antidepressants with active TMS resulted in significantly lower scores on
depression scales and faster onset of antidepressant effect compared to antidepressants with sham TMS.

Two RCTs used low frequency TMS (1 Hz and 5 Hz)30,37 and all others used high frequency TMS (10-20 Hz)29,31-33,35,36,38,39. Number of sessions ranged from 5-30, with two studies delivering 5 and 7 sessions respectively30,35 and all others delivering 10 or more sessions29,31-33,35-39.

Ten RCTs investigated whether combined TMS with antidepressants had a greater efficacy for the treatment of depressive symptoms compared to combined sham TMS with antidepressants29-33,35-39. Thus, a meta-analysis was conducted of these RCTs. A common measure used between the studies was needed to conduct the meta-analysis. The change in HDRS was used as the outcome measure for the meta-analysis because it was the measure most used across studies. Poulet et al36 and Rumi et al37 did not report HDRS scores, but they did report MADRS scores. Therefore, to incorporate these studies into the meta-analysis, MADRS score means, and standard deviations were converted to equivalent HDRS score means and standard deviations using the chart provided by Leucht et al40. Because Poulet et al36 only reported changes in depressive symptoms as percent changes relative to baseline MADRS scores, all values used in the meta-analysis were converted to percent changes relative to baseline HDRS scores to allow for incorporation of Poulet et al36 into the meta-analysis. Figure 3 shows the results of the meta-analysis.

The results of the random effects meta-analysis suggest antidepressants with active TMS had greater efficacy for the treatment of major depression compared to
antidepressants with sham TMS (Hedge’s $g = 1; 95\% \text{ CI} [0.27, 1.73])$. As expected, there was a high heterogeneity between the studies ($I^2 = 94\%; P < 0.00001$). We assessed publication bias for included studies and did not find any ($t(8) = 1.92, p=0.09$).

TMS as augmentation or adjunctive to antidepressant medications

We included 20 studies that administered TMS either as augmentation or as an adjunctive intervention to patients already on antidepressants\(^{11,41-59}\) (Table 1). Of these twenty studies, seven were RCTs that compared active versus sham TMS as an adjunctive treatment modality, added on to antidepressant regimens that study participants were already on\(^{42,47,51,52,57,59,60}\). Three studies were clinical effectiveness trials that modeled real world scenarios combining TMS with antidepressant medications\(^{44,46,48}\). Only five studies used the antidepressant treatment history form (ATHF)\(^{61}\) to assess treatment resistance and ensured this as a for patients to participate in these trials\(^{11,41,44,46,48}\). All 20 studies showed significant reduction in depressive symptoms across patients. There was variability in TMS parameters, and except two studies\(^{42,56}\), none of the other trials had restrictions on medications that patients could be on to participate in the trial. Two studies restricted patients to take either venlafaxine or mirtazapine with a specific titration schedule\(^{42}\) or citalopram that was titrated in the same manner for all participants\(^{56}\). Nine out of twenty studies had patients who were on other psychotropic medications (mood stabilizers, antipsychotics and benzodiazepines) in addition to antidepressants.

Fewer patients in these trials dropped out or reported lack of tolerability to TMS in studies that used TMS as an adjunct intervention to antidepressants ($n=19$ across 13
studies), compared to RCTs that administered TMS and antidepressants concurrently (n=62 across 8 studies). All except two of these studies used L. dIPFC targeted as 5-6 cm in front of the motor hotspot\(^{46,56}\). None of these studies using neuroimaging for targeting. No study stratified patient outcomes based on antidepressants. Two trials that administered maintenance TMS if needed, showed sustained remission rates at 6 months after acute treatment\(^{44,46}\).

Discussion

The current systematic review and meta-analysis reviewed the literature on 1) the efficacy of concurrently administered TMS with antidepressants for treatment of MDD and 2) effectiveness of augmenting antidepressants with TMS or using TMS as an adjunctive intervention to antidepressants in MDD.

Our meta-analysis found TMS combined with concurrent antidepressant therapy may have greater efficacy for the treatment of MDD compared to antidepressants combined with sham TMS. Since sham TMS uses a significantly weaker electric field compared to active TMS\(^ {62}\), it would be pragmatic to state that the combination of TMS and antidepressants included in this review showed a large effect size compared to antidepressants alone. The findings of the meta-analysis, however, should be interpreted with a high degree of caution given the large amount of heterogeneity between the studies, encompassing experimental procedures (antidepressant class, TMS frequency, number of sessions, and stimulation intensity) used in the studies.

Clinical trials that augmented antidepressants with TMS or used TMS as an adjunctive intervention to antidepressants showed significant clinical benefit for patients
who participated in the trials. Also notable is the fact that dropout rates were fewer in these trials compared to the RCTs included in the meta-analysis. Thirteen of these twenty studies were either naturalistic studies or open label studies without randomization or blinding. Naturalistic studies had greater flexibility in scheduling TMS sessions when participants missed sessions. This may have attributed to participant retention and decreased rate of drop out. These trials also modeled real world scenarios witnessed by clinicians treating treatment resistant MDD.

The review and meta-analysis have significant utility for clinicians, to validate the approach of using TMS as an augmenting agent or adjunctive intervention, while keeping patients on their antidepressants. Nonetheless, these studies also showcased some potential confounders such as variability in psychotropic regimens for patients with MDD who participated in these trials (having mood stabilizer medications and antipsychotics in addition to antidepressants), variability in definition of treatment resistant MDD and diagnostic variability (unipolar versus bipolar depression). We would like to emphasize that despite these confounders, patient retention was not a problem in these trials.

TBS has shown greater effect size compared to sham TMS (0.64) for treatment of MDD63. TBS is more efficient than other high frequency TMS protocols, in that it requires 3 to 9 minutes for administration compared to an hour for 10 Hz TMS. An accelerated intermittent TBS (iTBS) protocol called Stanford Neuromodulation Therapy (SNT) using ten daily sessions of intermittent TBS (iTBS) for five days has recently shown promise in the treatment of MDD as well64,65. In the first Stanford Neuromodulation Treatment (SNT) trial (n=20), participants were required to maintain...
their psychotropic medication regimen throughout the duration of the trial. Fourteen of
the twenty participants in the trial were on antidepressant medications. Three of the
remaining six were not on any psychotropic medications and the remaining three
participants were on other medications. This trial did not use the ATHF. In the
second SNT trial (n=29), 27 participants were on antidepressant medications (including
SSRIs, SNRIs, MAOIs, TCAs and atypical ones including bupropion and mirtazapine).
This trial used ATHF to track medication history of participants and the scores were
similar between active and sham groups.

An alternative strategy to increase effectiveness of iTBS could also be optimally
combining iTBS with antidepressants for increasing response and remission rates in
these illnesses. These prospective trials must initially collect history regarding previous
psychotropic trials, similar to the ATHF for previous antidepressant trials. They must
also track compliance and seek to move towards consensus guidelines for dosing
antidepressants and other psychotropics with iTBS.

There are already multiple examples in medicine where the use of combined
treatment methods results in greater efficacy. For example, multiple antidiabetic drugs
with different mechanisms are often administered simultaneously to elicit a greater drop
in hemoglobin A1c than drug monotherapy. In a seminal crossover trial, combining
ECT and clozapine resulted in an initial 50% response in patients with treatment
resistant schizophrenia, who received the combination and a 47% response rate in
patients randomized to receive only clozapine initially but were then crossed over into
the clozapine-ECT arm. Support for the combination arose from independent and
distinct effects exhibited by both treatment modalities on symptoms of schizophrenia.
Two studies that used maintenance TMS showed sustained remission rates. A previous study that combined antidepressants with maintenance TMS showed similar proportions of response, remission and partial response across patients on various classes of antidepressants (SSRI versus SNRIs versus TCAs versus MAOIs). Regardless of TMS parameters or number of sessions delivered acutely until response or remission is attained, relapse rates over time are high in MDD without maintenance TMS sessions. Like the symptom titrated algorithm based longitudinal ECT (STABLE) regimen in ECT, it is essential to move towards consensus regimens for maintenance TMS protocols to sustain remission in MDD. In the context of combining antidepressants and TMS, it is important to discuss maintenance TMS given various clinical scenarios that could arise when providing TMS for patients with MDD. These include maintenance treatment with antidepressants after the index course of TMS, combining maintenance treatments with TMS and antidepressants or even maintenance treatment with TMS while tapering antidepressants. Future research needs to include both parametric studies and RCTs that model interactions between antidepressants and TMS (both index courses and plausible maintenance regimens).

Conclusion

There is limited evidence which suggests TMS combined with pharmacotherapy can have greater efficacy for the treatment of MDD. However, the conclusions which can be made from these findings are limited by the small number of studies included in the review, the small sample sizes within most of the studies, and heterogeneity between
the studies. The limited evidence supports an increased benefit of combining TMS and antidepressants in MDD without increasing risk of adverse events.

Given the design of the trials we could choose for our meta-analysis, it is not essentially clear if the effect we saw is due to use of active versus sham TMS or an interaction between TMS and medication. In order to tease this out, the ideal strategy would be comparing a combination of active TMS and a select antidepressant therapy with a combination of active TMS and placebo. Both parametric studies to study the interaction and RCTs comparing active TMS plus antidepressant versus active TMS plus placebo are needed to systematically examine how to combine TMS and antidepressants. These trials can use the ATHF to assess treatment resistance and use currently available naturalistic studies to model dosing and regimens.
References

<table>
<thead>
<tr>
<th>Study</th>
<th>TMS Freq</th>
<th>Number of TMS Sessions</th>
<th>MT</th>
<th>TMS Target</th>
<th>Drug(s) Studied</th>
<th>Med Compliance</th>
<th>Population Studied</th>
<th>Dropout</th>
<th>n</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garcia-Toro et al. 2001<sup>29</sup></td>
<td>20 Hz (1200 pulses per session) or sham TMS</td>
<td>10 consecutive working days</td>
<td>90%</td>
<td>Left dorsolateral prefrontal cortex (DLPFC) (5 cm anterior to motor cortex hotspot for contralateral abductor pollicis brevis)</td>
<td>Sertraline (50 mg/d adjusted as needed). Mean daily dose not available.</td>
<td>NR</td>
<td>Patients with major depression without a trial of sertraline for current depressive episode</td>
<td>6</td>
<td>22</td>
<td>Active TMS + sertraline did not differ from sham TMS + sertraline in score changes on Hamilton depression rating scale (HDRS), Beck Depression Inventory (BDI) and global clinical inventory (GCI).</td>
</tr>
<tr>
<td>Rossini et al. 2005<sup>37</sup></td>
<td>15 Hz (900 pulses per session) or sham TMS</td>
<td>10 consecutive working days (over two weeks)</td>
<td>100%</td>
<td>Left dorsolateral prefrontal cortex (DLPFC) (5 cm anterior to motor cortex hotspot for contralateral abductor pollicis brevis)</td>
<td>Six groups of treatment assignment. Combination of TMS or sham with medications escitalopram, sertraline or venlafaxine titrated to doses of 15 mg, 150 mg and 225 mg over two weeks. A seven-day washout preceded the five-week treatment period. TMS lasted two weeks and medications continued for five weeks.</td>
<td>Patients with MDD (DSM-IV), unipolar with no history of mania or seizures. All patients had failed one antidepressant trial.</td>
<td>3</td>
<td>99</td>
<td>Active TMS and concomitant antidepressant medication treatment caused significant reduction in HAMD scores compared to sham TMS and antidepressant medications at end of weeks 1, 2 and 3. The difference did not show statistical significance at end of weeks 4 and 5.</td>
<td></td>
</tr>
<tr>
<td>Poulet et al. 2004<sup>34</sup></td>
<td>10 Hz or sham TMS. Number of pulses not available</td>
<td>10 consecutive working days</td>
<td>80%</td>
<td>Left DLPFC (5 cm anterior to motor cortex according to EEG 10-20 system)</td>
<td>Paroxetine (20 mg/d), dosing was fixed and not adjusted.</td>
<td>NR</td>
<td>Patients with non-resistant major depression</td>
<td>NR</td>
<td>19</td>
<td>Active TMS + paroxetine did not differ from sham TMS + paroxetine in HDRS score changes.</td>
</tr>
<tr>
<td>Rumi et al. 2005<sup>35</sup></td>
<td>5 Hz (1250 pulses per session) or sham TMS</td>
<td>20 (5 per week for 4 weeks)</td>
<td>80%</td>
<td>Left DLPFC (5 cm anterior to motor cortex hotspot for contralateral abductor pollicis brevis)</td>
<td>Amitriptyline (intended dose of 150 mg after titration, however)</td>
<td>NR</td>
<td>Patients with non-psychotic major depression</td>
<td>NR</td>
<td>46</td>
<td>Active TMS + amitriptyline was significantly superior to sham TMS + paroxetine in HDRS score changes.</td>
</tr>
<tr>
<td>Study</td>
<td>Frequency (pulses per session)</td>
<td>Treatment Duration</td>
<td>Treatment Details</td>
<td>Control Details</td>
<td>Outcome Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bretlau et al. 2007<sup>27</sup></td>
<td>8 Hz (1289 pulses per session) or sham TMS</td>
<td>15 consecutive working days</td>
<td>90% Left DLFPC</td>
<td>Escitalopram (10 mg/d in week 1, 20 mg/d from weeks 2-12); dosing was fixed and not adjusted; concomitant oxazepam 15-30 mg/d when needed for sleep problems</td>
<td>NR Patients with medication-resistant major depression</td>
<td>6</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herwig et al. 2007<sup>30</sup></td>
<td>10 Hz (2000 pulses per session) or sham TMS</td>
<td>15 consecutive working days</td>
<td>110% Left DLPFC (F3 position according to EEG 10-20 system)</td>
<td>Choice of venlafaxine (75 mg/d adjusted as needed) or mirtazapine (15 mg/d adjusted as needed); lorazepam 1.5 mg/d permitted as crisis medication</td>
<td>NR Patients experiencing a moderate to severe depressive episode, including patients with bipolar depression.</td>
<td>15</td>
<td>127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang et al. 2012<sup>31</sup></td>
<td>10 Hz (800 pulses per session) or sham TMS</td>
<td>10 (5 sessions per week for 2 weeks)</td>
<td>90% Left DLFPC</td>
<td>Citalopram (20 mg/d, adjusted as needed). Mean daily dose was 32.1 mg in active TMS group and 34.3 mg in sham TMS group. After two weeks, dosing was 40 mg if HDRS reduction was less than 50 % in the first two weeks.</td>
<td>NR Patients with first-episode major depression</td>
<td>4</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brunelin et al. 2014<sup>26</sup></td>
<td>1 Hz (360 pulses per session) or sham TMS</td>
<td>5 consecutive working days per week for 2-6 weeks</td>
<td>120% Right DLPFC (6 cm anterior to motor cortex hotspot for contralateral)</td>
<td>Venlafaxine (150 mg/d adjusted to 225 mg/d if needed)</td>
<td>NR Patients with a single episode or recurrent unipolar</td>
<td>15</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Reference</td>
<td>Frequency/Parameters</td>
<td>Duration</td>
<td>Percentage</td>
<td>Additional Details</td>
<td>HDRS Score</td>
<td>Outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>------------</td>
<td>---</td>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang et al. 2017³⁶</td>
<td>10 Hz (800 pulses per session) or sham TMS</td>
<td>20 (5 sessions per week for 4 weeks)</td>
<td>80%</td>
<td>Left DLFPC (5 cm anterior to the motor cortex hotspot for right abductor pollicis muscle)</td>
<td>Paroxetine for 8 weeks. Dose of 10 mg during week 1 and increased to 20-30 mg from day 8 onward. Some patients received 40 mg daily if HDRS score reduced <50% of what it was at end of week 4. From the first day of the 5th week, participants were offered paroxetine treatment alone for an additional 4 weeks. Average daily dose in the active group was close to 30 mg, in the sham group it was between 30 and 35 mg.</td>
<td>NR</td>
<td>Patient with first episode MDD. The study was divided into phases 1 and 2. In Phase 1, the participants were randomly assigned in a 1:1 ratio to either active rTMS (n = 22) or sham rTMS (n = 21) five times per week combined with paroxetine for 4 consecutive weeks. Active TMS + paroxetine resulted in a significant decrease in HDRS scores compared to sham TMS + paroxetine (both at end of week 1 and week 4). At end of week 8, the difference in HDRS scores was not significant.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan et al. 2020³³</td>
<td>10 Hz (6000 pulses per session) or sham TMS</td>
<td>7 consecutive days</td>
<td>100%</td>
<td>Left DLFPC (Brodmann area 46 based upon individual's MRI image and MRI generated 3D curvilinear reconstruction of brain)</td>
<td>Escitalopram (10 mg/d), dosing was fixed and not adjusted.</td>
<td>NR</td>
<td>Patients with treatment-naïve unipolar major depressive disorder</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Studies that used TMS as an augmenting or adjunctive intervention with antidepressants for MDD
<table>
<thead>
<tr>
<th>Study</th>
<th>Protocol</th>
<th>Parameters</th>
<th>Outcome</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlim et al. 2011<sup>8</sup></td>
<td>10 Hz TMS (3000 pulses per session)</td>
<td>4 weeks, totaling 20 sessions</td>
<td>120%</td>
<td>Yes</td>
</tr>
<tr>
<td>Berlim et al. 2014<sup>39</sup></td>
<td>20 Hz Deep TMS (3000 pulses per session) using H1 coil.</td>
<td>4 weeks, totaling 20 sessions</td>
<td>120%</td>
<td>Yes</td>
</tr>
<tr>
<td>Ullrich et al. 2012<sup>40</sup></td>
<td>Active condition was 30 Hz on the left side, 1,800 pulses per session. Sham was 1 Hz over left side, 990 pulses</td>
<td>5 sessions per week for three weeks.</td>
<td>110%</td>
<td>NR</td>
</tr>
</tbody>
</table>

Patients who received 30 Hz showed greater reduction in depressive symptom scores, compared to those who received 1 Hz. The difference was not significant.
<table>
<thead>
<tr>
<th>Study</th>
<th>Frequency (Hz)</th>
<th>Pulses/Session</th>
<th>Target Area</th>
<th>Target Description</th>
<th>Medications/doses</th>
<th>Study Details</th>
<th>Study Population</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jhanwar et al. 2011<sup>51,52</sup></td>
<td>10</td>
<td>625</td>
<td>Left DLPFC</td>
<td>Lateral convexity 5 cm rostral to site for contralateral abductor pollicis brevis muscle MEP</td>
<td>Combination of two or more antidepressants or antidepressants and augmenting agents</td>
<td>NR</td>
<td>Patients with moderate MDD and a score of 20 on HDRS, and failed at least two adequate antidepressant trials.</td>
<td>Adjunctive TMS resulted in significant decrease of HDRS (17 item) scores.</td>
</tr>
<tr>
<td>Verma. 2018<sup>53</sup></td>
<td>15</td>
<td>3000</td>
<td>Left DLPFC</td>
<td>5 cm anterior from the motor hotspot, corresponding to Fp3 from 10–20 EEG system</td>
<td>Combination of two or more antidepressants or antidepressants and augmenting agents</td>
<td>NR</td>
<td>Patients failed to respond to at least two antidepressant medications given for at least 6-8 weeks at adequate dose.</td>
<td>Adjunctive TMS resulted in 50 percent reduction of HAM-D scores in 14 patients.</td>
</tr>
<tr>
<td>Conca et al. 2002<sup>54</sup></td>
<td>TMS sessions</td>
<td>NA</td>
<td>TMS was delivered to nine areas according to the 10/20 EEG system (Fp0, Fp1, F2, F3, Cz, T2, T3, P2 and P3) in each patient five times in each of the ten sessions</td>
<td>Prior to receiving TMS, all patients were started on citalopram 20 mg and dose increased to 40 mg after a week. Subjects were also on trazodone 150 mg – 250 mg) and lorazepam (1-4 mg).</td>
<td>Inpatients with MDD, recurrent were started on citalopram 20 mg within five days of hospitalization. There was an option of going to 40 mg after a week. Patients were also prescribed trazodone and lorazepam 1-4 mg daily.</td>
<td>Yes</td>
<td>Eight patients responded to the intervention (TMS plus citalopram) as evidenced by 50 percent reduction in their HAMD scores. Four patients did not respond and went on to receive either TCA (amitriptyline) or ECT.</td>
<td></td>
</tr>
<tr>
<td>Ying et al. 2020<sup>55</sup></td>
<td>10</td>
<td>2400</td>
<td>Left DLPFC</td>
<td>Targeted as being 5 cm</td>
<td>Study participants were on SSRIs (n = 61), majority were</td>
<td>NR</td>
<td>Patients with MDD and a score ≥14 on the HAMD, drug free</td>
<td>10 Hz caused symptom remission comparable to 1Hz,</td>
</tr>
<tr>
<td>Study</td>
<td>Protocol Details</td>
<td>Number</td>
<td>Completion</td>
<td>Remission</td>
<td>Adjunctive TMS Impact</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anderson et al. 2007</td>
<td>10 Hz TMS (1000 pulses) or sham TMS. Thrice weekly for four weeks, continued for two more weeks in partial responders.</td>
<td>45</td>
<td>100%</td>
<td>NR</td>
<td>Adjunctive TMS resulted in significant decrease in HAMD scores compared to adjunctive sham TMS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tendler et al. 2014</td>
<td>Multisite study with seven research sites in USA and three in Israel. 10 Hz deep TMS (2400 pulses) using H1 coil. Three times every week for four weeks.</td>
<td>41</td>
<td>100 % for session 1, 110 % for session 2, 120 % for session 3.</td>
<td>Yes</td>
<td>HAMD scores at weeks 2 and 4 were significantly lower than baseline scores. 34 patients completed all sessions. 11 out of 34 patients responded and remitted finally. There were no differences in response or remission between those who received active dTMS versus sham in the initial RCT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapinesi et al. 2015</td>
<td>20 Hz dTMS (1980) Five times every week</td>
<td>40</td>
<td>120%</td>
<td>NR</td>
<td>dTMS sessions resulted in significant decrease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Frequency</td>
<td>Number of Sessions</td>
<td>Area of Stimulation</td>
<td>Active Group</td>
<td>Sham Group</td>
<td>Patients</td>
<td>Age Range</td>
<td>CADR Study</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ray et al. 2011<sup>49</sup></td>
<td>10 Hz (1200 pulses per session) or sham TMS</td>
<td>10 sessions over two weeks.</td>
<td>90% Left DLPFC, 5 cm rostral to motor hotspot for contralateral abductor pollicis brevis muscle</td>
<td>Active group (n=20) 2 received TCAs and 12 received SSRIs. Sham group (n=20) - 2 received TCAs, 10 received SSRIs, and 2 received other antidepressants.</td>
<td></td>
<td>NR</td>
<td>Patients who were 18–60 years with a diagnosis of MDD (moderate to severe) according to ICD-10</td>
<td></td>
</tr>
<tr>
<td>Hadley et al. 2011<sup>46</sup></td>
<td>10 Hz (6800 pulses per session) All patients received active TMS, this was a clinical effectiveness trial.</td>
<td>Subjects had to commit to a minimum of 10 sessions over two weeks. 8 subjects received 40 sessions.</td>
<td>120% Left DLPFC, 6 cm rostral to motor hotspot in the parasagittal plane.</td>
<td>Data on specific medication names not available in manuscript. ATHF score was 5.5(mean) and patients were on an average of 4.4 medications when TMS was added.</td>
<td></td>
<td>NR</td>
<td>Patients had a diagnosis of MDD (unipolar or bipolar depression) and BDI score ≥ 12. All patients remained on a stable and unchanging dose of their antidepressant or mood-stabilizing medications prior to and while receiving TMS.</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Frequency</td>
<td>Number of Pulses</td>
<td>Phase 1 Details</td>
<td>Phase 2 Details</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garcia-Toro et al. 2001<sup>50</sup></td>
<td>20 Hz</td>
<td>5000 pulses</td>
<td>In phase one, subjects received ten sessions of either active or sham TMS. In phase two, all subjects received ten more sessions of active TMS if they met inclusion criteria for the study.</td>
<td>Patients were on SSRIs or TCAs. Benzodiazepine intake was permitted. One patient also continued receiving olanzapine (5 mg) and another patient continued receiving valproic acid (150 mg).</td>
<td>Patients included in the trial were diagnosed with MDD. They also needed to have had two trials of antidepressant medication, at maximum doses tolerated, within the therapeutic range, for at least 6 weeks. Patients should also have taken the same antidepressant medication during the last 6 weeks prior to inclusion and they continued doing so during all the study.</td>
<td>Active TMS combined with antidepressants caused significant decrease in HAMD scores compared to sham TMS combined with antidepressants.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connolly et al. 2012<sup>44</sup></td>
<td>10 Hz</td>
<td>4000 pulses</td>
<td>Patients received TMS 5 times every week for 6 weeks (30 sessions) and maintenance TMS for 6 months. Patients receiving maintenance TMS were transitioned using a taper regimen of 6 All received TMS at 110% except those >65 years who received it at 120%.</td>
<td>To receive TMS, patients had failed >1 adequate antidepressant trial, measured using ATHF questionnaire. Average ATHF score was 3.4, making the cohort treatment resistant.</td>
<td>At the end point of up to 30 adjunctive TMS sessions, the CGI-I response rate was 50.6% and the remission rate was 24.7% Response and remission rates on the HDRS were 41.2% and 35.3%, respectively 42/85 patients went on to maintenance TMS treatment. Twenty-six of 42</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
receiving 1 Hz (300-1200 pulses per session) to the right dIPFC and some (n=6) received bilateral TMS. TMS was off label in most patients. Sessions over three weeks (3 sessions in week1, 2 sessions in week2 and 1 session in week1). After that typical schedule was 1 per week for 4 weeks, 2 per month for 2 months and 1 per month for three months. But schedule was flexible.

<table>
<thead>
<tr>
<th>Study</th>
<th>Frequency/Lesion</th>
<th>Schedule</th>
<th>Location</th>
<th>Patients</th>
<th>MDD diagnosis, on stable psychotropic regimen for 4 weeks before study and throughout the study</th>
<th>N</th>
<th>%</th>
<th>Overall response rates on HAMD</th>
<th>fMRI hotspot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mogg et al. 2008</td>
<td>10 Hz (1000 pulses per session)</td>
<td>10 sessions over course of two weeks.</td>
<td>Left DLPFC, 6 cm rostral to APB motor hotspot in the parasagittal plane.</td>
<td>17 patients on SSRIs, 18 patients on TCAs, 1 on MAOI, 9 on mirtazapine, 17 on venlafaxine.</td>
<td>MDD diagnosis, on stable psychotropic regimen for 4 weeks before study and throughout the study,</td>
<td>4</td>
<td>59</td>
<td>110%</td>
<td>6 cm rostral to APB motor hotspot in the parasagittal plane.</td>
</tr>
<tr>
<td>Janicak et al. 2010</td>
<td>10 Hz (3000 pulses), no sham TMS</td>
<td>24 weeks follow up naturalistic study</td>
<td>Left DLPFC, 6 cm rostral to motor hotspot in the parasagittal plane</td>
<td>Antidepressants that patients were on included duloxetine (26%), venlafaxine (17%), bupropion (19%), and escitalopram (14%). The remaining 24% of patients received medications that included citalopram, fluoxetine, fluvoxamine, mirtazapine,</td>
<td>NR</td>
<td>301 patients were randomly assigned to active or sham TMS in a 6-week, controlled trial. Non-responders could enroll in a second, 6-week, open-label study. Patients who met criteria for partial response (i.e., >25% decrease from the baseline HAMD 17) during either the sham-</td>
<td>0</td>
<td>99</td>
<td>120%</td>
</tr>
</tbody>
</table>

Although response rates on HAMD in active and sham groups were 32% and 10 %, and remission rates were 25 % and 10 %, overall differences in both groups did not reach statistical significance.

patients (62% of those entering maintenance) maintained their response at 6 months.
sertraline, and trazodone, (none among this list was used by more than 5% of the sample).

Controlled or open-label study (n = 142) were tapered off TMS over 3 weeks, while simultaneously starting maintenance antidepressant monotherapy. Antidepressant choice was determined by a review of prior treatments using ATHF, the patient's subjective experience and any information from the referring clinician. Patients were then followed for 24 weeks in a naturalistic follow-up study examining the long-term durability of TMS. During this durability study, TMS was re-administered if patients met prespecified criteria for symptom worsening (i.e., a change of at least one point on the CGI-S scale for 2 consecutive weeks). In this study phase, patients received the antidepressant started during the 3-week transition phase, with only dose adjustments permitted (i.e., no transitioned from active TMS to maintenance antidepressant monotherapy agreed to follow-up for an additional 24 weeks.

Overall, 70/99 patients who previously benefited from active TMS completed the entire 24-week study. Most patients experienced satisfactory clinical benefit, with approximately 75% maintaining full response and >50% maintaining remission based on either the MADRS or HAMD24 scores. Our results did not reveal additional safety or tolerability issues with TMS augmentation compared with TMS monotherapy.
<table>
<thead>
<tr>
<th>Study</th>
<th>Frequency</th>
<th>Number of Sessions</th>
<th>Stimulus Location</th>
<th>Treatment</th>
<th>Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charnisil et al. 2012<sup>48</sup></td>
<td>10 Hz (1250 pulses per session)</td>
<td>10 daily consecutive sessions</td>
<td>100 %</td>
<td>L. dIPFC defined as 5 cm in front of the site of the right abductor pollicis muscle</td>
<td>All patients were continued on their antidepressant medications which they took for 8 weeks before TMS. SSRIs (escitalopram (n=2), fluoxetine (n=2), sertraline (n=2)); TCA (nortriptyline), SNRIs (venlafaxine) and mirtazapine(n=1).</td>
</tr>
<tr>
<td>Rossini et al. 2005<sup>58</sup></td>
<td>Three groups – 15 Hz (100 %), 15 Hz (80 % MT) and sham TMS.</td>
<td>All patients received ten sessions of stimulation over course of two weeks (5 sessions/week).</td>
<td>100 % 80 %</td>
<td>Left DLPFC, 5 cm rostral to motor hotspot in the parasagittal plane</td>
<td>20 patients were on venlafaxine, 16 were on fluvoxamine, 10 were on sertraline and 8 were on imipramine. All drugs were maintained at a stable dosage during the duration of the trial. Only other psychotropics allowed were lorazepam and lithium.</td>
</tr>
</tbody>
</table>
All patients were continued on their antidepressant medications which they took for 8 weeks before TMS. Patients who received a DSM diagnosis of MDD and received treatment with antidepressants for 8 weeks, but remained in partial remission as indicated by a score between 7 and 18 on the Thai HAMD. Patients were followed up for twelve months after receiving TMS sessions.

All nine subjects responded to TMS sessions, with 50 percent decrease in HAMD scores. This was sustained through 12 months after the TMS sessions.

TMS Freq – Frequency of TMS; MT – resting motor threshold; n – sample size; NA – Not applicable as the study was a retrospective one; NR – Not reported; DLPFC – dorsolateral prefrontal cortex; iTBS – Intermittent theta burst stimulation

Details of dropouts from studies
29 - Three subjects dropped out from active TMS arm and three dropped out from sham TMS arm. Two dropped out during two weeks of TMS. Four dropped out after TMS sessions were completed.
37 - 3 patients dropped out (1 in the active TMS group (ven) and 2 in the sham TMS group (ven and esc)).
27 - Five subjects dropped out from sham TMS arm and one from active TMS arm.
30 - Fifteen subjects dropped out, six from active TMS arm and nine from sham TMS arm.
31 - Two patients dropped out of the active TMS arm; two patients dropped out of the sham TMS arm.
28 - Fifteen subjects lost to follow up

Zhang et al. 2019

During TMS treatment regimen, patients were prescribed SSRIs (61) and venlafaxine (26) were recruited into the trial. They had a baseline score ≥14 points on the 17-item HAMD, were drug-free for at least 2 weeks prior to enrolling in the study.

Adults (age group 18-59 years) and elderly (≥ 60 years) were compared between age groups, which found significantly higher remission rates in adults (68% in adults vs. 36% in the elderly), but no difference in response (91% in adults vs. 77% in the elderly).
36 - Five subjects dropped out of the study. Three subjects were randomized to active rTMS. Two were actively suicidal, and one left in the middle of the study because of family reasons. Two subjects who dropped out withdrew their consent because they found the procedure intimidating (these two patients were subsequently assigned to sham rTMS). The data from these dropouts were not included in the analysis.

33 - Eight subjects dropped out.
8 - One subject withdrew from the study due to tolerability issues (increased scalp pain)
39 - Two subjects withdrew from the study due to scalp discomfort during stimulation.
50 - Five patients did not complete the 4 weeks of follow-up in the first phase. Two patients in the sham group withdrew from the study; one preferred a change of treatment and the other was excluded because of confirmed alcohol abuse. Three patients in the real treatment group withdrew from the study due to changes in the antidepressant pharmacotherapy. These five patients showed no sign of improvement although all of them tolerated the rTMS well.
45 - Two patients per group withdrew after two weeks of treatment due to scalp pain.
57 – four dropped out, one in the active arm and three in the sham arm.
58 - Two patients dropped out: one due to consent withdrawal and the other because of worsening of the clinical condition (decreased mood and increased somatic anxiety) during the first week of treatment; they were in the sham and 80% MT group, respectively.
Figure 1. PRISMA diagram of the study selection process

Records identified through database searching (n = 780)

Additional records identified through other sources (n = 0)

Records after duplicates removed (n = 731)

Titles/abstracts screened (n = 731)

Records excluded (n = 699)

Full-text articles assessed for eligibility (n = 31)

Full-text articles excluded (n = 1)

Studies included in qualitative synthesis (n = 30)

Studies included in quantitative synthesis for antidepressants (meta-analysis) (n = 10)
Figure 2. Funnel Plot of Standard Error by Standardized Mean Difference (Publication Bias)
Figure 3. Meta-analysis of antidepressants combined with active versus sham TMS

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Drug + Active rTMS</th>
<th>Drug + Sham rTMS</th>
<th>Std. Mean Difference</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>Garcia-Toro et al. 2001</td>
<td>44.8</td>
<td>24.7</td>
<td>11</td>
<td>45.5</td>
</tr>
<tr>
<td>Poulet et al. 2004</td>
<td>67</td>
<td>21</td>
<td>10</td>
<td>62</td>
</tr>
<tr>
<td>Rumi et al. 2005</td>
<td>61</td>
<td>26</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Brott et al. 2007</td>
<td>38.7</td>
<td>11.8</td>
<td>26</td>
<td>22.7</td>
</tr>
<tr>
<td>Huang et al. 2012</td>
<td>32.4</td>
<td>10</td>
<td>26</td>
<td>22.5</td>
</tr>
<tr>
<td>Brunelin et al. 2014</td>
<td>41</td>
<td>14.9</td>
<td>50</td>
<td>44.6</td>
</tr>
<tr>
<td>Wang et al. 2017</td>
<td>80.7</td>
<td>22.7</td>
<td>22</td>
<td>73.9</td>
</tr>
<tr>
<td>Harwig et al. 2018</td>
<td>43</td>
<td>24.9</td>
<td>52</td>
<td>38.2</td>
</tr>
<tr>
<td>Pan et al. 2020</td>
<td>50.1</td>
<td>22.7</td>
<td>21</td>
<td>12.5</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>290</td>
<td>289</td>
<td>100.0%</td>
<td>1.00 [0.27, 1.73]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 1.28; Chi² = 14.11, df = 9 (P < 0.00001); I² = 94%
Test for overall effect: Z = 2.67 (P < 0.000)

Favours Drug + Sham TMS Favours Drug + Active TMS