COVID-19 primary series and booster vaccination and immune imprinting

Hiam Chemaitelly, PhD1,2,3*, Houssein H. Ayoub, PhD4, Patrick Tang, MD PhD5, Peter Coyle, MD6,7,8, Hadi M. Yassine, PhD7,9, Asmaa A. Al Thani, PhD7,9, Hebah A. Al-Khatib, PhD7,9, Mohammad R. Hasan, PhD5, Zaina Al-Kanaani, PhD6, Einas Al-Kuwardi, MD6, Andrew Jeremijenko, MD6, Anvar Hassan Kaleeckal, MSc6, Ali Nizar Latif, MD9, Riyazuddin Mohammad Shaik, MSc6, Hanan F. Abdul-Rahim, PhD10, Gheyath K. Nasrallah, PhD7,9, Mohamed Ghaith Al-Kuwardi, MD11, Adeel A. Butt, MBBS MS3,6,12, Hamad Eid Al-Romaihi, MD13, Mohamed H. Al-Thani, MD13, Abdullatif Al-Khal, MD6, Roberto Bertollini, MD MPH13, and Laith J. Abu-Raddad, PhD1,2,3,10*

1Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
2World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar
3Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, New York, USA
4Mathematics Program, Department of Mathematics, Statistics, and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar
5Department of Pathology, Sidra Medicine, Doha, Qatar
6Hamad Medical Corporation, Doha, Qatar
7Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
8Wellcome-Wolfson Institute for Experimental Medicine, Queens University, Belfast, United Kingdom
9Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
10Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
11Primary Health Care Corporation, Doha, Qatar
12Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
13Ministry of Public Health, Doha, Qatar

Word count: Abstract: 250 words, Main Text: 3,188 words.
Number of tables: 2.
Number of figures: 2.
Running head: COVID-19 vaccination and immune imprinting.
Keywords: COVID-19; antigenic sin; immunity; natural infection; cohort study; epidemiology.

*Correspondence to Dr. Hiam Chemaitelly, Email: hsc2001@qatar-med.cornell.edu or Professor Laith J. Abu-Raddad, E-mail: lja2002@qatar-med.cornell.edu.
Abstract

Background: Epidemiological evidence for immune imprinting was investigated in immune histories related to vaccination in Qatar from onset of the omicron wave, on December 19, 2021, through September 15, 2022.

Methods: Matched, retrospective, cohort studies were conducted to investigate differences in incidence of SARS-CoV-2 reinfection in the national cohort of persons who had a primary omicron infection, but different vaccination histories. History of primary-series (two-dose) vaccination was compared to that of no vaccination, history of booster (three-dose) vaccination was compared to that of two-dose vaccination, and history of booster vaccination was compared to that of no vaccination. Associations were estimated using Cox proportional-hazards regression models.

Results: The adjusted hazard ratio comparing incidence of reinfection in the two-dose cohort to that in the unvaccinated cohort was 0.43 (95% CI: 0.38-0.48). The adjusted hazard ratio comparing incidence of reinfection in the three-dose cohort to that in the two-dose cohort was 1.38 (95% CI: 1.16-1.65). The adjusted hazard ratio comparing incidence of reinfection in the three-dose cohort to that in the unvaccinated cohort was 0.53 (95% CI: 0.44-0.63). All adjusted hazard ratios appeared stable over 6 months of follow-up. Divergence in cumulative incidence curves in all comparisons increased markedly when incidence was dominated by BA.4/BA.5 and BA.2.75*. No reinfection in any cohort progressed to severe, critical, or fatal COVID-19.

Conclusions: History of primary-series vaccination enhanced immune protection against omicron reinfection, but history of booster vaccination compromised protection against omicron reinfection. These findings do not undermine the short-term public health utility of booster vaccination.
Introduction

Three years into the coronavirus disease 2019 (COVID-19) pandemic, the global population carries heterogenous immune histories derived from various exposures to infection, viral variants, and vaccination. Laboratory science evidence suggests the possibility of immune imprinting, a negative impact for vaccination on subsequent protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced by vaccination or infection, or a combination of both. Epidemiological evidence for immune imprinting in immune histories related to infection was recently investigated, but no evidence was found for imprinting compromising protection against B.1.1.529 (omicron) subvariants. A pre-omicron infection followed by an omicron reinfection enhanced protection against a second omicron reinfection.

We investigated epidemiological evidence for imprinting in immune histories related to vaccination using matched, retrospective cohort studies. We compared incidence of SARS-CoV-2 reinfection in the national cohort of individuals who had a primary documented omicron infection after primary-series (two-dose) vaccination to that in the national cohort of individuals with a documented primary omicron infection, but no vaccination history. Analogously, we also compared reinfection incidence in those who had a documented primary omicron infection after booster (third dose) vaccination to each of the two-dose and unvaccinated cohorts.

These immune histories were investigated because of their pervasiveness in the global population, and because of their potential relevance to the protection of bivalent booster vaccination that is being scaled up in different countries.

Methods

Study population and data sources
This study was conducted in the population of Qatar from onset of the omicron wave on December 19, 2021 through September 15, 2022. It analyzed the national, federated databases for COVID-19 laboratory testing, vaccination, hospitalization, and death, retrieved from the integrated, nationwide, digital-health information platform (Section S1 of the Supplementary Appendix). Databases include all SARS-CoV-2-related data with no missing information since pandemic onset, such as all polymerase chain reaction (PCR) tests, and from January 5, 2022 onward, all rapid antigen tests conducted at healthcare facilities. SARS-CoV-2 testing in Qatar is done at mass scale, mostly for routine reasons. Most infections are diagnosed not because of symptoms, but because of routine testing. Qatar launched its COVID-19 vaccination program in December of 2020 using the BNT162b2 and mRNA-1273 vaccines. Detailed descriptions of Qatar’s population and of the national databases have been reported previously.

Study design and cohorts

Matched, retrospective, observational cohort studies were conducted to investigate epidemiological evidence for immune imprinting in individuals who had a documented primary omicron infection, but different prior vaccination histories. A documented primary omicron infection was defined as the first record of a SARS-CoV-2-positive PCR or rapid antigen test after onset of the omicron wave in Qatar on December 19, 2021 in an individual that had no record of a prior pre-omicron infection.

In the first study, we compared incidence of reinfection in the national cohort of individuals who had a primary omicron infection after primary-series (two-dose) vaccination (designated as the two-dose cohort) to that in the national cohort of individuals who had a primary omicron infection, but no vaccination history (designated as the unvaccinated cohort).
In the second study, we compared incidence of reinfection in the national cohort of individuals who had a primary omicron infection after booster (third dose) vaccination (designated as the three-dose cohort) to that in the two-dose cohort. In a third study, to confirm and complement results of the first two studies, we compared incidence of reinfection in the three-dose cohort to that in the unvaccinated cohort. The majority of primary omicron infections in these three studies involved the BA.2 subvariant.7,13,14

SARS-CoV-2 reinfection was defined as a documented infection ≥90 days after an earlier infection, to avoid misclassifying prolonged positivity as reinfection.6,15,16 Children vaccinated with the pediatric dose of BNT162b2 and adults who received different vaccines were excluded. Laboratory methods are in Section S2. Classification of reinfection severity followed World Health Organization guidelines for COVID-19 case severity (acute-care hospitalizations),17 criticality (intensive-care-unit hospitalizations),17 and fatality18 (Section S3).

Cohort matching and follow-up

Cohorts were matched exactly one-to-one by sex, 10-year age group, nationality, and number of coexisting conditions (none, one, two, three or more comorbid conditions) to balance observed confounders between exposure groups that are related to infection risk in Qatar.10,19-22

Individuals who were first diagnosed with SARS-CoV-2 in a specific week in one cohort were matched to individuals who were first diagnosed with SARS-CoV-2 in that same calendar week in the comparator cohort, to ensure that matched pairs were exposed to the same omicron subvariants and had presence in Qatar at the same time. Cohorts were also matched exactly by testing method (PCR versus rapid antigen testing) and by reason for testing for the primary omicron infection to control for potential differences in testing modalities between cohorts.
Matching was performed iteratively such that individuals in the comparator cohort were alive, had not been reinfected, and had maintained the same vaccination status at the start of follow-up. Each matched pair was followed from 90 days after the primary omicron infection of the individual in the two-dose cohort for the study comparing incidence of reinfection in that cohort with the unvaccinated cohort. Follow-up was from 90 days after the primary omicron infection of the individual in the three-dose cohort for studies comparing incidence of reinfection in that cohort to that in each of the two-dose and unvaccinated cohorts.

For exchangeability, both members of each matched pair were censored as soon as one of them received a new vaccine dose (change in vaccination status; that is at earliest occurrence of an unvaccinated individual in the matched pair receiving the first dose, or the individual with two-dose vaccination receiving a third dose, or the individual with three-dose vaccination receiving a fourth dose). Accordingly, individuals were followed up until the first of any of the following events: a documented SARS-CoV-2 reinfection (defined as the first PCR-positive or rapid-antigen-positive test after the start of follow-up, regardless of symptoms), a change in vaccination status (with matched-pair censoring), or death, or end of study censoring (September 15, 2022).

Oversight

The institutional review boards at Hamad Medical Corporation and Weill Cornell Medicine–Qatar approved this retrospective study with a waiver of informed consent. The study was reported according to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines (Table S1). The authors vouch for the accuracy and completeness of the data and for the fidelity of the study to the protocol. Data used in this study are the property of the Ministry of Public Health of Qatar and were provided to the researchers through a restricted-
access agreement for preservation of confidentiality of patient data. The funders had no role in the study design; the collection, analysis, or interpretation of the data; or the writing of the manuscript.

Statistical analysis

Eligible and matched cohorts were described using frequency distributions and measures of central tendency and were compared using standardized mean differences (SMDs). An SMD of \(\leq 0.1 \) indicated adequate matching.\(^{24}\) Cumulative incidence of reinfection (defined as proportion of individuals at risk, whose primary endpoint during follow-up was a reinfection) was estimated using the Kaplan-Meier estimator method.\(^{25}\) Incidence rate of reinfection in each cohort, defined as number of identified reinfections divided by number of person-weeks contributed by all individuals in the cohort, was estimated, with the corresponding 95% confidence interval (CI) using a Poisson log-likelihood regression model with the Stata 17.0 `stptime` command.

Hazard ratios, comparing incidence of reinfection in the cohorts and corresponding 95% CIs, were calculated using Cox regression, adjusted for the matching factors with the Stata 17.0 `stcox` command. Hazard ratios were additionally adjusted for differences in testing frequency between cohorts. Schoenfeld residuals and log-log plots for survival curves were used to test the proportional-hazards assumption. CIs were not adjusted for multiplicity; thus, they should not be used to infer definitive differences between groups. Interactions were not considered. Statistical analyses were conducted using Stata/SE version 17.0 (Stata Corporation, College Station, TX, USA).

Results

Two-dose cohort versus unvaccinated cohort
Figure S1 shows the study population selection process. Table 1 describes baseline characteristics of the full and matched cohorts. Matched cohorts each included 56,802 individuals. The study population is broadly representative of individuals with primary omicron infection who had received two-dose vaccination or no vaccination in Qatar (Table S2).

Median date of the second vaccine dose for the two-dose cohort was June 9, 2021. Median duration between the second dose and start of follow-up was 312 days (interquartile range (IQR), 264-352 days). Median duration of follow-up was 157 days (IQR, 140-164 days) for the two-dose cohort and 157 days (IQR, 139-164 days) for the unvaccinated cohort (Figure 1A). There were 573 reinfections in the two-dose cohort and 1,044 reinfections in the unvaccinated cohort during follow-up (Figure S1). None progressed to severe, critical, or fatal COVID-19.

Cumulative incidence of reinfection was 1.4% (95% CI: 1.2-1.5%) for the two-dose cohort and 2.4% (95% CI: 2.2-2.5%) for the unvaccinated cohort, after 165 days of follow-up (Figure 1A). In the first 70 days of follow-up, incidence was dominated by BA.2.7,13,14 Subsequently, incidence was dominated by BA.4/BA.5,6,26 and then by BA.2.75* (predominantly BA.2.75.2). Divergence between the cumulative incidence curves increased markedly when incidence was no longer dominated by BA.2.

The hazard ratio comparing incidence of reinfection in the two-dose cohort to that in the unvaccinated cohort, adjusted for matching factors, was 0.59 (95% CI: 0.53-0.67; Table 2). The adjusted hazard ratio appeared stable by month of follow-up (Figure 2A). The proportion of individuals who had a test during follow-up was 48.9% for the two-dose cohort and 37.0% for the unvaccinated cohort. The testing frequency was 0.93 and 0.67 tests per person, respectively. Adjusting the hazard ratio additionally by the ratio of testing frequencies between cohorts yielded an adjusted hazard ratio of 0.43 (95% CI: 0.38-0.48).
Three-dose cohort versus two-dose cohort

Figure S2 shows the study population selection process. Table 1 describes baseline characteristics of the full and matched cohorts. Matched cohorts each included 30,541 individuals. The study population is broadly representative of individuals with primary omicron infection who had received three-dose or two-dose vaccination in Qatar (Table S2).

Median dates of the second and third vaccine doses for the three-dose cohort were March 26, 2021 and December 6, 2021, respectively. Median date of the second vaccine dose for the two-dose cohort was May 11, 2021. Median duration between the third dose and start of follow-up was 124 days (IQR, 103-143 days), and between the second dose and start of follow-up was 334 days (IQR, 286-371 days). Median duration of follow-up was 157 days (IQR, 135-164 days) in the three-dose cohort and 157 days (IQR, 137-164 days) in the two-dose cohort (Figure 1B).

There were 480 reinfections in the three-dose cohort and 248 reinfections in the two-dose cohort during follow-up (Figure S2). None progressed to severe, critical, or fatal COVID-19.

Cumulative incidence of reinfection was 2.1% (95% CI: 1.9-2.3%) for the three-dose cohort and 1.1% (95% CI: 1.0-1.3%) for the two-dose cohort, after 165 days of follow-up (Figure 1B). In the first 70 days of follow-up, incidence was dominated by BA.2. Subsequently, incidence was dominated by BA.4/BA.5 and then by BA.2.75*. Divergence between the cumulative incidence curves increased markedly when incidence was no longer dominated by BA.2.

The adjusted hazard ratio comparing incidence of reinfection in the three-dose cohort to that in the two-dose cohort was 1.96 (95% CI: 1.64-2.34; Table 2). The adjusted hazard ratio appeared stable by month of follow-up (Figure 2B). The proportion of individuals who had a test during follow-up was 63.1% for the three-dose cohort and 49.0% for the two-dose cohort. The testing frequency was 1.39 and 0.98 tests per person, respectively. Adjusting the hazard ratio
additionally by the ratio of testing frequencies between cohorts yielded an adjusted hazard ratio of 1.38 (95% CI: 1.16-1.65).

Three-dose cohort versus unvaccinated cohort

Figure S3 shows the study population selection process. Table S3 describes baseline characteristics of the full and matched cohorts. Cumulative incidence of reinfection is shown in Figure S4A.

The adjusted hazard ratio comparing incidence of reinfection in the three-dose cohort to that in the unvaccinated cohort was 1.10 (95% CI: 0.92-1.31; Table 2). The adjusted hazard ratio appeared stable by month of follow-up (Figure S4B). The proportion of individuals who had a test during follow-up was 66.4% for the three-dose cohort and 36.8% for the unvaccinated cohort. The testing frequency was 1.46 and 0.70 tests per person, respectively. Adjusting the hazard ratio additionally by the ratio of testing frequencies between cohorts yielded an adjusted hazard ratio of 0.53 (95% CI: 0.44-0.63).

The results of this additional study confirm the relative differences in incidence of reinfection observed in the first two studies, with incidence being lowest among the two-dose cohort and highest among the unvaccinated cohort.

Discussion

Primary-series vaccination followed by a primary omicron infection was associated with enhanced immune protection against omicron reinfection compared to primary omicron infection with no prior vaccination. This result is striking because the start of follow-up in this study was ~1 year after the two-dose primary series. Protection of the primary series against omicron infection should have fully waned by this time, considering how rapidly vaccine protection
wanes against omicron subvariants.13,27 This finding suggests that the primary omicron infection may have stimulated immune memory of the earlier primary-series immune response in a manner that enhanced protection against a subsequent omicron reinfection, particularly against BA.4/BA.5 and BA.2.75*.

Remarkably, similar effect and effect size were observed recently in an analogous study.5 Incidence of reinfection among unvaccinated persons who had contracted an omicron infection following an earlier pre-omicron infection was lower than incidence of reinfection among unvaccinated persons who had only an omicron infection and no prior pre-omicron infection.5 mRNA vaccines used in Qatar are based on index-virus design.28,29 The median duration between the first and second vaccine doses was <1 month.9 Given this short duration between doses, two-dose vaccination counts perhaps as a single pre-omicron immunological event. This may explain the similarity in both effect and effect size in these two studies, since in essence, both investigate immune protection elicited by a pre-omicron immunological event followed by an omicron immunological event, compared to protection of only a single omicron event.

While two-dose vaccination was associated with enhanced protection against subsequent omicron reinfection, three-dose vaccination was associated with reduced protection compared to that of two-dose vaccination. This finding suggests that the immune response against the primary omicron infection was compromised by differential immune imprinting in those who received a third booster dose, consistent with emerging laboratory science data.1-4 The booster dose, a pre-omicron immunological event, that occurred several months after the primary-series vaccination, another pre-omicron immunological event, may have trained the immune response to expect a specific narrow pre-omicron challenge; thus, the response was inferior when the actual challenge was an immune-evasive omicron subvariant. Repeat immunological events of the same kind
(here pre-omicron challenge) appear associated with compromised protection against a new kind of immunological event (here omicron challenge).

We investigated two immune histories with different effects for immune imprinting on each. Primary-series vaccination followed by a primary omicron infection enhanced immune protection against omicron reinfection. Booster vaccination followed by a primary omicron infection compromised protection against omicron reinfection. This highlights the complexity of the immunity landscape at this stage of the pandemic, in which people have different immune histories. These findings, however, do not undermine the utility of booster vaccination, at least in the short-term. Compromised protection was observed after booster effectiveness waned, as follow-up commenced >4 months after the booster, at a time when booster effectiveness is expected to be marginal.13,27 There is no question that the booster dose reduced infection incidence right after its administration, based on evidence from this same population.7,12,13 Nonetheless, findings indicate that short-term effects of boosters may differ from their long-term effects.

Although we planned to investigate effectiveness against severe COVID-19, no reinfection in any cohort of the three studies progressed to severe, critical, or fatal COVID-19. This outcome is not unexpected given the lower severity of omicron infections30,31 and the strong protection of natural infection against severe COVID-19 at reinfection, estimated at 97\% in this same population,32 as well as the long-term effectiveness of primary-series and boosters against severe COVID-19.7,8,13,27,33 While we were unable to quantify effects of immune imprinting on COVID-19 severity, the results do not suggest imprinting compromising protection against severe COVID-19.
This study has limitations. We investigated incidence of documented reinfections, but undocumented reinfections may have occurred. Unvaccinated individuals are a minority in Qatar, and may not be truly immune-naïve due to undocumented prior infections or undocumented vaccinations, perhaps outside the country, especially now that we are three years into this pandemic. Bias due to unequal depletion of the unvaccinated versus vaccinated susceptible population may underestimate vaccine protection. With Qatar’s young population, our findings may not be generalizable to older individuals or to other countries where elderly citizens constitute a large proportion of the total population.

Testing frequency differed between cohorts, reflecting different travel testing guidelines for vaccinated versus unvaccinated individuals. While adjustment for these differences affected estimated hazard ratios quantitatively, they did not materially change the findings. Home-based rapid antigen testing is not documented in Qatar (Section S1), and is not factored in these analyses. However, there is no reason to believe that home-based testing could have differentially affected the followed cohorts to alter study estimates. Matching was done while factoring key socio-demographic characteristics of the population, and this may also have controlled or reduced differences in home-based testing between cohorts.

As an observational study, investigated cohorts were neither blinded nor randomized, so unmeasured or uncontrolled confounding cannot be excluded. Although matching covered key factors affecting infection exposure, it was not possible for other factors such as geography or occupation, for which data were unavailable. However, Qatar is essentially a city state and infection incidence was broadly distributed across neighborhoods. Nearly 90% of Qatar’s population are expatriates from over 150 countries, who come here for employment.
Nationality, age, and sex provide a powerful proxy for socio-economic status in this country.\(^{10,19-22}\) Nationality is strongly associated with occupation.\(^{10,20-22}\)

The matching prescription used in this study was investigated in previous studies of different epidemiologic designs, and using control groups to test for null effects.\(^{8,9,33,35,36}\) These control groups included unvaccinated cohorts versus vaccinated cohorts within two weeks of the first dose,\(^{8,33,35,36}\) when vaccine protection is negligible,\(^{28,29}\) and mRNA-1273- versus BNT162b2- vaccinated cohorts, also in the first two weeks after the first dose.\(^9\) These studies showed repeatedly and at different times during the pandemic that this prescription provides adequate control of differences in infection exposure,\(^{8,9,33,35,36}\) suggesting that the employed matching may also have controlled for differences in infection exposure in these studies. All analyses were implemented on Qatar’s total population, perhaps minimizing the likelihood of bias.

In conclusion, primary-series vaccination followed by a primary omicron infection enhanced immune protection against omicron reinfection. However, booster vaccination followed by a primary omicron infection compromised protection against omicron reinfection, perhaps because it involved repeat pre-omicron immunological events before the omicron infection. These findings do not undermine the utility of booster vaccination in the short-term, but may point to potentially significant public health complexities requiring fine-tuning of booster vaccination to those who can best benefit from it, such as those most clinically vulnerable to severe COVID-19.
Sources of support and acknowledgements

We acknowledge the many dedicated individuals at Hamad Medical Corporation, the Ministry of Public Health, the Primary Health Care Corporation, Qatar Biobank, Sidra Medicine, and Weill Cornell Medicine-Qatar for their diligent efforts and contributions to make this study possible. The authors are grateful for institutional salary support from the Biomedical Research Program and the Biostatistics, Epidemiology, and Biomathematics Research Core, both at Weill Cornell Medicine-Qatar, as well as for institutional salary support provided by the Ministry of Public Health, Hamad Medical Corporation, and Sidra Medicine. The authors are also grateful for the Qatar Genome Programme and Qatar University Biomedical Research Center for institutional support for the reagents needed for the viral genome sequencing. The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the article. Statements made herein are solely the responsibility of the authors.

Author contributions

HC co-designed the study, performed the statistical analyses, and co-wrote the first draft of the article. LJA conceived and co-designed the study, led the statistical analyses, and co-wrote the first draft of the article. PT and MRH conducted multiplex, RT-qPCR variant screening and viral genome sequencing. PVC designed mass PCR testing to allow routine capture of SGTF variants and conducted viral genome sequencing. HY, HAK, and MS conducted viral genome sequencing. All authors contributed to data collection and acquisition, database development, discussion and interpretation of the results, and to the writing of the article. All authors have read and approved the final manuscript. Decision to publish the paper was by consensus among all authors.

Competing interests
Dr. Butt has received institutional grant funding from Gilead Sciences unrelated to the work presented in this paper. Otherwise, we declare no competing interests.
References

18

Table 1. Baseline characteristics of eligible and matched cohorts in studies investigating immune protection against reinfection among those who had a primary infection with an omicron subvariant, but had a history of A) two-dose vaccination compared to no vaccination, and B) three-dose vaccination compared to two-dose vaccination.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>A) Two-dose cohort versus unvaccinated cohort</th>
<th>B) Three-dose cohort versus two-dose cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full eligible cohorts</td>
<td>Unvaccinated cohort</td>
</tr>
<tr>
<td></td>
<td>N=190,268</td>
<td>N=151,619</td>
</tr>
</tbody>
</table>

Median age (IQR)—years
- 0-9 years: 3 (0.01) - 50.360 (33.2) 0.89
- 10-19 years: 21.21 (11.2) - 21.980 (14.5) 0.08
- 20-29 years: 42.81 (22.5) - 28.134 (18.6) 0.00
- 30-39 years: 67.143 (35.3) - 29.247 (19.3) 0.00
- 40-49 years: 37.593 (19.8) - 13.527 (8.9) 0.00
- 50-59 years: 14.959 (7.9) - 5.146 (3.4) 0.00
- 60-69 years: 14.959 (7.9) - 5.146 (3.4) 0.00
- 70+ years: 1.763 (0.9) - 1.098 (0.7) 0.00

Sex
- Male: 103.033 (54.2) - 83.294 (54.9) 0.00
- Female: 87.325 (45.9) - 68.325 (45.1) 0.00

Nationality
- Bangladeshi: 7.096 (3.7) - 2.548 (1.7) 0.00
- Egyptian: 9.671 (5.1) - 7.561 (5.0) 0.00
- Filipino: 18.159 (9.1) - 10.055 (6.9) 0.00
- Indian: 27.298 (14.3) - 31.321 (20.5) 0.00
- Nepalese: 7.357 (4.0) - 6.767 (4.4) 0.00
- Pakistani: 5.032 (2.6) - 6.412 (4.2) 0.00
- Qatari: 42.385 (22.7) - 37.165 (24.5) 0.00
- Sri Lankan: 3.793 (2.0) - 2.602 (1.7) 0.00
- Sudanese: 5.642 (3.0) - 3.690 (2.4) 0.00
- Other nationalities: 43.650 (22.9) - 43.102 (28.5) 0.00

Coexisting conditions
- None: 138.940 (73.0) - 124.701 (82.3) 0.00
- 1: 26.836 (14.1) - 19.358 (12.8) 0.00
- 2: 12.047 (6.3) - 4.940 (3.3) 0.00
- 3: 12.445 (6.5) - 2.620 (1.7) 0.00

Testing method
- PCR: 128.983 (67.8) - 91.509 (60.4) 0.00
- RA: 61.285 (32.2) - 60.110 (39.7) 0.00

Reason for testing
- Clinical suspicion: 40.496 (21.3) - 22.817 (15.1) 0.00
- Contact tracing: 17.757 (9.3) - 17.653 (15.1) 0.00
- Survey: 15.057 (7.9) - 7.277 (4.8) 0.00
- Individual request: 13.943 (7.9) - 9.342 (6.2) 0.00
- Healthcare routine testing: 3.665 (1.9) - 2.426 (1.6) 0.00
- Pre-travel: 40.221 (21.1) - 24.782 (16.3) 0.00
- Port of entry: 11.804 (6.2) - 21.244 (14.0) 0.00
- Other: 245 (0.1) - 374 (0.3) 0.00
- Not specified: 47.074 (24.7) - 45.704 (30.1) 0.00

IQR denotes interquartile range, PCR, polymerase chain reaction, RA, rapid antigen, SARS-CoV-2 severe acute respiratory syndrome coronavirus 2, and SMD standardized mean difference.
Cohorts were matched exactly one-to-one by sex, age, nationality, number of coexisting conditions, as well as SARS-CoV-2 testing method, reason for SARS-CoV-2 testing, and calendar week of the SARS-CoV-2 test of the primary Omicron infection.

*SMD is the difference in the mean of a covariate between groups divided by the pooled standard deviation. An SMD ≤0.1 indicates adequate matching.

‡SMD is for the mean difference between groups divided by the pooled standard deviation.
§Nationalities were chosen to represent the most populous groups in Qatar.
¶These comprise up to 157 other nationalities in the unmatched cohorts, and 100 other nationalities in the matched cohorts in the comparison of the two-dose cohort to the unvaccinated cohort. These also comprise up to 158 other nationalities in the unmatched cohorts, and 82 other nationalities in the matched cohorts in the comparison of the three-dose cohort to the two-dose cohort.
Figure 1. Cumulative incidence of reinfection among those who had a primary infection with an omicron subvariant after A) two-dose vaccination compared to no vaccination, and B) three-dose vaccination compared to two-dose vaccination.
Figure 2. Adjusted hazard ratio by month of follow-up for SARS-CoV-2 reinfection among those who had a primary infection with an omicron subvariant A) after two-dose vaccination compared to no vaccination, and B) after three-dose vaccination compared to two-dose vaccination.
Table 2. Hazard ratios for incidence of SARS-CoV-2 reinfection in studies investigating immune protection among those who had a primary infection with an omicron subvariant, but different vaccination histories.

<table>
<thead>
<tr>
<th>Epidemiological measure</th>
<th>Cohorts(^*)</th>
<th>Two-dose cohort</th>
<th>Unvaccinated cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-dose vaccination versus no vaccination before primary omicron infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incident reinfections (n)</td>
<td>573</td>
<td>1,044</td>
<td></td>
</tr>
<tr>
<td>Total follow-up time (person-weeks)</td>
<td>1,124,759</td>
<td>1,121,092</td>
<td></td>
</tr>
<tr>
<td>Incidence rate of reinfection (per 10,000 person-weeks; 95% CI)</td>
<td>8.5 (7.6 to 9.4)</td>
<td>8.1 (7.3 to 9.1)</td>
<td></td>
</tr>
<tr>
<td>Unadjusted hazard ratio for SARS-CoV-2 reinfection (95% CI)</td>
<td>1.04 (0.89 to 1.21)</td>
<td>1.10 (0.92 to 1.31)</td>
<td></td>
</tr>
<tr>
<td>Adjusted hazard ratio for SARS-CoV-2 reinfection (95% CI)</td>
<td>0.53 (0.44 to 0.63)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{*}\)Cohorts were matched exactly one-to-one by sex, age, nationality, number of coexisting conditions, as well as SARS-CoV-2 testing method, reason for SARS-CoV-2 testing, and calendar week of the SARS-CoV-2 test of the primary Omicron infection.

\(^{1}\)Cox regression analysis adjusted for sex, 10-year age groups, 10 nationality groups, number of coexisting conditions, as well as SARS-CoV-2 testing method, reason for SARS-CoV-2 testing, and calendar week of the SARS-CoV-2 test of the primary Omicron infection.
Supplementary Appendix

Table of Contents
Section S1. Further details on methods...2
 Data sources and testing...2
 Comorbidity classification..3
Section S2. Laboratory methods and variant ascertainment.......................................4
 Real-time reverse-transcription polymerase chain reaction testing.....................4
 Rapid antigen testing..4
 Classification of infections by variant type..5
Section S3. COVID-19 severity, criticality, and fatality classification.........................6
Table S1. STROBE checklist for cohort studies...8
Figure S1. Flowchart describing the population selection process for investigating immune protection against reinfection among those who had a primary infection with an omicron subvariant after two-dose vaccination compared to protection among those who had a primary infection with an omicron subvariant but were unvaccinated..10
Table S2. Representativeness of study participants..11
Figure S2. Flowchart describing the population selection process for investigating immune protection against reinfection among those who had a primary infection with an omicron subvariant after three-dose vaccination compared to protection among those who had a primary infection with an omicron subvariant after two-dose vaccination..12
Figure S3. Flowchart describing the population selection process for investigating immune protection against reinfection among those who had a primary infection with an omicron subvariant after three-dose vaccination compared to protection among those who had a primary infection with an omicron subvariant but were unvaccinated..13
Table S3. Baseline characteristics of eligible and matched cohorts in the study investigating immune protection against reinfection among those who had a primary infection with an omicron subvariant after three-dose vaccination compared to those who had a primary infection with an omicron subvariant but were unvaccinated...14
Figure S4. A) Cumulative incidence of and B) adjusted hazard ratio by month of follow-up for SARS-CoV-2 reinfection among those who had a primary infection with an omicron subvariant after three-dose vaccination compared to those who had a primary infection with an omicron subvariant but were unvaccinated..15
References...16
Section S1. Further details on methods

Data sources and testing

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing in the healthcare system in Qatar is done at a mass scale, and mostly for routine reasons, where about 5% of the population are tested every week.\(^1,2\) About 75% of those diagnosed are diagnosed not because of appearance of symptoms, but because of routine testing.\(^1,2\) Every polymerase chain reaction (PCR) test and an increasing proportion of the facility-based rapid antigen tests conducted in Qatar, regardless of location or setting, are classified on the basis of symptoms and the reason for testing (clinical symptoms, contact tracing, surveys or random testing campaigns, individual requests, routine healthcare testing, pre-travel, at port of entry, or other). All facility-based testing done during follow-up in the present study was factored in the analyses of this study.

Rapid antigen test kits are available for purchase in pharmacies in Qatar, but outcome of home-based testing is not reported nor documented in the national databases. Since SARS-CoV-2-test outcomes are linked to specific public health measures, restrictions, and privileges, testing policy and guidelines stress facility-based testing as the core testing mechanism in the population. While facility-based testing is provided free of charge or at low subsidized costs, depending on the reason for testing, home-based rapid antigen testing is de-emphasized and not supported as part of national policy. There is no reason to believe that home-based testing could have differentially affected the followed matched cohorts to affect our results.

The infection detection rate is defined as the cumulative number of documented infections, that is diagnosed and laboratory-confirmed infections, over the cumulative number of documented and undocumented infections. Serological surveys and other analyses suggest that a substantial
proportion of infections in Qatar and elsewhere are undocumented. With absence of recent serological surveys in Qatar, it is difficult to estimate the current or recent infection detection rate, but mathematical modeling analyses and their recent updates suggest that at present no less than 50% of infections are never documented. However, there is no reason to believe that undocumented infections could have differentially affected the followed matched cohorts to affect our results.

Qatar has unusually young, diverse demographics, in that only 9% of its residents are ≥50 years of age, and 89% are expatriates from over 150 countries. Further descriptions of the study population and these national databases were reported previously.

Comorbidity classification

Comorbidities were ascertained and classified based on the ICD-10 codes for chronic conditions as recorded in the electronic health record encounters of each individual in the Cerner-system national database that includes all citizens and residents registered in the national and universal public healthcare system. All encounters for each individual were analyzed to determine the comorbidity classification for that individual, as part of a recent national analysis to assess healthcare needs and resource allocation. The Cerner-system national database includes encounters starting from 2013, after this system was launched in Qatar. As long as each individual had at least one encounter with a specific comorbidity diagnosis since 2013, this person was classified with this comorbidity. Individuals who have comorbidities but never sought care in the public healthcare system, or seek care exclusively in private healthcare facilities, are classified as individuals with no comorbidity due to absence of recorded encounters for them.
Section S2. Laboratory methods and variant ascertainment

Real-time reverse-transcription polymerase chain reaction testing

Nasopharyngeal and/or oropharyngeal swabs were collected for polymerase chain reaction (PCR) testing and placed in Universal Transport Medium (UTM). Aliquots of UTM were: 1) extracted on KingFisher Flex (Thermo Fisher Scientific, USA), MGISP-960 (MGI, China), or ExiPrep 96 Lite (Bioneer, South Korea) followed by testing with real-time reverse-transcription PCR (RT-qPCR) using TaqPath COVID-19 Combo Kits (Thermo Fisher Scientific, USA) on an ABI 7500 FAST (Thermo Fisher Scientific, USA); 2) tested directly on the Cepheid GeneXpert system using the Xpert Xpress SARS-CoV-2 (Cepheid, USA); or 3) loaded directly into a Roche cobas 6800 system and assayed with the cobas SARS-CoV-2 Test (Roche, Switzerland). The first assay targets the viral S, N, and ORF1ab gene regions. The second targets the viral N and E-gene regions, and the third targets the ORF1ab and E-gene regions.

All PCR testing was conducted at the Hamad Medical Corporation Central Laboratory or Sidra Medicine Laboratory, following standardized protocols.

Rapid antigen testing

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen tests were performed on nasopharyngeal swabs using one of the following lateral flow antigen tests: Panbio COVID-19 Ag Rapid Test Device (Abbott, USA); SARS-CoV-2 Rapid Antigen Test (Roche, Switzerland); Standard Q COVID-19 Antigen Test (SD Biosensor, Korea); or CareStart COVID-19 Antigen Test (Access Bio, USA). All antigen tests were performed point-of-care according to each manufacturer’s instructions at public or private hospitals and clinics throughout Qatar with prior authorization and training by the Ministry of Public Health (MOPH). Antigen test results
were electronically reported to the MOPH in real time using the Antigen Test Management System which is integrated with the national Coronavirus Disease 2019 (COVID-19) database.

Classification of infections by variant type

Surveillance for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in Qatar is based on viral genome sequencing and multiplex real-time reverse-transcription polymerase chain reaction (RT-qPCR) variant screening\(^{15}\) of random positive clinical samples,\(^{2,16-20}\) complemented by deep sequencing of wastewater samples.\(^{18,21,22}\) Further details on the viral genome sequencing and multiplex RT-qPCR variant screening throughout the SARS-CoV-2 waves in Qatar can be found in previous publications.\(^{1,2,14,16-20,23-27}\)
Section S3. COVID-19 severity, criticality, and fatality classification

Classification of Coronavirus Disease 2019 (COVID-19) case severity (acute-care hospitalizations),\(^2\) criticality (intensive-care-unit hospitalizations),\(^2\) and fatality\(^2\) followed World Health Organization (WHO) guidelines. Assessments were made by trained medical personnel independent of study investigators and using individual chart reviews, as part of a national protocol applied to every hospitalized COVID-19 patient. Each hospitalized COVID-19 patient underwent an infection severity assessment every three days until discharge or death. We classified individuals who progressed to severe, critical, or fatal COVID-19 between the time of the documented infection and the end of the study based on their worst outcome, starting with death,\(^2\) followed by critical disease,\(^2\) and then severe disease.\(^2\)

Severe COVID-19 disease was defined per WHO classification as a SARS-CoV-2 infected person with “oxygen saturation of <90% on room air, and/or respiratory rate of >30 breaths/minute in adults and children >5 years old (or ≥60 breaths/minute in children <2 months old or ≥50 breaths/minute in children 2-11 months old or ≥40 breaths/minute in children 1–5 years old), and/or signs of severe respiratory distress (accessory muscle use and inability to complete full sentences, and, in children, very severe chest wall indrawing, grunting, central cyanosis, or presence of any other general danger signs)”.\(^2\) Detailed WHO criteria for classifying Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection severity can be found in the WHO technical report.\(^2\)

Critical COVID-19 disease was defined per WHO classification as a SARS-CoV-2 infected person with “acute respiratory distress syndrome, sepsis, septic shock, or other conditions that would normally require the provision of life sustaining therapies such as mechanical ventilation
(invasive or non-invasive) or vasopressor therapy”. Detailed WHO criteria for classifying SARS-CoV-2 infection criticality can be found in the WHO technical report.

COVID-19 death was defined per WHO classification as “a death resulting from a clinically compatible illness, in a probable or confirmed COVID-19 case, unless there is a clear alternative cause of death that cannot be related to COVID-19 disease (e.g. trauma). There should be no period of complete recovery from COVID-19 between illness and death. A death due to COVID-19 may not be attributed to another disease (e.g. cancer) and should be counted independently of preexisting conditions that are suspected of triggering a severe course of COVID-19”. Detailed WHO criteria for classifying COVID-19 death can be found in the WHO technical report.
Table S1. STROBE checklist for cohort studies.

<table>
<thead>
<tr>
<th>Item No</th>
<th>Item</th>
<th>Recommendation</th>
<th>Main Text page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Title and abstract</td>
<td>(a) Indicate the study’s design with a commonly used term in the title or the abstract
 (b) Provide in the abstract an informative and balanced summary of what was done and what was found</td>
<td>Abstract, Abstract</td>
</tr>
<tr>
<td>2</td>
<td>Background/rationale</td>
<td>Explain the scientific background and rationale for the investigation being reported</td>
<td>Introduction</td>
</tr>
<tr>
<td>3</td>
<td>Objectives</td>
<td>State specific objectives, including any prespecified hypotheses</td>
<td>Introduction</td>
</tr>
<tr>
<td>4</td>
<td>Methods</td>
<td>Present key elements of study design early in the paper</td>
<td>Methods ('Study design and cohorts' & 'Cohort matching and follow-up')</td>
</tr>
<tr>
<td>5</td>
<td>Setting</td>
<td>Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection</td>
<td>Methods ('Study population and data sources', 'Study design and cohorts' & 'Cohort matching and follow-up', & Figures S1-S3 in Supplementary Appendix)</td>
</tr>
<tr>
<td>6</td>
<td>Participants</td>
<td>(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up
 (b) For matched studies, give matching criteria and number of exposed and unexposed</td>
<td>Methods ('Study design and cohorts' & 'Cohort matching and follow-up', & Figures S1-S3 in Supplementary Appendix)</td>
</tr>
<tr>
<td>7</td>
<td>Variables</td>
<td>Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable</td>
<td>Methods ('Study design and cohorts' & 'Cohort matching and follow-up'), Table 1, & Sections S1-S3 & Table S3 in Supplementary Appendix</td>
</tr>
<tr>
<td>8</td>
<td>Data sources/ measurement</td>
<td>For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group</td>
<td>Methods ('Study population and data sources' & 'Statistical analysis', paragraph 1), Table 1, & Sections S1-S3 & Table S3 in Supplementary Appendix</td>
</tr>
<tr>
<td>9</td>
<td>Bias</td>
<td>Describe any efforts to address potential sources of bias</td>
<td>Methods ('Cohort matching and follow-up')</td>
</tr>
<tr>
<td>10</td>
<td>Study size</td>
<td>Explain how the study size was arrived at</td>
<td>Figures S1-S3 in Supplementary Appendix</td>
</tr>
<tr>
<td>11</td>
<td>Quantitative variables</td>
<td>Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why</td>
<td>Methods ('Cohort matching and follow-up', Table 1, & Table S3 in Supplementary Appendix)</td>
</tr>
<tr>
<td>12</td>
<td>Statistical methods</td>
<td>(a) Describe all statistical methods, including those used to control for confounding
 (b) Describe any methods used to examine subgroups and interactions
 (c) Explain how missing data were addressed
 (d) If applicable, explain how loss to follow-up was addressed
 (e) Describe any sensitivity analyses</td>
<td>Methods ('Statistical analysis')</td>
</tr>
<tr>
<td>13</td>
<td>Results</td>
<td>(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed
 (b) Give reasons for non-participation at each stage
 (c) Consider use of a flow diagram</td>
<td>Figures S1-S3 in Supplementary Appendix</td>
</tr>
<tr>
<td>14</td>
<td>Descriptive data</td>
<td>(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders
 (b) Indicate number of participants with missing data for each variable of interest</td>
<td>Results ('Two-dose cohort versus unvaccinated cohort', paragraphs 1 & 2, 'Three-dose cohort versus two-dose cohort', paragraphs 1 & 2, & 'Three-dose cohort versus unvaccinated cohort', paragraph 1), Table 1, & Table S3 in Supplementary Appendix, Not applicable, see Methods ('Study population and data sources')</td>
</tr>
</tbody>
</table>

* Items marked with a asterisk are not applicable in the reported study.
<table>
<thead>
<tr>
<th>Section</th>
<th>Instructions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome data</td>
<td>Report numbers of outcome events or summary measures over time</td>
<td>Results (‘Two-dose cohort versus unvaccinated cohort’, paragraph 3 & 4, ‘Three-dose cohort versus two-dose cohort’, paragraphs 3 & 4, & ‘Three-dose cohort versus unvaccinated cohort’, paragraph 2), Figure 1, Table 2, & Figure S4A in Supplementary Appendix.</td>
</tr>
<tr>
<td>Main results</td>
<td>(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included</td>
<td>Results (‘Two-dose cohort versus unvaccinated cohort’, paragraphs 3 & 4, ‘Three-dose cohort versus two-dose cohort’, paragraphs 3 & 4, & ‘Three-dose cohort versus unvaccinated cohort’, paragraph 2), Figure 1, Table 2, & Figure S4 in Supplementary Appendix.</td>
</tr>
<tr>
<td></td>
<td>(b) Report category boundaries when continuous variables were categorized</td>
<td>Table 1 & Table S3 in Supplementary Appendix.</td>
</tr>
<tr>
<td></td>
<td>(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Other analyses</td>
<td>Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses</td>
<td>Results (‘Two-dose cohort versus unvaccinated cohort’, paragraph 4, ‘Three-dose cohort versus two-dose cohort’, paragraph 4, & ‘Three-dose cohort versus unvaccinated cohort’, paragraph 2), Figure 2, & Figure S4B in Supplementary Appendix.</td>
</tr>
<tr>
<td>Discussion</td>
<td>Summarise key results with reference to study objectives</td>
<td>Discussion, paragraphs 1-5</td>
</tr>
<tr>
<td>Key results</td>
<td>Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias</td>
<td>Discussion, paragraphs 6-9</td>
</tr>
<tr>
<td>Limitations</td>
<td>Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence</td>
<td>Discussion, paragraph 10</td>
</tr>
<tr>
<td>Interpretation</td>
<td>Discuss the generalisability (external validity) of the study results</td>
<td>Discussion, paragraphs 6-9 and Table S2 in Supplementary Appendix.</td>
</tr>
<tr>
<td>Generalisability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding</td>
<td>Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based</td>
<td>Sources of support & acknowledgements</td>
</tr>
</tbody>
</table>
Figure S1. Flowchart describing the population selection process for investigating immune protection against reinfection among those who had a primary infection with an omicron subvariant after two-dose vaccination compared to protection among those who had a primary infection with an omicron subvariant but were unvaccinated.

872,491 Individuals with a documented SARS-CoV-2 primary infection between February 28, 2020 (pandemic onset) and September 15, 2022 (end of study)

682,223 Individuals excluded
- 426,907 Had the primary infection with a pre-omicron variant
- 155,435 Did not receive 2 vaccine doses before the primary infection
- 36,538 Did not complete 90 days after the primary infection
- 60,693 Received Dose 3 before the start of the follow-up
- 518 Had vaccine doses with different vaccines
- 1,818 Received the ChAdOx1 nCoV-19 (AZD1222) vaccine
- 207 Received the pediatric 10-μg BNT162b2 vaccine
- 103 Died before the start of the follow-up, of which 18 were COVID-19-related deaths
- 1 Had an unascertained death date
- 3 Tested after death

720,872 Individuals excluded
- 330,301 Had a vaccination record before the primary infection
- 390,544 Had the primary infection with a pre-omicron variant
- 4 Had an unascertained death date
- 13 Tested after death

Two-dose cohort
190,268 Individuals with a primary documented infection with an omicron subvariant after receiving two-dose vaccination
- 133,466 Not matched
- 56,802 Matched

- 573 Reinfection with SARS-CoV-2, none of which progressed to severe, critical, or fatal COVID-19
- 41 PCR-confirmed symptomatic infections
- 133 PCR-confirmed non-symptomatic infections
- 399 Rapid-antigen-confirmed infections
- 6,326 Censored because they received Dose 3
- 2,805 Censored because their match received Dose 1
- 18 Non-COVID-19-related deaths during follow-up
- 47,080 Followed until end of study (September 15, 2022)

Unvaccinated cohort
151,619 Individuals with a primary documented infection with an omicron subvariant but no vaccination record
- 94,817 Not matched
- 56,802 Matched

- 1,044 Reinfection with SARS-CoV-2, none of which progressed to severe, critical, or fatal COVID-19
- 47 PCR-confirmed symptomatic infections
- 286 PCR-confirmed non-symptomatic infections
- 711 Rapid-antigen-confirmed infections
- 2,205 Censored because they received Dose 1
- 6,323 Censored because their match received Dose 3
- 29 Non-COVID-19-related deaths during follow-up
- 46,604 Followed until end of study (September 15, 2022)

*Each matched pair was followed from 90 days after the primary omicron infection of the individual in the two-dose cohort.
*Cohorts were matched exactly one-to-one by sex, age, nationality, number of coexisting conditions, as well as SARS-CoV-2 testing method, reason for SARS-CoV-2 testing, and calendar week of the SARS-CoV-2 test of the primary Omicron infection.
*SARS-CoV-2 reinfection was defined as a documented infection ≥90 days after an earlier infection.
Table S2. Representativeness of study participants.

<table>
<thead>
<tr>
<th>Category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease, problem, or condition under investigation</td>
<td>Immune protection against reinfection assessed among those who had a primary omicron infection after primary-series vaccination (two-dose cohort) compared to that among those who had a primary omicron infection but no history of vaccination (unvaccinated cohort), as well as between those who had a primary omicron infection after booster vaccination (three-dose cohort) compared to that in the two-dose cohort. Immune protection against reinfection was further assessed in an additional complementary analysis in the three-dose cohort compared to the unvaccinated cohort.</td>
</tr>
<tr>
<td>Special considerations related to</td>
<td></td>
</tr>
<tr>
<td>Sex and gender</td>
<td>National, matched, retrospective cohort studies were conducted to compare incidence of SARS-CoV-2 reinfection among individuals who had a primary omicron infection but different vaccination histories. Cohorts were matched exactly in a one-to-one ratio by sex to control for potential differences in the risk of exposure to SARS-CoV-2 infection by sex.</td>
</tr>
<tr>
<td>Age</td>
<td>Cohorts were matched exactly in a one-to-one ratio by age to control for potential differences in the risk of exposure to SARS-CoV-2 infection by age.</td>
</tr>
<tr>
<td>Race or ethnicity group</td>
<td>Cohorts were matched exactly in a one-to-one ratio by nationality to control for potential differences in the risk of exposure to SARS-CoV-2 infection by nationality. Nationality is associated with race and ethnicity in the population of Qatar.</td>
</tr>
<tr>
<td>Geography</td>
<td>Individual-level data on geography were not available, but Qatar is essentially a city state and infection incidence was broadly distributed across the country’s neighborhoods/areas. Cohorts were matched exactly by nationality to control for potential differences in the risk of exposure to SARS-CoV-2 infection by nationality. Qatar has unusually diverse demographics in that 89% of the population are international expatriate residents coming from over 150 countries from all world regions.</td>
</tr>
<tr>
<td>Other considerations</td>
<td>To ensure that matched individuals in both cohorts experience the same force of infection and variant/subvariant exposure at all times, individuals who had a documented primary omicron infection in a specific week in one cohort were matched to individuals in the comparator cohort who had a documented primary omicron infection in that same calendar week.</td>
</tr>
<tr>
<td>Overall representativeness of this study</td>
<td>The study was based on the total population of Qatar and thus the study population is broadly representative of the diverse, by national background, but young total population of Qatar. While there could be differences in the risk of exposure to SARS-CoV-2 infection by sex, age, nationality, number of coexisting conditions, and SARS-CoV-2 testing method, reason for SARS-CoV-2 testing, and calendar week of the SARS-CoV-2 test for the primary omicron infection, cohorts were matched exactly by these factors to control for their potential impact on our estimates. With Qatar’s young population and the young age of those that remained unvaccinated in our population, our findings may not be generalizable to older individuals or other countries where elderly citizens constitute a larger proportion of the total population.</td>
</tr>
</tbody>
</table>

SARS-CoV-2 denotes severe acute respiratory syndrome coronavirus 2.
Figure S2. Flowchart describing the population selection process for investigating immune protection against reinfection among those who had a primary infection with an omicron subvariant after three-dose vaccination compared to protection among those who had a primary infection with an omicron subvariant after two-dose vaccination.

872,491 Individuals with a documented SARS-CoV-2 primary infection between February 28, 2020 (pandemic onset) and September 15, 2022 (end of study)

586,149 Individuals excluded
- 426,907 Had the primary infection with a pre-omicron variant
- 155,432 Did not receive 2 vaccine doses before the primary infection
- 2,735 Received one or two doses of the ChAdOx1 nCoV-19 (AZD1222) vaccine
- 1,024 Received one or two doses of the pediatric 10-μg BNT162b2 vaccine
- 47 Had vaccine doses with different vaccines for the first and second doses
- 1 Had an undetermined death date
- 3 Tested after death

244,318 Individuals excluded
- 226,637 Did not receive Dose 3 before the primary infection
- 17,462 Did not complete 90 days after the primary infection
- 107 Received Dose 4 before the start of the follow-up
- 82 Had vaccine doses with different vaccines for the first, second, or third doses
- 30 Died before the start of the follow-up, of which 6 were COVID-19-related deaths

Three-dose cohort
42,024 Individuals with a primary documented infection with an omicron subvariant after receiving three-dose vaccination

11,483 Not matched
30,541 Matched

- 480 Reinfected with SARS-CoV-2, none of which progressed to severe, critical, or fatal COVID-19
 - 28 PCR-confirmed symptomatic infections
 - 86 PCR-confirmed non-symptomatic infections
 - 368 Rapid-antigen-confirmed infections
- 406 Censored because they received Dose 4
- 5,458 Censored because their match received Dose 3
- 14 Non-COVID-19-related deaths during follow-up
- 24,183 Followed until end of study (September 15, 2022)

Two-dose cohort
226,335 Individuals with a primary documented infection with an omicron subvariant after receiving two-dose vaccination

195,794 Not matched
30,541 Matched

- 248 Reinfected with SARS-CoV-2, none of which progressed to severe, critical, or fatal COVID-19
 - 10 PCR-confirmed symptomatic infections
 - 50 PCR-confirmed non-symptomatic infections
 - 188 Rapid-antigen-confirmed infections
- 5,464 Censored because they received Dose 3
- 408 Censored because their match received Dose 4
- 27 Non-COVID-19-related deaths during follow-up
- 24,394 Followed until end of study (September 15, 2022)

Cohorts were matched exactly one-to-one by sex, age, nationality, number of coexisting conditions, as well as SARS-CoV-2 testing method, reason for SARS-CoV-2 testing, and calendar week of the SARS-CoV-2 test of the primary Omicron infection.

Reinfected with SARS-CoV-2 was defined as a documented infection ≥90 days after an earlier infection.
Figure S3. Flowchart describing the population selection process for investigating immune protection against reinfection among those who had a primary infection with an omicron subvariant after three-dose vaccination compared to protection among those who had a primary infection with an omicron subvariant but were unvaccinated.

872,491 Individuals with a documented SARS-CoV-2 primary infection between February 28, 2020 (pandemic onset) and September 15, 2022 (end of study)

- 830,467 Individuals excluded
 - 426,907 Had the primary infection with a pre-omicron variant
 - 385,791 Did not receive 3 vaccine doses before the primary infection
 - 17,500 Did not complete 90 days after the primary infection
 - 109 Received Dose 4 before the start of the follow-up
 - 126 Had vaccine doses with different vaccines
 - 3 Received the ChAdOx1 nCoV-19 (AZD1222) vaccine
 - 30 Died before the start of the follow-up, of which 6 were COVID-19-related deaths
 - 1 Tested after death

Three-dose cohort
42,024 Individuals with a primary documented infection with an omicron subvariant after receiving three-dose vaccination

- 22,959 Not matched
- 19,065 Matched

- 337 Reinfection with SARS-CoV-2, none of which progressed to severe, critical, or fatal COVID-19
- 21 PCR-confirmed symptomatic infections
- 64 PCR-confirmed non-symptomatic infections
- 252 Rapid-antigen-confirmed infections
- 201 Censored because they received Dose 4
- 1,474 Censored because their match received Dose 1
- 7 Non-COVID-19-related deaths during follow-up
- 17,046 Followed until end of study (September 15, 2022)

Unvaccinated cohort
151,619 Individuals with a primary documented infection with an omicron subvariant but no vaccination record

- 132,554 Not matched
- 19,065 Matched

- 323 Reinfection with SARS-CoV-2, none of which progressed to severe, critical, or fatal COVID-19
- 23 PCR-confirmed symptomatic infections
- 86 PCR-confirmed non-symptomatic infections
- 214 Rapid-antigen-confirmed infections
- 1,479 Censored because they received Dose 1
- 202 Censored because their match received Dose 4
- 24 Non-COVID-19-related deaths during follow-up
- 17,037 Followed until end of study (September 15, 2022)

Each matched pair was followed from 90 days after the primary omicron infection of the individual in the three-dose cohort.

Cohorts were matched exactly one-to-one by sex, age, nationality, number of coexisting conditions, as well as SARS-CoV-2 testing method, reason for SARS-CoV-2 testing, and calendar week of the SARS-CoV-2 test of the primary Omicron infection.

SARS-CoV-2 reinfection was defined as a documented infection ≥90 days after an earlier infection.
Table S3. Baseline characteristics of eligible and matched cohorts in the study investigating immune protection against reinfection among those who had a primary infection with an omicron subvariant after three-dose vaccination compared to those who had a primary infection with an omicron subvariant but were unvaccinated.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Full eligible cohorts</th>
<th>Matched cohorts†</th>
<th>SMD*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Three-dose cohort</td>
<td>Unvaccinated cohort</td>
<td>Three-dose cohort</td>
</tr>
<tr>
<td></td>
<td>N=42,024</td>
<td>N=151,619</td>
<td>N=19,065</td>
</tr>
<tr>
<td>Median age (IQR)—years</td>
<td>40.1 (34.9-49)</td>
<td>22.1 (7.3-49)</td>
<td>37.0 (31.4-44)</td>
</tr>
<tr>
<td>Age—years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-9 years</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>10-19 years</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>20-29 years</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>30-39 years</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>40-49 years</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>50-59 years</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>60-69 years</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>70+ years</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>23,930 (56.9)</td>
<td>83,294 (54.9)</td>
<td>10,354 (54.3)</td>
</tr>
<tr>
<td>Female</td>
<td>18,094 (43.1)</td>
<td>68,325 (45.1)</td>
<td>8,711 (45.7)</td>
</tr>
<tr>
<td>Nationality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bangladeshi</td>
<td>1,025 (2.4)</td>
<td>2,548 (1.7)</td>
<td>470 (2.5)</td>
</tr>
<tr>
<td>Egyptian</td>
<td>2,547 (6.1)</td>
<td>7,561 (5.0)</td>
<td>763 (4.0)</td>
</tr>
<tr>
<td>Filipino</td>
<td>7,835 (18.6)</td>
<td>10,505 (6.9)</td>
<td>3,648 (19.1)</td>
</tr>
<tr>
<td>Indian</td>
<td>10,734 (25.5)</td>
<td>31,281 (20.6)</td>
<td>5,992 (31.4)</td>
</tr>
<tr>
<td>Nepalese</td>
<td>696 (1.7)</td>
<td>6,673 (4.4)</td>
<td>540 (2.8)</td>
</tr>
<tr>
<td>Pakistani</td>
<td>1,005 (2.4)</td>
<td>6,412 (4.2)</td>
<td>409 (2.2)</td>
</tr>
<tr>
<td>Qatari</td>
<td>6,145 (14.6)</td>
<td>37,165 (24.5)</td>
<td>3,591 (18.8)</td>
</tr>
<tr>
<td>Sri Lankan</td>
<td>781 (1.9)</td>
<td>2,602 (1.7)</td>
<td>363 (1.9)</td>
</tr>
<tr>
<td>Sudanese</td>
<td>880 (2.1)</td>
<td>3,690 (2.4)</td>
<td>316 (1.7)</td>
</tr>
<tr>
<td>Other nationalities†</td>
<td>10,576 (24.7)</td>
<td>43,182 (28.5)</td>
<td>2,973 (15.6)</td>
</tr>
<tr>
<td>Coexisting conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>26,945 (64.1)</td>
<td>124,701 (82.3)</td>
<td>16,026 (84.1)</td>
</tr>
<tr>
<td>1</td>
<td>6,200 (14.8)</td>
<td>19,358 (12.8)</td>
<td>1,420 (7.5)</td>
</tr>
<tr>
<td>2</td>
<td>3,751 (8.9)</td>
<td>4,940 (3.3)</td>
<td>619 (3.3)</td>
</tr>
<tr>
<td>3+</td>
<td>5,128 (12.2)</td>
<td>2,620 (1.7)</td>
<td>1,000 (5.3)</td>
</tr>
<tr>
<td>Testing method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>26,019 (61.6)</td>
<td>91,509 (60.4)</td>
<td>13,197 (69.2)</td>
</tr>
<tr>
<td>RA</td>
<td>16,005 (38.1)</td>
<td>60,110 (39.7)</td>
<td>5,868 (30.8)</td>
</tr>
<tr>
<td>Reason for testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical suspicion</td>
<td>7,711 (18.4)</td>
<td>22,817 (15.1)</td>
<td>3,334 (17.5)</td>
</tr>
<tr>
<td>Contact tracing</td>
<td>4,432 (10.6)</td>
<td>17,653 (11.6)</td>
<td>1,702 (8.9)</td>
</tr>
<tr>
<td>Survey</td>
<td>2,604 (6.2)</td>
<td>7,277 (4.8)</td>
<td>1,088 (5.7)</td>
</tr>
<tr>
<td>Individual request</td>
<td>2,969 (7.1)</td>
<td>9,342 (6.2)</td>
<td>1,212 (6.4)</td>
</tr>
<tr>
<td>Healthcare routine testing</td>
<td>943 (2.2)</td>
<td>2,426 (1.6)</td>
<td>180 (0.9)</td>
</tr>
<tr>
<td>Pre-travel</td>
<td>9,836 (23.4)</td>
<td>24,782 (16.3)</td>
<td>6,299 (33.0)</td>
</tr>
<tr>
<td>Port of entry</td>
<td>1,883 (4.5)</td>
<td>21,244 (14.0)</td>
<td>653 (3.4)</td>
</tr>
<tr>
<td>Other</td>
<td>105 (0.3)</td>
<td>374 (0.3)</td>
<td>3 (0.02)</td>
</tr>
<tr>
<td>Not specified</td>
<td>11,541 (27.5)</td>
<td>45,704 (30.1)</td>
<td>4,594 (24.1)</td>
</tr>
</tbody>
</table>

IQR denotes interquartile range, PCR, polymerase chain reaction, RA, rapid antigen, SARS-CoV-2 severe acute respiratory syndrome coronavirus 2, and SMD standardized mean difference.

*Cohorts were matched exactly one-to-one by sex, age, nationality, number of coexisting conditions, as well as SARS-CoV-2 testing method, reason for SARS-CoV-2 testing, and calendar week of the SARS-CoV-2 test of the primary Omicron infection.

*SMD is the difference in the mean of a covariate between groups divided by the pooled standard deviation. An SMD ≥ 0.1 indicates adequate matching.

*Nationalities were chosen to represent the most populous groups in Qatar.

*These comprise up to 157 other nationalities in the unmatched cohorts, and 73 other nationalities in the matched cohorts.
Figure S4. A) Cumulative incidence of and B) adjusted hazard ratio by month of follow-up for SARS-CoV-2 reinfection among those who had a primary infection with an omicron subvariant after three-dose vaccination compared to those who had a primary infection with an omicron subvariant but were unvaccinated.

A) Cumulative incidence of reinfection

Three-dose cohort: 159 (150-164) days
Unvaccinated cohort: 159 (150-164) days

B) Adjusted hazard ratio by month of follow-up

IQR denotes interquartile range
References